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Abstract

In this paper, we define a quadrilateral inequality and an iterative of Xu-Ori
type in CAT(1) spaces. Furthermore, we prove a convergence theorem of the
Xu-Ori type method in the same space by using the quadrilateral inequality.

1 Introduction

Fixed point theory has been investigated by many mathematicians in recent years.
In particular, approximating a common fixed point of a nonlinear mapping is one of
the major topics in this theory. We have been researching some types of approximating
iteration for finding a fixed point in Banach spaces, Hilbert spaces and geodesic spaces.
For example, there are some implicit type methods such as Browder type [7] and Xu-
Ori type [8].

Recently, Kimura [3] proved the following convergence theorem with multiple an-
chor points in a complete CAT(0) space. It was inspired by the idea of the sequence
of Browder’s theorem.

Theorem 1.1 (Kimura [3]). Let X be a Hadamard space, T : X — X be a nonez-
pansive mapping such that F(T) # & and uy,us,...,u, € X. Suppose {a,} C ]0,1]
is a real sequence such that c,, — 0. For k = 1,2,....r, let {B%} C [0,1] such that



S 8% =1 and BF — B* € [0,1]. Define {z,} C X by

T = argmin (an Z BEd(y, ur)? + (1 — ay)d(y, Txn)2>

yeX E—1

for n € N. Then, {x,} converges to a unique minimizer of a function g on F(T),
where g : X — R is defined by

s

g(y) =>_ Brd(y,ur)?,

k=1
fory e X.

On the other hand, in the following A-convergence theorem with an implicit itera-
tive scheme for a finite family of nonexpansive mappings proved by Kimura [4] took
in the idea of Xu and Ori’s iterative method.

Theorem 1.2 (Kimura [4]). Let X be a Hadamard space and Ty, : X — X a nonez-
pansive mapping fork = 1,2,..., N such that ﬂfcv:l F(Ty,) # 9. Suppose {ak} € 10,1]
1s a real sequence for k =0,1,..., N such that Zszo ok = 1. For given 1 € X, gen-
erate a sequence {x,} C X satisfying that

N
Tpt+1 = argrgl(in ((X?Ld(l‘n, y)2 + Z aﬁd(Tkxn—th)Q)
ye k=1

forn € N. Then, {x,} is well-defined and A-convergent to some oy € ﬂé\;l F(Ty).

In this paper, we propose a quadrilateral inequality in a CAT(1) space and prove
an implicit iterative method for some nonexpansive mappings in this space.

2 Preliminaries

Let X be a metric space. For z,y € X, a mapping ¢ : [0, 1] — X is called a geodesic
with endpoints =,y € X if it satisfies ¢(0) = x,¢(1) = y, and d(c(t),c(s)) = |t — s| for
every t,s € [0,1]. If a geodesic with endpoints y and z exists for any y,z € X, we
call X is a geodesic space. In this work, we suppose X has a unique geodesic for any
y,z € X. Then, we denote the image of the geodesic with y,z € X by [y, z], which is
well defined.

For z,y,z € X, a geodesic triangle A(x,y,z) is defined as the union of three
segments [y, 2], [z,z], and [z,y]. Its comparison triangle A(Z,7, 2) with d(7,2) +
d(z,Z) + d(Z,y) < 2r is defined as the triangle in the 2-dimensional unit sphere S?
whose length of each corresponding edge is identical with that of the original triangle;

d<y7 Z) = dg2 (ga 2)7 d(zax) = dg2 (27 '573)7 d('ra y) = dg2 (fa g)



If for any geodesic triangle A(z,y,2) with d(y,z) + d(z,z) + d(z,y) < 27 and
p,q € A(x,y, 2z) and their comparison points p, § € A(Z, 7, Z), the inequality

holds, then we call X a CAT(1) space. Moreover, X is called admissible if for any
u,v € X, d(u,v) < 3.

For z,y € X with d(x,y) < m and ¢ € [0, 1], there exists a unique point z € [x,y]
such that d(x, z) = (1 —t)d(z,y) and d(z,y) = td(x,y). We denote it by tx © (1 —1t)y.
In an admissible CAT(1) space X, the following inequality holds;

cosd(z,tx @ (1 — t)y)sind(x,y) > cosd(z,z)sintd(z,y) + cosd(z,y) sin(1l — t)d(x,y),
for every x,y,z € X and t € [0, 1].
A mapping U : X — X is a contraction if there exists 5 € [0, 1] such that
dUz,Uy) < pd(z,y)

for every x,y € X. The famous Banach contraction principle guarantees the existence
and uniqueness of a fixed point of U. Furthermore, a mapping T : X — X is called
nonexpansive if

d(Tz, Ty) < d(z,y)

for every z,y € X. We know the set F(T) = {z € X : z = Tz} of all fixed points of
nonexpansive T is closed and convex.

