TILINGS OF THE PLANE ARISING FROM ITERATED FUNCTION
SYSTEMS GENERATED BY THREE SIMILARITY TRANSFORMATIONS

MASAAKI WADA

ABSTRACT. A similarity tiling is a partition of the plane by tiles all similar to each other with
pairwise disjoint interiors. We investigate similarity tilings arising from iterated function systems
generated by two or three similarity transformations. To find parameters of the generating
similarity transformations, we execute search programs to find candidates of the complex ratios,
and find locations of the centers by using Fractal Gazer, a computer program developed by the
author.

INTRODUCTION

A similarity tiling is a partition of the plane by tiles all similar to each other with pairwise
disjoint interiors,

R>=) "gi(A),  Tnt(g(A) NInt(g;(A) =0 (i # j).
1=0

The fundamental tile A is a compact subset of R? satisfying Int(A) = A, and go(= id), g1, g2, . - -
are similarity transformations.

Such tilings naturally arise from certain type of iterated function systems, which are indeed
the subject of our study. We investigate iterated functions systems generated by two or three
contractive similarity transformations producing similarity tilings.

Our main goal is not investigating properties of such tilings, but rather finding examples. To
find parameters of the generating similarity transformations, we first execute search programs
to find candidates of complex ratios. Finding location of the center of similarity transformation
is done by hand using Fractal Gazer [6]. Fractal Gazer is a computer program developed by the
author to visualize iterated function systems generated by contractive similarity transformations.
All the figures in this paper have been produced using Fractal Gazer.

Fuclidean tilings of the plane have been subject of numerous studies in history of mathematics.
Similarity tilings may be thought of as a variation of Euclidean tilings. Connection between
newly found tilings and aperiodic tilings (cf. [2]) should be investigated elsewhere. Relationship
to Pisot numbers (cf. [1]) also needs to be addressed. We hope that the examples in this paper
will motivate further studies.

1. NOTATIONS AND DEFINITIONS

Consider an iterated function system

F={foy- s fm-1)

generated by orientation-preserving contractive similarity transformations of the complex plane
fiz)=aiz+ (1 —a;)e; (z€C),

which we call a similarity iterated function system. The complex ratio a; satisfies 0 < |a;| < 1.
We write |f;| to mean the scale factor |a;|. The center ¢; is the fixed point of f;. We assume
that the centers cg, ..., cy,—1 are all distinct.
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1.1. The minimal invariant disk.

Proposition 1. Given a similarity iterated function system F = (fo,..

unique disk D of minimal radius r satisfying

filbycD (i=0,...,m—1).
Proof. Denote the disk of radius r > 0 centered at w € C by

D,(w)={z€Cl|z—w| <r}.
The following holds in general.

Dy(w') C Dy(w) & |w—uw|<r—1
For the similarity transformation f(z) = az + (1 — a)c, since
J(Dr(w)) = Digp(aw + (1~ a)e),

we have |l
—|a
f(Dp(w)) C Dp(w) < Jw—cl < = a|r.
For D = D,(w), the condition is therefore equivalent to
lw—c| <ar (i=0,...,m—1),

where «; = ﬂf_'g:} Thus the smallest r such that

m—1

ﬂ Dcm(ci) # 0

=0

gives the solution.

.y fm—1), there exists a

1.2. The code map and the limit set. Denote by ¥ = {0,...,m — 1} the set of indices. A

sequence of indices
W=wy - w, €27
is called a code of length n.
For an infinite code
W= wiwsy - € X%,
we denote the code consisting of the first n indices by
Wlp = w1+ wpe

The code obtained by concatenating o and 3 is denoted by af.

Suppose that we have a similarity iterated function system F = (fo,..., f;n—1). Let D =
D, (w) be the minimal invariant disk (or any invariant disk), and we have

DD fu, (D) D fur fur (D) D+ D fyy, (D) D -+

where

fw|n = fw1 o fun-

Note that the disk f,,, (D) shrinks to a point uniformly as n — oo, for its radius |fu, |- - |fu, |7

converges to 0 uniformly.

Definition 2. The code map
T:0%° = C
is defined by

m(w) =[] ful.(D) (weT™).
n=0
Definition 3. The image of the code map,

A=A(F)=n(2>) CC,
is called the limit set of F.



Equip X with the discrete topology, and the product space 3°° is compact due to Tychonoff’s
theorem. The code map 7 : ¥°° — C is uniformly continuous since the disk f,,, (D) shrinks to
a point uniformly as n — oo. Therefore, as a continuous image of a compact set, the limit set
A is compact.

For i € 3, define

0; 1 X = X oi(w) =iw (weX™).
Then the diagram

A A
fila

commutes since
fim(@)) = () filfua (D) = [ fiiw)lss (D) = 7(iw).
n=0 n=0

Thus the limit set A = 7(X°) is invariant under the iterated function system. Since

m—1

£ = | 0i(2%),
i=0
we have

m—1
(1) A= fiA).
=0

In fact, the limit set is the unique nonempty compact subset of C satisfying this property.
1.3. The Hutchinson operator.

Definition 4. The Hutchinson operator associated with an iterated function system F, also
denoted F, is defined for any subset S C C by

m—1
F($) = fi(s)-
=0

The Hutchinson operator is a contraction mapping on the set of non-empty compact subsets
with respect to the Hausdorff metric, and the limit set A is the unique fixed point([3]). For any
non-empty compact set K C C, the sequence of subsets F"(K) (n =0,1,...) converges to the
limit set A.

Note that a similarity transformation f; is a homeomorphism and commutes with topological
operators like closure and interior; f;(S) = fi(S) and f;(Int(S)) = Int(f;(S)). Hence we have

F(5) = F(5)

and
F(Int(S)) C Int(F(5))

in general.
1.4. Equivalence of similarity iterated function systems.

Definition 5. Similarity iterated function systems F = (fo, ..., fm—1) and F' = (f},..., fl._1)
are said to be equivalent and denoted F ~ F' if there exists an (either orientation-preserving or
orientation-reversing) similarity transformation g : C — C such that

gfigt=f (i=0,....,m—1)
under appropriate permutation of the indices.

If 7 and F’ are equivalent via g, the centers, the minimal invariant disk and the limit set of
F are mapped to those of F' by g.
3



2. SIMILARITY TILINGS

2.1. m~similarity tiling. We are interested in similarity iterated function systems satisfying
the following condition.

