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Abstract

We consider three pairs of quadratic optimization problems from a view point
of identical duality. An identity

n—1
(CI) Z[(fﬂk—l — xp) i + T — pet1)] + (Tt — Tn)ftn + Tppin = Top
k=1

is called complementary. We show that a complementary identity via conditional
complementarity produces a pair of conditional minimization (primal) problem and
conditional maximization (dual) problem, together with an equality condition. It is
shown that both the problems have an identical optimal solution (point and value).
Moreover, we show that a primal and its dual satisfy Fibonacci Identical Duality.

1 Introduction

Bellman and others [1-12,26] have analyzed a wide class of quadratic optimization prob-
lems. Dynamic programming has solved its partial class [2,17,18,29]. Further a dual
approach has been discussed through convex-concavity [14, 16, 28].

Recently some dual approaches — (1) extended Lagrangean method, (2) plus-minus
method, (3) ineqlualty method , (4) complementary method and others — have been
proposed in [18,20-25].

In this paper, we show an identical duality for three pairs of minimization (primal)
problems and maximization (dual) problems — (P1) vs (D7), (P3) vs (D3) and (P%) vs
(D3) —. These three are the respective identical versions of (Py) vs (Dy), (P3) vs (Ds)
and (P3) vs (D3), which have analyzed the complementary duality [23].

It is shown that each pair is dual to each other. It turns out that the duality is based
upon the complementary identity and an elementary inequality with equality

20y < 2+ on R*; x=y. (1)

2 Identical Duality

Let © = {xzx}y, p = {ux}t be any two sequences of real number with x5 = c.
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2.1 (P1) vs (DY)
Then a complementary identity

n—1

(C1) em = Z[(xk_1 — @)k + k(e — prrr)] + Ty — Tn) i + Tnfin

k=1

holds true.
2n

Let us define two sequences y = {y}1", v = {vp}3" from = = {x.}5, p = {ix}?

through

Y1=C— 21, Y2 =21, Y3 =1 — T2, Ysg = T2, Y5 = T2 — T3

vy Yop—2 = Tp—1, Yon—1 = Tn—1 — Tn, Y2n = Tn

= W1, Vo = t1 — M2, V3 = g, V4 = g — U3, Vs = 3

; Voap—2 = Up—1 — Hn, Von—1 = Hn, Vop = HUn

, respectively. Then an identity

2n
(CT) CVp = Zykyk
k=1

holds under a constraint — a linear system of 4n-variable (y, ) on 2n-equation — :

c= 1Yty vV = Vy+ U3
Y2 = Y3+ Y4 V3 = Vst Vs
(Cyl}) . .

Yon—a = Yon—3 + Yan—2 Vop—3 = Vop_9 + Vop_1

Yon—2 = Yon—1 + Yon Von—1 = Von.

An equality (3) with constraint (4) is called a 2n-variable conditional complementarity.

This is simply written as (C}) under (CY”).

Now let y = {yr}7", v = {v}7" satisfy (CY¥"). Then an elementary inequality (1) yields

2n
21 <Y (YR + 1)
k=1

Thus we have an inequality

2n 2n
2cvy — Zl/i < Zyi
k=1 k=1
The sign of equality holds iff

(ECY) w = 1<k<2n.



Hence we have a pair of conditional minimization problem:

minimize y% + y% + -+ ygn—l + ygn
subject to (1) y14+y2 = ¢
(2) ys+uys = 1o

(n—=1) Yon—3+ Yon—2 = Yan-a
(n) Yon—1+ Yon = Yon—2
(n+1) yeR™

and conditional maximization problem:

Maximize 2cvy — (Vi +vg + -+ vs, | +va,)
subject to [1] o +v3 =14

2] vi4vs =13

n—1] Vop o+ Vap 1 = Voy_3
[n] Vopn = Vop—1
[n+1 veR™

Let (AC;) be an augmentation of the system (CY”) with the additinal equality condition
(ECY):

=Y+ Y V1 = vVt 13
Yo = Y3+ Ys Vg = Vg + Vs

(ACy) Yon—a = Y2n—3 + Yon—2  Vapn-3 = Von—2 + Vop—1
Y2n—2 = Y2n—1 T Yon Vopn—1 = Vop
Y = v 1 < k <2n.
The linear system (AC;) is of 4n-variable on 4n-equation. Let (y, v) satisfy (AC;). Then
both sides become a common value with five expressions.
U o S /oW
= Chn
(5V1) =2 — (i + v+ +v3)
=ity

= Cl7.