Let {z,} C X be a bounded sequence. Put r(z,{x,}) = limsup,,_, . d(z,z,) for
x € X. Then, the asymptotic radius r({x,}) of {x,} is defined by

r({ra)) = i r(a. o))
The asymptotic center AC({z,,}) of {z,} is a set of point p € X satisfying

r(p{xn}) = r({zn}).

We say {z,} is A-convergent to ¢ € X if ¢ is the unique asymptotic center of any
subsequence of {z,}. In an admissible CAT(1) space, we know that an asymptotic
center of {z,} is always singleton.

The following theorem is helpful to show the well-defineness of some mappings in
this paper.

Theorem 2.1 (Sasaki [6]). Let X be a complete admissible CAT(1) space and C a
nonempty closed convex subset of X. For ui,us,...,uny € X and p1,P2,...,0n €
[0, 1] with Zijﬂ Br =1, define a function g : X —]0,1] by

N
g(x) = Z By cos d(u, x)
k=1
for all x € X. Then, g has a unique maximizer on C.
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3  Main results

To prove our main result, we first show the following lemmas. These lemmas are
proved in Kimura and Torii [5]. For the sake of completeness, we show the proofs.

Lemma 3.1. Let X be an admissible CAT(1) space and x,y,z,w € X. Then, the
following inequality holds:

d d
cosd(x,y) + cosd(y,z) + cosd(z,w) + cosd(w,z) < 4cos (502, ?) cos (y2,w)'

Proof. Let m; = %y P %w, mo = %x &) %z Then we have

d(z, z) d(y,w)

cos d(my,ma) cos 5 Cos—
1 d 1 d

> 5 cosd(m, ) cos 5 cosd(m, 2) cos 15
1 1 1 d 1 1 1 d

) cosd <§y & 5“’@“) cos (y2, w) + 3 cosd <§y S W z) cos (y2,w)
1

1 1 1/1 1
> 5 (Goosdtna) + geosdlun)) + 5 (G eosdly.2) + g cosdlw. )

1
=1 (cosd(x,y) + cosd(y, z) + cosd(z,w) 4+ cosd(w, x)) .

Since 1 > cosd(my,ms), we get

cosd(z,y) + cosd(y, z) + cosd(z,w) + cosd(w, z) < 4cos d(a;, ?) Cos d(yéw),

the desired result. O

Lemma 3.2 (The quadrilateral inequality in CAT(1) spaces). Let X be an admissible
CAT(1) space and z,y,z,w € X. Then, the following inequality holds:

(1 —cosd(zx,z)) + (1 — cosd(y,w))
< (1 —cosd(z,y)) + (1 —cosd(y, z)) + (1 — cosd(z,w)) + (1 — cosd(w, x)).

Proof. From Lemma 3.1, we get

1
—(cosd(z,y) + cosd(y, z) + cosd(z,w) + cos d(w, x))

4
d(z,z)  d(y,w) \/ d(z,z) ,d(y,w)
< — 2 2
~ COS 2 COS 2 COS 2 COS 2
< 1 (COSZ d(z, 2) + cos? d(%w))
2 2 2



(1 +cosd(xz,z) 1+ cosd(y, w))
2 + 2

Akl}—t N =

(cosd(x, z) 4+ cosd(y,w) + 2).
Therefore, we get

(1 —cosd(x,z))+ (1 — cosd(y,w))

<(1—-cosd(z,y)) + (1 —cosd(y, 2)) + (1 — cosd(z,w)) + (1 — cosd(w, x)).
This is the desired result. 0

Lemma 3.3. Let X be a metric space with d(u,v) < § for any u,v € X and U :
X — X a mapping. Suppose 8 € [0,1]. If for any x,y € X,

1 —cosd(Ux,Uy) < B(1 —cosd(z,y)),
then U 1is a contraction.

Proof. Since

1 —cosd(Ux,Uy) _ B(1—cosd(z,y))

< b
2 - 2
we have J J
sin? dUz,Uy) < Bsin? (=, y).
2 2
Since sin(-) is a concave function on [0, 5], we get
<in d(Ua; Uy) o /Gsin d(a;, Y < gin ﬁdéx, y)

Since sin(-) is increasing on [0, T], we get

AUz, Uy) _ VBd(z,y)
2 - 2

Therefore, we have

d(Uz,Uy) \/_ d(z,y)
Since 8 € [0, 1], this implies U is a contraction. Ol

By using above lemmas, we can show the following theorem.