Definition 6. A similarity iterated function system F = (fo,..., fin—1) is called a similarity
tiling, or m-similarity tiling, if
e Int(A) # 0, and
o fi(Int(A)) N fj(Int(A)) = 0 if i # j.
In view of (1), a similarity tiling may seem more appropriate to be called a similarity self-

tiling. However, as we will see later, a similarity tiling actually gives rise to genuine tilings of
the plane, and we choose the shorter name for the concept.

Proposition 7. If the limit set A has non-empty interior, then Int(A) = A.

Proof. Since A is closed, obviously we have
Int(A) C A.

On the other hand, we have
F(Int(A)) C Int(F(A)) = Int(A)

and

F(Int(A)) = F(Int(A)) C Int(A),
hence by induction

Int(A) > F(Int(A)) > F*(Int(A)) > --- > () F¥(Int(A)) = A.
k=0
This completes the proof. O

Definition 8. An iterated function system F is said to satisfy the open set condition if there
exists a non-empty open set O C C such that

e F(O)CO, and
e fi(O)Nf;(0)=01ifi+#j.
Proposition 9. A similarity iterated function system whose limit set has non-empty interior is
a similarity tiling if and only if it satisfies the open set condition.
Proof. A similarity tiling satisfies the open set condition with O = Int(A), for we have F(Int(A)) C
Int(F(A)) = Int(A).
Conversely, let O be an open set satisfying the open set condition. From F(O) C O we obtain

0> FO)>F*(0)>---D ﬁ}"k(@) = A,
k=0

hence
(2) Int(A) C Int(O).

On the other hand, for i # j we see, in turn,

Therefore by (2), we have
fi(Int(A)) N fi(Int(A)) = 0.
This completes the proof. O
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Proposition 10. The scale factors of a similarity tiling F = (fo, ..., fm—1) must satisfy

m—1
> IfP =1
=0

Proof. The area (2-dimensional Lebesgue measure) of the limit set must satisfy
Area(A) = Z Area(f;(A))

= | fi|*Area(A).

From this we obtain

since A has non-empty interior and Area(A) # 0. O

2.2. Tilings of the plane. A similarity tiling F = (fo,..., fm—1) gives rise to tilings of the
plane C, with subsets similar to the limit set A.

Proposition 11. There exist uncountably many tilings of C such that
o0
c=Jan),
i=0

where gy = id and g1, go, ... are similarity transformations, and
gs(It(A)) N g;(Int(A) = 0 if i # j.
Proof. For a finite code w = w1 - - - wy, we use the notation
]Ew = ;11 T c;nl-

Lemma 12. Given an infinite code w € X°°, we have a partition for each n=1,2,...,

(m—1)n
Pw): Fn M= | e
i=0
where go = id and g1, ..., gum-1)n are similarity transformations, and

Gi(It(A) 1 g;(Mt(A) =0 if i # .
Furthermore, the partition Pp,11(w) naturally extends P, (w).

Fig. 1 shows partitions P;(w) and Ps(w) corresponding to some codes.

Proof. Recall that we have

(3) A= U filh), filnt(A)) N f5(Int(A)) = D if @ # j.

foMA) =AU U FoL R,

1=0,...,m—1, i#w;

and this is Pj(w).



A Pi(0---) P(1---)
P(00--+) P(01--+) Py(10--+) Py(11--+)

FIGURE 1. Partitions corresponding to some codes.

Next, assume that we already have P, (w). Then,
fvw|n+1(A) = fw|n w_n1+1(A)
= fu (AU U ol fi(A)

1=0,...,m—1, i#wpn 41

= ful. (AU U ol omir fi(A))

1=0,...,m—1, i#wn+41

(m—1)n
U smu U )
=0 1=0,...,m—1, i#wn+1

Thus we have a partition P,;1(w) naturally extending P,(w). This completes the proof by
induction. O

Lemma 13. Let D,.(w) be the minimal invariant disk for F. Then, for any point z € C, we
have

f+(2) € Dar(w)
as long as the length of T is sufficiently large.
Proof. Write

po=, pax | fil,

and we have
|fr(2) = fr(w)] < N|T||Z —w[ <7
as long as the length |7| is sufficiently large. Since fr(w) € D,(w), we have f-(z) € Dop(w). O

Lemma 14. There exists a code o = o1 - - - 0}, such that
fo(Dap(w)) C A

Proof. Let o € X% be a code corresponding to an interior point of A. Then, there exists a
number k such that
fal, (D2r(w)) C Int(A).
It suffices to put o = al. O
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Now we show:

Lemma 15. We have
(4) U L.=c
n=1

for uncountably many codes w € X*°.

Proof. The condition (4) holds if for any z € C there exists a number n such that

Jon - fun (2) € A
But for any z € C we know by Lemma 13 and Lemma 14 that

for o fr(2) € A

as long as the length of 7 is sufficiently large. Therefore, (4) holds if the sequence oy, - - - o1 appears
in w infinitely many times. Obviously there are uncountably many such codes w € ¥*°. (]

The tilings of Lemma 15 are different from each other because if w # W', there is a number k

such that w|; # w'[x and we have fw|k + fw/|k, since

fo 0N f (0)=0

by the open set condition. This complete the proof of Proposition 11. O

3. 2-SIMILARITY TILINGS

Let us consider a 2-similarity tiling F = (fo, f1). Since there always exists a similarity
transformation g mapping the center of fo to 0 and the center of f; to 1, we may assume that
the centers of fy and f; are 0 and 1 respectively up to equivalence. Thus, we have

fo(z) = aoz and fiz)=a1z+1—ay.

The pair of complex numbers (ag,a;) satisfying 0 < |ap| < 1 and 0 < |a;| < 1 determine
the similarity iterated function system, which we denote by F(ag,a1). Further considering the
reflection in the real line, and the m-rotation about the point 1/2, we see that

]:(CL(), al) ~ ]:(C_Lo, (_11) ~ ]-'(al, ao) ~ ]:((_11, (_10).

Given a complex number z, we use the notation z for either z or z, just like &2 means either z
or —z. Thus, 2 means z, —z, 2z, or —Zz. In general, the 16 classes of similarity iterated function
systems F(+u,+0) are grouped into eight conjugate pairs F(+u, +0). If u = v up to sign and
conjugation, they are further reduced to six; a complete system of representatives is

F(u,u), F(u,—u), F(u,a), F(u,—u), F(-u,—u), F(—u,—7a).