The system (AC;) has indeed a unique common solution:

y: (ylv y27 ey ykv ey y2n—17 an)
C
= F (FQTH FQTL—I? ---7F2n—k+17 "’7F27 F1)7
2n+1
V:(l/l) Vo, «.ooy Vi, ..y Vop—1, I/Qn)
C
- Ja (F2n> F2n—1> "'>F2n—k+1> --->F2a Fl)
2n+1

where {F,} is the Fibonacci sequence [13,15,27,30]. This is defined as the solution to the
second-order linear difference equation

Tpio — Tpi1 — Ty =0, =1, 29 =0. (6)
n|--- -2 -1 01 2 3 4 5 6 7 8 9 10 11
F,|l--- -1 1 0 1 1 2 3 5 8 13 21 34 55 &9

Table 1 Fibonacci sequence {F),}

Fo,
The primal (P}) has a minimum value m; = ——2—¢? at a path
2n+1
g = (gla g?a sy glﬁ sy g?n—la g?n)
c
- F (F2n7 FQTL—17 "'7F2n—k+la "'aFQa Fl)
2n+1
. Fon, 2
The dual (D}) has a maximum value M; = ¢ at a path
2n+1
vi= ], Vs, oo Uy ey Vs, V)
c
- F (an, FQn_l, ---7F2n—k+17 ey FQ, Fl)
2n+1
Both optimal solutions (point and value) are identical:
T = IM*, myp = Ml-
Further both are Fibonacci:
L c
r=u = 2 (an, FZn—la ---aFQn—k+1> ceey FQ, Fl),
2n+1
Fy,
my, = M1 = 2 62.
Fony

Thus Fibonacci Identical Duality (FID) [18-20,22,24,25] holds between (P}) and (Dj).



We remark that the 2n-variable pair is a transliteration from n-variable one

3
—_

minimize [(xk_l —x)* + Ii] + (Tpoy — 20)* + 2
1

subject to (i) x € R", (ii) zy=c

e
Il

(P1)

n—1
Maximize 2cp; — Z [,ui + (o — Mk+1)2} - Mi - :U”727,
k=1
(D1) , .
subject to (i) € R".

2.2 (P} vs (D)
On the other hand, we assume that u, = 0. Then an identity

n—1

(Ca) e = Z[(xk_1 — Tk + Te(pe — 1)) + (Tno1 — Tn) i

holds true.
Let us define two sequences y = {y, 12", v = {p}3"" from o = {}8, p = {ps}?
through
Y =C—T1, Y2 = 21, Y3 = T1 — T2, Y4 = T2, Y5 = T2 — T3,

y Yon—a = Tp—2, Y2n—-3 = Tpn—2 — Tn-1, Yon-2 = Tp—1, Y2n—1 = Tn—1 — Tn
(7)

Vy = M1, Vo = 1 — M2, V3 = U2, Vs = o — U3, Vs = U3,

y Von—a = Up—2 — Un—1, V2n—-3 = HUn—1; Von—2 = Un—1 — Hn, Vop—1 = Hn

, respectively. Then an identity

holds under a constraint — a linear system of (4n — 2)-variable on (2n — 1)-equation — :

cC= Y +Y vy, = vy + U3
Yo = Y3+ Ya Vs = Uy + Vs
(C5)
Yon—6 = Yon—5 T Yon-a  Von-5 = Vop—4 + Vo3
Yon—a4 = Yon—3 T Yan—2 Vop—3 = Vop—2 + Vop—1

Von—1 = 0.