Theorem 3.4. Let X be a complete CAT(1) space with d(u,v) < § for any u,v € X
and T; : X — X nonexpansive mappings fori=1,2,..., k. Letu € X and o € ]%, 1].
Fori=1,2,...k, let 8; €]0,1] such that >>F_, * = 1. Define U: X — X by

k
Ux = argmax {a cosd(z,u) + (1 —a) Z B"cosd(z, ﬂx)}

zeX i—1

for every x € X. Then U is well-defined and a contraction.

)



Proof. U is well-defined as a single-valued mapping on X by Theorem 2.1. Let
z,y € X. If d(Uz,Uy) = 0, then it is obvious that d(Uz,Uy) < Bd(x,y) for any
S € [0,1[. Thus, we consider the case of d(Uz,Uy) # 0. For t € |0, 1], we have

k
(a cosd(Uzx,u) + (1 — a) Zﬁi cos d(Ua;,Tw)) sind(Uz,Uy)
i=1
> acosd(tUz @ (1 —t)Uy,u)sind(Uzx,Uy)
k
+(1—a) Z B cosd(tUz @ (1 — t)Uy, Tyx) sind(Uz, Uy)
i=1

> a(cosd(Uzx,u)sintd(Uzx,Uy) 4+ cosd(Uy, u) sin(1 — t)d(Uzx,Uy))

k
+(1—«) Z B (cos d(Uz, Tyx) sintd(Uz, Uy) + cosd(Uy, Tyz) sin(1 — t)d(Ux, Uy))

=1

k
= (a cosd(Uz,u) + (1 — «) Zﬁi cos d(Uas,Tw)) sintd(Ux, Uy)
i=1
k
+ (Oé cosd(Uy,u) + (1 — a) Zﬁi cosd(Uy, Tw)) sin(1 — t)d(Uzx,Uy).

i=1
Thus, we get

sind(Uz,Uy) — sintd(Ux, Uy)
sin(1 — ¢)d(Uz,Uy)

M= 1=

(a cosd(Uz,u) + (1 —a) ) ' cos d(Uas,Tw))

7

> acosd(Uy,u) + (1 —a)y BicosdUy, Tix).

1

.
I

Letting t — 1, we have

M- L=

(a cosd(Uz,u) + (1 —a)y BicosdUx, sz)) cosd(Uz,Uy)

(2

> acosd(Uy,u) + (1 —a)y Bcosd(Uy, Tix).

1

-
I

Similarly, we get

B cosd(Uy, sz)> cosd(Uz,Uy)

M” &Mw

(a cosd(Uy,u) + (1 — «)

(2

> acosd(Uzx,u) + (1 —a)) BlcosdUz, Tiy).

1

6
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Therefore, we get

k
(a cosd(Uzx,u) + (1 —a) Zﬁi cosd(Uz, T;x)
i=1
k

+ acosd(Uy,u) + (1 — o) Z B cosd(Uy, Tiy)> cosd(Uz,Uy)

=1

k
> acosd(Uy,u) + (1 — «) Zﬂi cosd(Uy, T;x)
i=1

k
+ acosd(Uz,u) + (1 —a) Zﬁi cosd(Uz, T;y),

i=1
Therefore, we get

k
(a cosd(Uz,u) + (1 — a) Z B cosd(Uy, Tyx)

=1

k
+ acosd(Uy,u) + (1 — ) Z B cos d(Ux,Tw)) (1 —cosd(Ux,Uy))
i=1

k
<(1—a)cosd(Uz,Uy) Z/B’ (1 =cosd(Uy,Tix)) + (1 — cosd(Ux, T;y) )
=1

—(1—=cosd(Uz, T;z)) — (1 — cosd(Uy, T;y))) .
By Lemma 3.2, we obtain

k
<a cosd(Uzx,u) + (1 — ) Zﬁi cosd(Uy, T;x)

i=1

k
+acosd(Uy,u) + (1 — «) Zﬁi cos d(Ux,Tw)) (1 —cosd(Ux,Uy))

=1

k
< (1—=a)cosd(Uzx,Uy) Zﬁi((l —cosd(Uzx,Uy)) + (1 — cosd(T;z, T;y)))

<(1—-a)((1 =cosd(Uz,Uy)) + (1 — cosd(z,y)))-



Thus, we get

k
(a cosd(Uzx,u) + (1 — a) Z Bt cosd(Uy, Tiz)
i=1
k

+acosd(Uy,u) + (1 — «) Z B cosd(Uy, Tiy) — (1 — ()z)) (1 —cosd(Ux,Uy))
< (1 —a)(1l —cosd(zx,y)).