Example 16. Consider the case (ag,a1) = (\/Li, _\/Li) The limit set is the rectangle,

A={zeC|-1<Rz<2, — S%zg\/i}

Sl

shown in Fig. 2(right). One can easily verify that
1

. 1
folh)={z+yicCl -1<Re <, —Egi‘czg\/i},
fl(A):{Hyz‘eC\%gmgz, —%gszg\@},

and thus A = fo(A) U fi(A). This proves that F(—5, ——5) is a similarity tiling.
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Example 17. Consider the case (ag,a1) ~ (—0.662359 — 0.5622807, 0.460202 + 0.182582i). See
Fig. 5 F(—a, —a®) for the limit set. This 2-similarity tiling has been studied by Thurston [5],
Akiyama [1] and several others in relation to Pisot numbers. The similarity iterated function
system F = (fo, f1) satisfies

fooo(1) = fio(1), and  foo10(1) = fio0(1),
which imply
(5) 1+ao+a(2):a1, and 1+a0—a1—a0a1+a(2)a1:0.

Substituting a; of the first equation in the second, we see that ag is one of the complex root of
the polynomial
p(z) =23 —2—1.
We also see that a; = af by checking z° =1 + 2z + 22 mod p(z).
Let A be the real root, and «, @ be the complex roots of the polynomial p(z) so that ag = «

and a1 = o’. From p(z) = (z — \)(z — a)(z — @), we easily deduce that r = |a|?> = aa satisfies
24 =1,

and then
r4r0 =1,

for r® +r — 1 is divisible by 73 + 72 — 1. Hence we have |ag|? + |a1|? = 1. Namely, ag, a; satisfy

the necessary condition of Proposition 10. Proof that this actually gives a similarity tiling is
non-trivial ([4]).

Besides the necessary condition of Proposition 10, the complex ratios ag and a; of a 2-similarity
tiling would also satisfy some sort of algebraic condition like (5). We impose the following ad
hoc assumption. We do not have a rational explanation for the assumption, but all 2-similarity
tilings known so far satisfy this.

Assumption 18. There exists a complex root « of some polynomial p(z) with integer coefficients
such that
ag = £a®° and ap = £a*

for some positive integers eg, €.

We may also assume that Ra > 0 and S« > 0 since, after all, we will take conjugates and
change signs of a® to look for similarity tilings. Let us express the polynomial p(z) as

d
p(z) =Y 2 (pr € Z).
k=0

A computer search using Mathematica for (ag,aq) satisfying Assumption 18 and
lao* + [as|* =1
restricting to d < 3, |px| < 2 and eg, e; < 20 yields the following five polynomials and six cases.

(i) p(z) =1+222, a = % ~ 0.7071074, (eg,e1) = (1,1),

(i) p(z) =1 — 2 +22%, a = LT 1 0.25 + 0.661438i, (o, e1) = (1,1),

(iif) p(z) =1—22+ 222, a =1, (eg,e1) = (1,1),

(iv) p(z) =1 — 2z + 23, a ~ 0.662359 + 0.5622801, (eg,e1) = (1,5), (2,3),

(v) p(z) = 1+ 22 4+ 23, a ~ 0.232786 + 0.7925524, (e, e1) = (1,3).
Extending the range of search to d < 3, |px| < 7 adds eight more cases, none of which leads to a
2-similarity tiling. Another search where d < 6, |px| < 2 finds 33 additional cases none of which
leads to a new 2-similarity tiling. In fact we have loosen the assumption slightly and tried all
possible combinations of

ap = £a®'a’ (0 <i<ep), a; = a7 7ad (0<j<er),

in the range d < 4, |px| < 6, ep, e1 < 20, and still have no new 2-similarity tiling.
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It should be stressed that we judge whether a given similarity iterated function system is
a similarity tiling or not solely by looking at the picture of the limit set produced by Fractal
Gazer. In fact, we do not know how to prove most of what we claim to be similarity tilings are
actually similarity tilings. For instance, is F(—a?, —a?) of Fig. 5 really a similarity tiling?

Anyhow, Figs. 2, 3, 4, 5 and 6 show 2-similarity tilings associated with 1+ 222, 1 — z + 222,
1—22+22%2,1— 2+ 2% and 1 + 22 + 23, respectively. These are all the 2-similarity tilings we
have found.

There are only two similarity tilings associated with 1 + 222 shown in Fig. 2, for @ = —a.
The two similarity tilings are not equivalent, but their limit sets are similar. This follows from
the symmetry of the limit set. The limit set A = A(F (o, «)) is invariant under g(z) =1—z. It
follows that

A= fo(A) U frg(d),

and A is also the limit set of the 2-similarity tiling (fo, f1g), which is equivalent to F(a, —c).
The limit sets of F(a,a), F(a, —a), F(—a, —a), associated with 1 — z + 222 shown in Fig. 3,
as well as those associated with 1 — 2z 4 222 shown in Fig. 4 are similar by the same reason.

Fla, @) Fla, —a)

FIGURE 2. 2-similarity tilings associated with 14 222, o = \/Li

¥

%

Fla,a) Fla, —a) F(—a,—a)

FIGURE 3. 2-similarity tilings associated with 1 — z 4+ 222, a = 1+T\ﬁi.

4. 3-SIMILARITY TILINGS

Let us search for 3-similarity tilings F = (fo, f1, f2). We do not care about where the centers of
similarity transformations are when searching for 2-similarity tilings, but for 3-similarity tilings
we need to take location of the centers into account. We assume that the centers of fy and f;
are 0 and 1 respectively, and the similarity iterated function system F is determined by the
complex ratios ag, a1, as and the center ¢ = ¢ of fo. We denote the similarity iterated function
system by F(ag, a1, asz|c). It is obvious that

f(a07a17a2|c) :F(a()aalaaQ‘Ez)'
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A o,
..F' o
L M

.F(Oéz,OZB) ./—'.(—Oéz,OZB) ‘F(_a27_a3)

FIGURE 5. 2-similarity tilings associated with 1 — z + 23, (a, @®) ~ (0.662359 +
0.562280i, —0.460202 — 0.1825821), (a?, o) ~ (0.122561 +0.744862i, —0.337641 +
.5622801).