Thus we have a (2n — 1)-variable conditional complementarity (C3) under (C%").
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Let y = {y:}7" ' v = {1y} ! satisfy (CY"). Then the elementary inequality (1)

yields
2n—1
2cry < Z(yi + ).
k=1
Thus we have an inequality
2n—1 2n—1

2cvy — Z v < Zyz
k=1 k=1

The sign of equality holds iff
(EC) w = 1<k<2n-1
Hence we have a pair of conditional minimization problem:
minimize y% + yg 4+ 4 ygn_z + ygn_l

subject to (1) y1+y2 = ¢
(2) ys+y1 = y2

(n—2) Yon—s5+ Yon—a = Yon—s
(n—1) Yon—3+ Yon—2 = Yan-a
(n) yeR"!

and conditional maximization problem:

Maximize 2cv; — (V% + u§ + -+ V22n,2 + V%H)
subject to [1] o +rv3 =14

[2] V4+V5 = U3

n—1] vop—o+ Vo1 = Von—3
[n] Vop—1 — 0

n+1] veR™M

Let (AC;) be an augmentation of the system (C4”) with the additinal equality condi-



tion (EC3):

c= 1Y +Y2 Vi = Vot U3
Yo = Ys+ Y V3 = Vs + Us

(ACy) Yon—6 = Y2n—5 T Y2n—4a Von—5 = Vop—a + Von_3
Yon—4a = Yon—3 + Yon—2 Von—3 = Vop—o + Vo1

Von—1 =0

e =1 1< k<2n-—1.

The linear system (ACy) is of (4n — 2)-variable on (4n — 2)-equation. Let (y,v) satisfy
(ACy). Then both sides become a common value with five expressions.

Vit Y+t Yo
=
(5Vy) =2 — (VP +vi+- 43 )
e R Z
= cuy.

The system (ACs;) has indeed a unique common solution:

Yy = (yb Yo, <oy Yky -y Yon—2, y2n—1>
c
= F (FQn—27 FQn—37 "'7F2n—k—17 ey F17 F0>7
2n—1
V= (Vla Vo, «vvy Viey -vvy Vo2, Vzn—l)
c
- F (FZn—Qa FQn—?)a ---aFQn—k—la ceey Fl> FO)
2n—1
X .. FQn—Q 2
The primal (P%) has a minimum value my = ———¢* at a path
2n—1
?): (gla @2, ey gka EIRII) an—?a an—l)
c
- F (FZn—Qa F2n—3a ---aFQn—k—la ) Fl> FO)
2n—1
* . FQn—Q 2
The dual (D3) has a maximum value My = 7 ¢ at a path
2n—1
v = V], Vs, oy Vs ey Vs oy Vs 1)
c
= Jai (FQn—27 an_g, "'7F21’L—k—17 ceey F17 FO)
2n—1

Both optimal solutions (point and value) are identical:

- .
T = pu*, me = M,.
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Further both are Fibonacci:

T =p" = (Fon—a, Fopn—s, o, Fopg1, ..., F1, Fp),
Ebn—l
fgn—? 2
Mo = M =
? ? }%n—l

Thus FID holds between (P3) and (D3).

Note that the (2n — 1)-variable pair is a transliteration from n-variable one

[y

3

minimize (1 — z)® + 23] + (@1 — )
(P2)
subject to (i) z € R", (ii) xy=c
n—1
Maximize 2cp1 — > [y + (e — prsr)’] — o7
k=1
(D2)

subject to (i) pwe R", (i) p,=0.