Since % < cosd(u,v) <1 for any u,v € X, we get

k
acosd(Uz,u) + (1 — «) Zﬁi cosd(Uzx,Tx)

=1

k
+ acosd(Uy,u) + (1 —a)Zﬁi cosd(Uy,Ty) — (1 — «)

=1

1 1
>2<§a+§(1—a)>—1+oz:a,

that is, we get
a(l —cosd(Uz,Uy)) < (1 —a)(1l —cosd(x,y)).

and thus 1
1—cosd(Ux,Uy) < Ta(l —cosd(z,y)).

Since % < a <1, wehave 0 < I_TO‘ < 1. Hence U is a contraction by Lemma 3.3. [

In Theorem 3.4, U has a unique fixed point x € X. That is, it satisfies that

k
x = Uzxr = argmax {a cosd(z,u) + (1 — ) Zﬁi oS d(z,Tix)} .
i=1

zeX

Thus we can define a sequence {x,} by

k
x, = argmax {an cosd(z,u) + (1 — o) Z B cosd|z, Tixn)}
zeX i=1

where o, € ]1,1[ and 8, €]0,1[ for i = 1,2,...,k in a CAT(1) space. However, since
{a,} cannot tend to 0, we cannot show the Browder’s type convergence theorem
in CAT(1) spaces for this mapping. On the other hand, we can show the following
convergence theorem.



Theorem 3.5. Let X be a complete CAT(1) space with d(u,v) < % for anyu,v € X.
Fori=1,2,...,k, let T;: X — X be nonexpansive mappings with ﬂle F(T;) # 2.
Suppose {a,} CR and a € R such that 5 < a, <a <1 forn € N. Let {8} C]0,1]

fori=1,2,...,k such that Zle B =1. Let x1 € X and generate {x,} as follows:
Forn € N and given x, € X, let x,,41 be a unique point in X satisfying that

k
Tp+1 = argmax { oy, cosd(z, xy) + (1 — aw,) Z Bt cosd(z, Titni1) p -
zeX i—1

Then, {x,} is well-defined and A-convergent to some xy € ﬂle F(T;).
Proof. Define a mapping V,,: X — X by

k
Voo = argmax {an cosd(z,xn) + (1 — ay) Z B cosd(z, sz)}

z€X i=1

for every x € X. Then, V,, is well-defined as a single-valued mapping on X by
Theorem 2.1. We can show that V,, is a contraction in the same way as the proof of
Theorem 3.4 and thus it has a unique fixed point z,4+; € X. That is, it satisfies that

k

Tpt+1 = VpZpy1 = argmax  ay, cosd(z,xy,) + (1 — o) Z Bfl cosd(z, Tixnt+1) ¢ -
zeX i—1

This implies that x,41 satisfying this equation exists uniquely, and hence {z,} is

well-defined. Next, we show {z,} is A-convergent to some xgy € ﬂle F(T;). Let

pe N, F(T;) and t €]0,1]. Then, we have

k
(an cos d(Tp, Tni1) + (1 — a) Z B cos d(Tsxp i1, :z:n+1)> sind(zp41,p)
i=1

k
= (an cosd(xp, Vatni1) + (1 — ay Z Bt cos d(Tizni1,V, xn+1)> sind(p+1,p)
=1

> o, oS d(Xp, txpy1 @ (1 —t)p)sind(zpy1,Dp)

k
+(1—ap) Z Bt cos d(Tixp i1, trns1 O (1 —t)p)sind(z,y1,p)
i=1
> o (cosd(zp, Tnt1) sintd(xp41,p) + cosd(xy, p)sin(l — t)d(zp+1,p))
k

+(1—ay) Z Bt (cos d(Tsp i1, Tni1)sintd(zp41,D)
i=1
+ cosd(T;xp+1,p)sind(l — t)(xp41,p))



k

= (an cosd(xp, Tni1) + (1 — ) Z Bﬁl cos d(Tian,an)) sintd(xp+1,p)

i=1
k

+ (an cosd(xn,p) + (1 — ap) Z B cos d(Tian,p)) sin(1 — t)d(xp+1,Dp).