Under the permutations of the generators, we have

Fl(ao, a1, azlc) ~= F(ay,as, ao\i) ~ F(as, ao, al‘(l_%))
>~ .F(Cbo, ag, a1|%) >~ ]-"(al, ap, a2|(1_c)) ~ F(QQ, ai, CL0|1—TCC).
In general, the 64 families of similarity iterated function systems F(+u, +0, +w|.) are grouped

into 32 conjugate pairs F(+u, +0, £w|.). If two of u,v,w are equal up to sign and conjugation,
10



=

* »y - | vﬁ

Fla, o) Fla, —a?) F(—a,a?) F(—a,—a?)

FIGURE 6. 2-similarity tilings associated with 1+ 22 + 23, (a, a®) ~ (0.232786 +
0.792552i, —0.426050 — 0.368989:).

the number reduces to 24:

F(u,a,+0|.), F(u,—u,+0|.), F(—u,—u,=+0|.).
If w = v = w up to sign and conjugation, the number further reduces to ten:

]:(U,U,U|.), ]:(U,U, —U|), ]:(U, —u, —U|), ]:(—U, —u, —U|),
]:(uauaﬂ|‘)7 ]:(U, —u,ﬂ|.), ]:(—U, —U,ﬂ|-),

F(u,u,—al.), F(u,—u,—al|.), F(—u,—u,—ul.).
4.1. Derived 3-similarity tilings. Suppose that we have two (same or different) 2-similarity
tilings

F={(fo,fr) and  F ={(fy, f1)
having the same limit set so that
A= fo(A) U fi(A) = fo(A) U fi(A).
It is obvious from
A= fo(A)U fi(fo(A) U fi(A))
= fo(A) U fifo(A) U fifi(A),

that Go = (fo, f1fy, fif1) is a 3-similarity tiling having the limit set A. By a similar reason,
G1 = (fofb, fofi, f1) is also a 3-similarity tiling having the limit set A.

Definition 19. We say that 3-similarity tilings Gy and G; are derived from 2-similarity tilings
F and F'.

If o is a complex root of a polynomial p(z) with integer coefficients and the complex ratios
of fo, f1, fi, f1 are expressed as

- - ’ ol ’ o
ag = &, a; = +a°, ag = £a, ay = a1,

Gy and G; are equivalent to
F(£6%°, £6°a%, £6a%1).)  and  F(EACa%, £a0a°, +6|.)
for some ¢ and ¢ respectively. Note that we have
%2 + |ae1+eg|2 i |ae1+e/1|2 _ |aeo+66|2 i |aeo+e'1|2 Flao? = 1.

Derived 3-similarity tilings Gy and G; are nothing interesting for the limit sets are the same
as that of the original. However this does not exclude possibility of our finding new 3-similarity
tilings by varying the centers ¢ and ¢'.
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4.2. 3-similarity tilings associated with a polynomial. More generally:
Definition 20. Let a be a root of a polynomial p(z) with integer coefficients satisfying
102 + |02 + |o2) = 1
for some positive integers eg, e1, e2. Then a 3-similarity tiling equivalent to one of the form
F(+a~ia! +a79a) +a2 % ak|,) (0<i<eyp, 0<j<e, 0<k<ey c#0,1)
is said to be associated with p(z).

The method we use to find 3-similarity tilings is primitive. We input each candidate of
the complex ratios (ag,a1,as) in Fractal Gazer, and vary the center ¢ of the third similarity
transformation by hand using the mouse and literally search for tilings by looking at the displayed
limit set. While some of the 3-similarity tilings are easy to find, there are also 3-similarity tilings
quite difficult to find. We have tried to be careful but it is quite possible that we have missed
a few 3-similarity tilings. Anyhow, given complex ratios (ag, a1, az2), the number of ¢ yielding
3-similarity tilings seems to be finite.

9. 3-SIMILARITY TILINGS ASSOCIATED WITH POLYNOMIALS OF 2-SIMILARITY TILINGS

We first search for 3-similarity tilings associated with polynomials of 2-similarity tilings.

Fig. 7 shows 3-similarity tilings associated with 1+2z2. The first in cach family is the derived
3-similarity tiling. The results show that we can vary the center of derived 3-similarity tilings
F(ag, a1,asl.) and find non-trivial 3-similarity tilings.

The 3-similarity tilings associated with 1 — z + 222 and 1 — 2z + 222 that we have found are
listed in Figs. 8, 9 and Figs. 10, 11, respectively. We have not found any tiling of types other
than the listed.

The complex root o of 1 — z + 23 satisfies

laf? + |0 |* = [a®* + |o*|* = 1.

We can combine them in various ways to obtain six triples (ep,e1,e2) = (1,6,10), (1,7,8),
(2,4,8), (2,5,6), (3,3,7), (3,4,5) all satisfying

|aeg|2+|ael|2+|aeg|2 —1.

Figs. 12-17 show 3-similarity tilings of respective types that we have found.

The complex root o of 1 + 22 + 23 satisfies |a|? + |a®|?> = 1, from which we obtain triples
(eg,e1,e2) = (1,4,6), (2,2,7), (2,3,4) satisfying [« |? + |a®|? + |a?|? = 1. Figs. 18-20 show
all the 3-similarity tilings of respective types that we have found.

6. 3-SIMILARITY TILINGS NOT RELATED TO 2-SIMILARITY TILINGS

Table 6 shows all polynomials p(z) of degree d < 4 with integer coefficients |pg| < 6, having
aroot a (Ra > 0, Sa > 0) satisfying

‘0(80’24— ’ael‘Q—i- ‘a52’2 -1

for some positive integers eg, e1, e2. The mark 2 in the first column indicates that the parameters
are related to 2-similarity tilings. The mark 3 indicates that the parameters give 3-similarity
tilings but not related to 2-similarity tilings. Parentheses indicate that the given parameters
reduce to a simpler case, like (a2, a*, o) for a root of 1 + 22* is actually (a, o2, a?) for a root
of 1+ 222. For the parameters without mark, we have not found any 3-similarity tiling, though
we have tried.

Figs. 21-31 show all our findings on 3-similarity tilings associated with the polynomials
marked 3.