2.3 (P%) vs (D)
On the other hand, we assume that x, = 0. Then an identity

n—1

(C3) o = Z[(fﬁk—l — )i+ (i — prgn)] + (Tn1 — T
k=1

holds true.
Let us define two sequences y = {y; 13" ', v = {w}3" ! from o = {2 }8, p = {ps}}
through

Y =C— X1, Yo =71, Y3 =1 — T2, Y4 = T2, Y5 = T2 — T3, ...

y Yon—a = Tp—2, Y2n—-3 = Tp—2 — Tn-1, Yon-2 = Tp—1, Y2n—1 = Tn—1 — Tn
9)

Vy = M1, Vo = 1 — M2, V3 = U2, Vs = 2 — U3, Vs = U3, ...

y Von—a = Up—2 — Un—1, V2n—-3 = HUn—1; Von—2 = Un—1 — Hn, Vop—1 = Hn

, respectively. Then an identity

2n—1

(C3) an = Zkak (10)



holds under a constraint — a linear system of (4n — 2)-variable on (2n — 1)-equation — :

C= Yty Vp = VU3
Y2 = Y3+ Ua V3 = Vg + Us
(C5") : : (11)
Yan—4 = Yon—3 T Yon—2  Vop—3 = Vap—2 + Vop—1

Yon—2 = Yon—1-

Thus we have a (2n — 1)-variable conditional complementarity (C}) under (C4").
Let y = {y 2" 1, v = {p }3" ! satisfy (CY). Then the elementary inequality (1) yields

2n—1

2c1; < Z(y,%Jru,?).
k=1

Thus we have an inequality

2n—1 n—1
2cvy — Z Vi < Zyz
k=1 k=1
The sign of equality holds iff
(EC) w =1 1<k<2n-1 (12)
Hence we have a pair of conditional minimization problem:
minimize Yy +y5 + -+ Yau_ 2 + Yon 1

subject to (1) y14+y2 = ¢
(2) ys+y1 = y2

(n—=1) Yon—3+ Yon—2 = Yan-a
(n) Yon—1 = Yon—2
(n+1) yeR™

and conditional maximization problem:

Maximize 2cv; — (V% + u§ + -+ V22n,2 + V%H)
subject to [1] o +rv3 =14
2] vi+vs =13

n—1] vap—o+ Vo1 = Von—3

[n] ve R
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Let (AC3) be an augmentation of the system (C%”) with the additinal equality condi-
tion (EC3):

c= 1Yty vy = Vst U3
Y2

Ys + Ya Vg = Vg + Us

(AC3) Yon—a = Yon—3 + Yon—2 Von—3 = Vop—2 + Von_1

Yon—2 = Yan—1

e =1 1 <k<2n-—1.

The linear system (ACj3) is of (4n — 2)-variable on (4n — 2)-equation. Let (y,v) satisfy
(AC3). Then both sides become a common value with five expressions.

Vity ot Yo
=
(5V3) =2 — (VP + v+ +vd )
= VIVt
= cuy.

The system (ACj3) has indeed a unique common solution:

Y=Y, Y20 -+ Yk» -5 Y2n-2, Y2n-1)
c
= F (FQn—h FQn—27 "'7F21’L—k7 "'7F27 F1>7
2n
vV = (Vl, Vo, ..y Vg, ..., Vop_9, Vgn_l)
c
= F_(FQn—b FQn—27 "'7F21’L—k7 R F27 Fl)
2n
The primal (P%) has a minimum value ms = —=—¢? at a path
2n
?): (gla gQa R gka R an—?a an—l)
c
= Ja (FZn—la F2n—2a ---aFQn—ka "'aF2> Fl)
2n
* . F2n—1 2
The dual (D) has a maximum value M3 = F at a path
2n
A (7 Vo VN P ZSS |
c
= E (an_l, an_g, --->F2n—k; RN FQ, Fl)
2n

Both optimal solutions (point and value) are identical:

- .
T = p*, mg = Ms.
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Further both are Fibonacci:

N " &
r=pu = F2 (FQn—h FQn—27 "‘7F21’L—k7 ey F27 Fl)?

FQn—l 2
—C.

mg = Mz = I3
2n

Thus FID holds between (Pj) and (D3).

Note that the (2n — 1)-variable pair is a transliteration from n-variable one

[y

3

minimize (1 — z)® + 23] + (@or — )
(Py) k=1
subject to (i) z € R", (i) xy=¢, 2, =0
n—1
Maximize 2cpu; — Z [+ (e — ps)?] — 1
k=1
(Ds) , .
subject to (i) w € R".
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