=1

Thus, we get

k
(an cosd(Tpn, Tni1) + (1 — ay) Z Bf% cosd(T;xpna1, xn+1)>

i=1
sind(zpy1,p) — sintd(zp41,p)
sin(1 — t)d(zn41,p)
> apcosd(xn,p) + (1 — ayp)cosd(Txpi1,p).

Letting t — 1, we have

cos d(Tp41,p)

k
> <an cosd(Tp, Tpi1) + (1 — ) Z Bt cos d(Tipn i1, xn+1)> cos d(Tp41,D)

i=1
>, cosd(xn, p) + (1 — ay,) cosd(zp41,p).

Therefore, since {o,} C ], a], we obtain
cosd(xpy1,p) > cosd(xy,,p).

This implies d(z,,p) > d(x,+1,p). Since the real sequence {d(x,,p)} is nonincreasing,
there exists

nli_)ngo d(xn,p) =c¢p € [O, g[

Then, we have

k
1> aycosd(xy, Tni1) + (1 — ) Z ﬁ; cosd(T;xp+1, Tnt1)
i=1

1

> (o cosd(zp,p) + (1 — o) cos d(xn+1,p))m

- an(cosd(xy,p) — cosd(Tn11,D))

2 +1
cosd(Tpy1,P)

—1
as n — o0o. This implies
k
li_)rn (an cosd(Tp, Tni1) + (1 — ) Z By, cos d(T;xpn 41, xn+1)> =1.
i=1
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Then we obtain

lim cosd(xy,znt1) = lim cosd(Tizpi1,Tni1) =1
n—roo n—oo

fori =1,2,..., k. In fact, assume {cosd(z,,z,+1)} does not converges to 1t. Then,
there exist € > 0 and a subsequence {cos d(xn;, Tn;+1)} of {cosd(zy,xn 1)} such that
cos d(y,, Zn,+1) < 1—¢ for j € N. Furthermore, since {ov,,} C |3, a], we may assume
o, — o € [, a) without loss of generality. Then we have

k

1 =limsup | o, cosd(zn;, Tn,11) + (1 — ;) Z ﬁ;j cos d(Tixn,, Tn;+1)
j—o0 =1
k
< ag limsup cos d(@p;, Tn;+1) + (1 — ao) ZB:%' lim sup cos d(T;@n;+1, Tn,+1)
J—00 i=1 J—0o0

§a0(1—5)+(1—a0):1—a05<1.

This is a contradiction. Thus we have lim,,_, o, cos d(x,, T,+1) = 1, and similarly we
get lim, o0 cosd(Tixp41,2nt1) = 1 for i = 1,2,..., k. Hence we obtain

Jim d(z, 2p41) = lim d(Tizni1, Tn1) =0
fori=1,2,...,k. Let g € X be a unique asymptotic center of a sequence {z,} and
let u € X be an asymptotic center of any subsequence {z,,} of {z,}. We will show
u = xo. From the definition of asymptotic center, we have

r({zn,}) = limsup d(z,,,u)
j—o0
< limsup d(zy,, Tiu)
j—o0
S lim Sup(d(mnjaTixnj) + d(Tixnj ) TZU’))
j—o0
= limsup d(Tiz,,,, Tiu)
j—o0
< limsupd(zy;,u) = r({zn, }).
j—o0
for i = 1,2,...,k. This implies Tju € AC({zy,}) for i = 1,2,...,k. From the
uniqueness of an asymptotic center, we get u = Tyu for i« = 1,2,...,k, that is,
u € ﬂle F(T;). It follows that {d(z,,u)} is convergent to ¢,. Therefore, we obtain

r({z,}) = limsup d(x,, xo)

n—o0

<limsupd(z,,u) = ¢, = lim d(z,,,u)
n— o0 J—0

< limsup d(z,,, 7o)
j—o0

11



< limsupd(xy,,zo) = r({zn}).

n— oo

Thus u € AC({z,,}). From the uniqueness of an asymptotic center, we get u = x.
Hence, {z,} is A-convergent to xg € ﬂle F(T;). This is the desired result. O

We get the next proposition from Theorem 3.5. This is proved in [5].

Corollary 3.1. Let X be a complete CAT(1) space with d(u,v) < 5 for any u,v € X
and T: X — X nonexpansive with F(T) # &. Suppose {a,} C R and a € R such
that % <ap,<a<lforneN. Let z1 € X and generate {x,} as follows:

Forn € N and given x,, € X, let x,,41 be a unique point in X satisfying that

Tp41 = argmax{ay, cosd(z, x,) + (1 — ay) cosd(z, Txpi1)}
zeX

Then, {x,} is well-defined and A-convergent to some xg € F(T).
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