The limit set A of the similarity tiling F(o, o, al.) = (fo, f1, f2) (o = \/L‘g, c = 1+T‘/§”) in
Fig. 21 is unique in that it has 3-fold symmetry. Let g : C — C be the 27 /3-rotation around
the point 3+T*,/§’i, and we have g(A) = A. It follows that A is the limit set of any of the

12



F(a, o a2|) Flo,a?,a?.) Fla,a?,a?e)
c_1+f ¢ = V2 c=1+2i

f(Ol Oé a2| ) ‘F(a’az)_a2|c) ‘F(ava27_a2|c) ‘F(ava27_a2|c)
C:—l—gfz C=2—|—\/§’L c:l—|—\/ii C:—1+\/§i

F(o, —a?, —a?) Flo, —a?, —a?|) F(a, —a?, —a?|,)

c:2+23\/§z‘ c_2+\/_z =—1+\/_l

FIGURE 7. 3-similarity tilings associated with 1 + 222, a = \/Li

similarity iterated function systems (fog?, f197, f26%) (i, 4, k € {0,41}). Therefore, each family
of similarity iterated function systems

1+\/§i)
2

Flawt, aw?, awk|)  (w =
contains at least one 3-similarity tiling whose limit set is A, but perhaps more. We have loosened
the condition slightly and searched for 3-similarity tiling of the form

F(taw', +aw’, +awk|,).
Note that these include all the 3-similarity tilings associated with 1 + 322 as well as those
associated with 1 — 3z + 322, Indeed +aw® (i € {0,£1}) are the roots of

14272% = (1 +32%)(1 — 32 + 32%)(1 + 32 + 327).

Our choice of the complex root of 1 — 3z + 322 is 3+T‘/§’i = —aw in terms of the root « of 1+ 322.
The 3-similarity tilings associated with 1+ 322 and those associated with 1 — 3z + 322 are shown
in Fig. 21 and Fig. 22 respectively, while the 3-similarity tilings related to both 1 4 322 and
1 — 3z + 322 are shown in Figs. 23 and 24.
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1—2z+ 22— 224
1424323 — 24

1424323 —2¢
1— 24223 — 24
1— 24223 — 22

1—2z+4 22 4223 — 24
1—2z+4222 — 23 — 24
1—224222 — 23 — 24

—0.457107 + 0.5394941
0.190983 + 0.7626004
—0.545085 + 0.2912873
0.5 + 0.6066581
—0.118034 + 0.6066581
0.5 + 0.4052331
0.309017 + 0.7228714
—0.427051 + 0.446759¢

—0.082107 — 0.4932121
—0.326238 — 0.3600511
—0.545085 + 0.291287:
—0.427051 + 0.231723:
—0.118034 + 0.6066581%
0.5 + 0.4052331
—0.454915 — 0.1706471
—0.427051 + 0.4467597

—0.082107 — 0.4932121
0.212269 — 0.3175531
—0.326238 — 0.360051%
—0.354102 — 0.1432134
—0.427051 + 0.2317234
0.085786 + 0.405233:
—0.017221 — 0.3815784
—0.454915 — 0.170647:

p(2) 0 | e1 | e a0 acl ac2
2 [ 14222 1] 2] 2 0.707107% —0.5 —0.5
2 | 1—2z4222 1] 2] 2 0.25 + 0.661438i —0.375 4 0.330719: —0.375 + 0.330719i
2 | 1—2z+222 1] 21 2 0.5 + 0.5i 0.5% 0.54
2 | 1—24283 1| 6] 10| 0.662359 4+ 0.5622807 | —0.202157 — 0.3796977 | 0.178450 + 0.168050%
2 | 1—z423 1| 7| 8| 0.662359 + 0.5622804 0.079596 — 0.365165% 0.258045 — 0.1971154
2 | 1—24283 2 4| 8| 0.122561 + 0.744862i | —0.539798 + 0.182582i | 0.258045 — 0.197115¢
2 | 1—2z423 2| 5| 6] 0.122561 + 0.744862¢ | —0.460202 — 0.182582i | —0.202157 — 0.379697%
2 | 1—24283 3|1 3| 7| —0.337641 + 0.562280i | —0.337641 + 0.562280i | 0.079596 — 0.365165¢
2 | 1—z423 3| 4| 5| —0.337641 + 0.562280i | —0.539798 + 0.182582i | —0.460202 — 0.182582i
2 | 14+22+23 1| 4| 6| 0.232786 + 0.792552¢ 0.193265 — 0.4235634 0.045366 + 0.3144164
2 | 1422423 2 2| 7| —0.573950 + 0.368989i | —0.573950 + 0.368989i | —0.238631 + 0.109146i
2 | 14+22+23 21 3| 4| —0.573950 + 0.368989: | —0.426050 — 0.368989: | 0.193265 — 0.423563i
3 | 14322 1] 1] 1 0.577350¢ 0.577350i 0.577350i
3 | 1—32+4322 1] 1] 1 0.5 4 0.288675i 0.5 4+ 0.2886751 0.5 4+ 0.288675%
3 | 1— 24322 1] 1| 1| 0.166667+ 0.552771i 0.166667 + 0.5527714 0.166667 + 0.5527714
3 | 1—22+4 322 1| 1| 1| 0.333333+ 0.471405¢ 0.333333 + 0.4714054 0.333333 + 0.4714054
3 | 14222428 1] 1| 3| 0.102785+ 0.665457i 0.102785 + 0.665457: | —0.135463 — 0.273595¢
3 | 1—z422+2° 1] 2| 3| 0.419643 4 0.606291i | —0.191488 + 0.508852: | —0.388869 + 0.097439i
3 | 1—2z4222-23 1| 2| 4| 0122561+ 0.744862i | —0.539798 + 0.182582i | 0.258045 — 0.197115%
(2) | 14 22* 21 4| 4 0.707107% -0.5 —0.5
(2) | 1—22* 2| 4] 4 —0.707107 0.5 0.5
(3) | 1+ 32* 21 2| 2 0.577350¢ 0.577350i 0.577350¢
3 | 142224 1| 3| 4 0.786151i —0.485868i 0.381966
142224 21 2| 3 —0.618034 —0.618034 —0.4858681
(2) | 14224224 21 4| 4 —0.25 + 0.661438¢ —0.375 — 0.3307194 —0.375 — 0.330719:
(3) | 1+ 224324 21 2| 2| —0.166667 + 0.552771i | —0.166667 + 0.552771i | —0.166667 + 0.5527714
(2) | 1—22422% 21 4| 4 0.25 + 0.6614384 —0.375 4+ 0.330719i —0.375 + 0.330719i
14222 — 2% 1] 1| 2 0.643594i 0.6435941 —0.414214
(2) | 1+ 222 + 224 2| 4| 4 —0.5+ 0.5¢ —0.5¢ —0.5¢
(3) | 14222 + 324 2 2| 2| —0.333333 + 0.471405; | —0.333333 + 0.471405¢ | —0.333333 + 0.471405¢
(2) | 1—222 + 224 2| 4] 4 0.5+ 0.5¢ 0.5i 0.5i
21 4| 4
1] 3| 4
21 2 3
1] 3| 4
21 2 3
1] 1] 2
1| 3| 4
2|1 2] 3
1] 1] 2

1—2z+322 — 223 — 24

0.207107 + 0.60936114

0.207107 + 0.6093612

—0.328427 + 0.2524054
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F(a,a?,a?|.)
_ T+VTi
=3

F(—a,a? a?|,) F(—a,a?,a?],) F(—a,a? —a?|.)
o= T+VTi o= 3+VTi o= 1=VTi
=1 =73 ="

FIGURE 8. 3-similarity tilings associated with 1 — z + 222, o = 1+T‘ﬁi. (1)
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F(—a,a? —a?|.) F(—a,a?, —a?|.) F(—a,a?,—a?|,)
= —7+A\1ﬁi c=—-1

FIGURE 9. 3-similarity tilings associated with 1 — z + 222, o = 1+T‘ﬁi. (2)
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Fl(a,a?,a?|.)
c=2—1

.7:((1, _O‘2a —|C¥|2|C)

FIGURE 10. 3-similarity tilings associated with 1 — 2z + 222, o = . (1)
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F(a,ab,al9,.)
c~ 0.8426 + 0.1547¢

F(a,ab al9,)
c~0.4712 + 0.5762¢

F(a,ab,al9],.)
c ~ 0.8546 — 0.4919:¢

Ta

n

F(—a,ab,al?,)
c~ 1.7849 + 1.3072:¢

4
. ¥

«

F(—a,ab al?.)
c~ —2.5398 + 0.18257

x
F(—a,ab —al?,)
¢~ 0.5956 — 0.0973:

g

F(—a,ab, —at?),)
c~ —0.4492 — 0.27057

¥
&

F(—a,ab, —al?],)
c~ 1.0448 4+ 0.17321

L

F(—a,—af a'l)
¢ ~ 0.5060 — 0.3233i

i
S

F(—a,—ab,at?),)
¢~ —0.2031 4+ 0.66057

F(-a,—a’ a')
¢ ~ 1.0229 — 0.2529i

FIGURE 12. 3-similarity tilings of type (1,6,10) associated with 1 — 2 + 23,

(@, 0% al%) ~

19

(0.662359+0.562280i, —0.202157—0.3796971, 0.178450+0.16805047).




F(a,a®,a8|.)
¢~ 0.7191 — 0.1519:¢

c~ —0.2214 — 0.6383¢

F(a,a®,—a®|,)

Fla,a®, —a®,)
c ~ 0.6697 + 0.3952¢

3

Fla,a®,—a®,)
c~ 0.8820 — 0.15212

o &

F(a,—a",a®|,)
c~ —1.2809 — 0.1519:

F(a,—a’,a®|,)
¢~ 1.2370 — 0.8208:

Fla, —a’, a®,)
c ~ 1.2809 + 0.1519:

.

Fla,—a", a®,)
c~ 0.7630 + 0.8208:

-

he

F(—a,a’,a®|,)
c~ —1.2809 — 0.1519:

F(—a,a’,a®|,)
c ~ 0.7630 + 0.8208:

g

F(—a,a’,a®,)
¢~ 1.2370 — 0.8208:

he
o

F(—a,a’,a®,)
c~ 1.2809 + 0.1519¢

=

F(—a,—a", —a8|.)
¢~ 0.6697 + 0.3952:¢

c~ —0.2214 — 0.6383¢

@ %
F(—a,—a", —a8|.)

w %

F(—a,—a", —a8|.)
c ~ 0.8820 — 0.15212

FIGURE 13. 3-similarity tilings of type (1,7,8) associated with 1 — z + 23,

(a,a”,a®) ~
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(0.662359 + 0.5622801, 0.079596 — 0.3651657, 0.258045 — 0.197115¢).




F(a?,a*, a®,)
¢~ 1.6624 + 0.56231¢

F(a?,a*, ab,)

c ~ —0.0925 + 2.0520¢

F(a?,a*, —a®|,)
c ~ 0.6652 — 0.1976¢

”\

F(a?,a*,—a®|,)
c~ 0.2287 +0.4712¢

x
™=

F(a?,a*, —a®|,)
c~ 1.2168 + 0.0455:

F(—a?,a*,a®,)
c~ 0.8774 — 0.7449:

F(—a?,a*, a®,)
c~ 0.7849 + 1.3071s

F(—a?,a* a8|,)
c~ —0. 6624 0.56231

F(—a?, a*,

_a8|0)
c~ 0.3348 4+ 0.19767

F(—a?,—at,a)
¢ ~ 0.6624 + 0.5623i

FIGURE 14. 3-similarity tilings of type (2,4,8) associated with 1 — z + 23,

(0% at, a®) ~

21

(0.122561+0.744862i, —0.539798+0.1825827, 0.258045—0.1971157).




F(a?,a°,ab],)
c ~ 0.8789 + 0.5060:7

F(a?,a’, ab],)
¢~ 0.8504 — 1.04017

Ty

F(a?,a”,ab],)
c~ 1.1481 — 0.21073

Py

-

F(a?,a®, —a%|,)

c~ —0.4253 — 1.3831%

F(a?,a®, —a®|,)
c~ 1.4034 + 0.89677

F(a?,—ab,a%,)
c~ —0.3917 — 0.02821

F(a?,—ab,a’,)
c~ 0.3647 — 0.26717

F(—a?,a%, a%,)
c~ 1.4172 — 0.92743

F(-a? —a® a’)
¢ ~ 0.3917 + 0.0282i

.
f'?"

F(—a?,—a’,ab
c~ —0.1211+0. 50601

W

F(-a?,—a®,a’)
¢ ~ —0.0270 — 0.2952i

FIGURE 15. 3-similarity tilings of type (2,5,6) associated with 1 — z + 23,

(0%,a° 0% ~

0.3796971).

22

(0.122561 + 0.744862i, —0.460202 — 0.182582i,—0.202157 —




F(a?,a3,a7],)
c ~ 0.8925 + 0.6536:

F(—a?, —a?,—a"],)

CcC =

1
2

FIGURE 16. 3-similarity tilings of type (3,3,7) associated with 1 — z + 23,
( 3 .3

o3,03,a7) ~ (—0.337641 + 0.562280i, —0.337641 + 0.562280i,0.079596 —
0.3651651).

F(a?,a*, a%],) F(a?,a*,a%],) F(a?,a* a],) F(a2,a* ad|.)
¢~ 0.7091 — 0.9838: ¢~ 0.5289 — 0.57621 c~ 0.6166 + 1.06821 c~ 0.1454 4+ 0.4919:

F(a?,a*, —a®|.) F(a?,a*, —a®|,)
c~ 1.4473 4+ 1.86941 c~ —1.5398 + 0.18261

]_'(QS, a47 _a5|c)
c~ 1.3076 — 3.35913

FIGURE 17. 3-similarity tilings of type (3,4,5) associated with 1 — z + 23,
(a®, a?

a?,0f %) ~ (—0.337641 + 0.562280i, —0.539798 + 0.182582i, —0.460202 —
0.1825824).
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F(a,a*,ab|,.)
c~ 0.6022 + 0.1412¢

F(a,a*,ab|.)
¢~ 0.3695 — 0.65141¢

F(a,a*,ab|.)
c ~ 0.0283 4+ 0.51021¢

F(a, —a*, abl,)
c ~ 1.8067 4+ 0.42361

F(a, —a*, a’,)
c~ 1.1084 — 1.95411

ﬁ%

—a,at, af
c~06588+1 1615i

b g

A

F(—a,a*, abl,)
c~ 1.2328 + 0.7926:

F(—a,a*, abl,)
c~ 0.3428 + 0.1701z

F(—a,at, —ab,)
¢~ 0.5289 — 0.2113:

ey
¥

F(—a,a*, —a’|,)
c~ —0.2906 — 0.3700z

g

F(—a,a*, —ab|,)
c~ 0.8195 + 0.15877

F(—«q,

—a?t,ab|,)
c~0.7123 — 0.4816:

F(—a, —a*,a%,)
c~0.3161 4+ 0.99152

»

F(—a, —a* a’,)
¢~ 1.2595 — 0.0289:

FIGURE 18. 3-similarity tilings of type (1,4,6) associated with 1 + 22 + 2z3.

(a,a*, ab) ~
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(0.232786 + 0.7925527, 0.193265 — 0.4235637, 0.045366 + 0.3144164).




%igr

o
xa*

F(a?,a%,a7],)
c~ —0.2870 + 0.1845:¢

§i§

b

F(a?,—a?,a7|,)
c~ 0.2130 + 0.18457

F(a?,—a?,a7|,)
c~ —0.1164 — 0.3963:

L

F(a?,—a?,—a|.)
c~ 0.2130 + 0.1845:¢

F(a?,—a?,—a|.)
c~ —0.1164 — 0.3963:

%;%

F(a?,—a?,-a|.)
c~ 0.6164 + 0.3963:¢

F(—a?, —a?,a7|.)
c=1
2

FIGURE 19. 3-similarity tilings of type (2,2,7) associated with 1 + 22 + 2z3.
(@?,a2,a7) ~ (—0.573950 + 0.3689897, —0.573950 + 0.368989:, —0.238631 +

0.1091464).
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F(a?,a3,a%,)
¢~ 0.6588 4+ 1.16157

F(a?,a3,at,)
¢~ 0.1084 — 1.95413

- g

F(a?,a3,a%,)
c~ 1.5739 — 0.3690¢

F(a?,a3,—a?|,)
c~ 0.2919 — 0.91567

F(a?,a3, —a?|,)
c~ 0.4754 + 0.1230:

F(a?,a3, —a?|,)
c~ 0.9639 + 0.6514:

F(a?,—a3,a?|,)
c~ —0.6022 — 0.14121

F(a?,—a3,a?|.)
c~ —0.2328 — 0.79261

F(a?,—a3,a?|,)
c~0.3412 — 1.1615:

F(a?, —a® atl)
¢ ~0.3695 — 0.6514i

F(a?, —a?, —a?|.)
c~ 0.2196 + 0.38721

F(a?, —a?, —a?|.)
c~ —0.2689 — 0.14121

F(a?, —a3,

*044|C)
¢~ 0.5246 — 0.1230i

F(—a?,a3,a,)
c~ 0.7672 — 0.79261¢

F(—a? a3,
¢~ 1.2557 — 0.26421

*a4|0)

FIGURE 20. 3-similarity tilings of type (2,3,4) associated with 1 + 22 + 2z3.
(—0.573950 + 0.368989i, —0.426050 — 0.368989i,0.193265 —

(%0’ a%) ~

0.4235631).
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Fla, o, —alc)
14++/3i
8

C =

FIGURE 21. 3-similarity tilings associated with 1 + 322, a =

s
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Fla,a,le)
c— 442V3i
=T 7

Fla, —a, —al.)

Fla, —ay|c)
¢ = 134330
14

2

F(—a, —a, —ac)
o= LEVBi
="

F(—a, —a, —al.)

1
=3

FIGURE 22. 3-similarity tilings associated with 1 — 3z + 322, a = ?’JFT‘/?”.
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Flo, a, ow).)

C =

5+1/3i
7

Fla, aw, awl.)
c=—1

Fla, aw, awl.)

_ 243
c="x

Fla, aw, —awl.)
c=2+/3i

Fla, aw, adl.)
c=2+3i

Fla, aw, adl.)

—10—4v3i
7

c

Fla, aw, —ail.)

_11-5v3i
C="11

Flo, —aw, —awl.)
c=-1

FIGURE 23. 3-similarity tilings related to both 14322 and 1 — 324322, o = &=

w =

1+£/§i. (1)
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Flo, —aw, —aw|.)

c=3i

Fla, —aw, —a®|.)
_ 3-2V3i
=7

Flo, aw, ai|.)
c=3i

Fla, aw, adl.)
c=—1

Fla, aw, —awl.)
_ —2—/3i
=7

Fla, —aw, —aw|,)
c=—1

FIGURE 24. 3-similarity tilings related to both 1+ 322 and 1 — 324322, a = &

w= 118 ()

\/g’




Fla, o, —alc)
¢ — 3tV
=" 5

Fla, o, —alc)
c— 13+Vili
10

Fla, a, —al.)
¢ — 8+ VITi
= 715

]'-(Oé, —Q, _a|c) ‘F(aa —Q, _a|c) ‘F(av —Q, _a|C) ‘F(av —Q, _a|C)
c=—1 c:% C_Si\Q/Hi c:3+\5/ﬁi
L, L .
s ‘ a ®
%*‘t 2 % .
SRS
Fla, —a, —al.) Fla, —a, —al.)
¢ = =1+l ¢ — TEVILi
= 6 = T2

FIGURE 25. 3-similarity tilings associated with 1 — z + 322, a = HT*/TM.
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f(a,a,a|c)
c=72

.7'-(047 a, _a|C)

c— 14++/2i
- T 18

Fla, —a, —al.)
c=—1

Fla, —a, —al.)
c=2

.7'-(047 —Q, _a|C)
c=1+2i

‘F(aa «, _a|C)
c 44+/2i
6

‘F(aa —Q, _a|C)
c—= 242
3

F(—a, —a, —al.)
c=2

—a, —al.)
c=1+2i

F(—a,

FIGURE 26. 3-similarity tilings associated with 1 — 2z + 322, a = 1+T
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Flo, o, 0d|.)
c~ —0.7161 + 0.06841

Fla, —a, a?l,)
c~ 0.5514 + 0.33271¢

Fla, —a, a?l,)
c~ 0.6134 — 0.7339¢

Fla, —a, —a?|,)
c~ 0.5514 + 0.33271¢

Fla, —a, —a?|,)
c~0.6134 — 0.7339¢

F(a, —a, —a?|,)
c~ —0.1647 + 0.4011¢

X

F(—a,—a,a?|,)
c~ 1.0514 + 0.3327:

F(—a, —a, —a3|.)
C =

N|=

F(—a, —a, —a?|.)
c~ 2.1028 4+ 0.66557

FIGURE 27. 3-similarity tilings associated with 14 222 + 23, a ~ 0.102785 + 0.6654574.
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Fla,a?,a3|.)
¢~ 0.4463 — 0.40521

F(a,a?,a3|.)
c~ 1.1074 + 0.8104¢

Fla,a?,—a?,)
c~ 0.1761 — 0.86077

<R

Fla,a?,—a?,)
c~ —1.4196 — 0.6063:¢

Fl(a,a?,—a?|,)
c~1.7718 — 1.1151%

F(a,a?,—a?|,)
c~ 1.4196 + 0.6063:

Fla, —a?,a?,)
¢~ 0.5670 — 0.10057

Fla,—a?,a?,)
c~ 0.0133 — 0.50587

Fla,—a?,a3|,)
c ~ 0.5537 + 0.4052:

Fla,—a?,a3|,)
¢~ 0.8793 — 0.3047:

Fla, —a?,—a?|.)
c ~ 0.5804 — 0.60631

F(a,—a?,—a3|.)
c~ 0.6111 4+ 0.09741

F(—a,a?,a?|,)
c~ 0.4596 — 0.9110¢

F(—a,a?,a?|,)
¢~ 0.5537 + 0.4052:¢

ad

F(—a,a? a?],)
c ~ 0.8793 — 0.3047¢

ik

F(—a,a?, a?,)
c~ 0.0133 — 0.50582

FIGURE 28. 3-similarity tilings associated with 1 — z + 2% + 23, a ~ 0.419643 +

0.6062914. (1)
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F(—a,a? —a?|,)
c~ 0.3522 — 1.72141

F(—a,—a?,a?|,)
c~ 0.6237 — 0.3182:

F(—a,—a?,a?|,)
c ~ 0.8926 — 0.81047

.F(—Oé, _a2’ a3|C)
¢~ 0.1207 + 0.30473

‘F(_a’ _az’ _a3|6)
c ~ 0.8925 — 0.8104¢

.F(—CM, _a2’ _a3|6)
c~1.7718 — 1.11512

.F(—CY, _a2’ _a3|6)
c~ —1.4196 — 0.6063:

.F(—Oé, —0[2, _a3|6)
c~ 0.2282+ 1.11513%

F(—a,—a?,—a?|,)
c~ 1.4196 + 0.6063:

FIGURE 29. 3-similarity tilings associated with 1 — z + 22 + 23, a ~ 0.419643 +

0.6062914. (2)
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Fla,a?,at|.)
¢~ 1.6624 + 0.56231¢

F(a,a?,at|.)
c~ —0.0925 + 2.0520

Fla,a?, —at],)
c ~ 0.6652 — 0.1976¢

Fla,a?, —at,)
c~ 0.2287 +0.4712¢

#

Fa,a?,—at|,)
c~ 1.2168 + 0.0455:

%

F(—a,a? a|,)
c~ 0.8774 — 0.7449:

F(—a,a? al,)
c~ 0.7849 + 1.3071s

F(—a,a? at,)
c~ —0.6624 — 0.56231

F(—a,a?, —a?|,)
¢~ 0.3348 + 0.19761

F(—a,—a?,a?|,)
¢~ 0.6624 + 0.56231

FIGURE 30. 3-similarity tilings associated with 1 — z + 222 — 23, a ~ 0.122561 + 0.7448621.
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Fla,a?,at|.)
c~ 14 2.0582¢

Fla,a?,at|.)
c~1.2361 —0.9717:

Fla,a?,—at],)
c~ 0.5528 + 1.1377¢

Fla,a?,—at],)
c~ 0.7236 — 0.3516¢

Fla,a?, —at|,)
c~ 0.2764 + 0.5689:

Fla, —a3,a?|,)
¢~ 0.4331 — 1.4423:

Fla, —a3, at],)
c~ 1.6180 + 0.7862:

Fla,—a3, at,)
c~ —0.6180 + 1.2720z

9 {\?

Fla, —a?, —a?|,)
c~0.3732 — 0.6741:

Fla, —a, —a?|,)
¢~ 0.8944 + 0.43461

FIGURE 31. 3-similarity tilings associated with 1 + 22 — z
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, a ~ 0.7861513.




