NON-AUTONOMOUS CONFORMAL ITERATED FUNCTION SYSTEMS WITH OVERLAPS

YUTO NAKAJIMA

1. Introduction

A Non-autonomous Iterated Function System (NIFS) $\Phi = (\{\phi_i^{(j)}\}_{i \in I^{(j)}})_{j=1}^{\infty}$ on a compact subset $X \subset \mathbb{R}^m$ consists of a sequence of finite collections of uniformly contracting maps $\phi_i^{(j)}: X \to X$, where $I^{(j)}$ is a finite set. The system Φ is an Iterated Function System (for short, IFS) if the collections $\{\phi_i^{(j)}\}_{i \in I^{(j)}}$ are independent of j. In comparison to usual IFSs, we allow the contractions $\phi_i^{(j)}$ applied at each step j to vary as j changes. Rempe-Gillen and Urbański [9] introduced Non-autonomous Conformal Iterated Function

Rempe-Gillen and Urbański [9] introduced Non-autonomous Conformal Iterated Function Systems (NCIFSs). An NCIFS $\Phi = (\{\phi_i^{(j)}\}_{i\in I^{(j)}})_{j=1}^{\infty}$ on a compact subset $X\subset \mathbb{R}^m$ consists of a sequence of collections of uniformly contracting conformal maps $\phi_i^{(j)}: X\to X$ satisfying some mild conditions containing the Open Set Condition (OSC) which is defined as follows. We say that a sequence $(\{\phi_i^{(j)}\}_{i\in I^{(j)}})_{j=1}^{\infty}$ of finite collections of maps on a compact subset X with $\operatorname{int}(X)\neq\emptyset$ satisfies the OSC if for all $j\in\mathbb{N}$ and all distinct indices $a,b\in I^{(j)}$,

$$\phi_a^{(j)}(\operatorname{int}(X)) \cap \phi_b^{(j)}(\operatorname{int}(X)) = \emptyset. \tag{1}$$

Then the limit set of the NCIFS $\Phi = (\{\phi_i^{(j)}\}_{i \in I^{(j)}})_{j=1}^{\infty}$ is defined as the set of possible limit points of sequences $\phi_{\omega_1}^{(1)}(\phi_{\omega_2}^{(2)}...(\phi_{\omega_i}^{(i)}(x))...))$, $\omega_j \in I^{(j)}$ for all $j \in \{1, 2, ..., i\}$, $x \in X$. Rempe-Gillen and Urbański introduced the lower pressure function $\underline{P}_{\Phi} : [0, \infty) \to [-\infty, \infty]$ of the NCIFS Φ . Then the Bowen dimension s_{Φ} of the NCIFS Φ is defined by $s_{\Phi} = \sup\{s \geq 0 : \underline{P}_{\Phi}(s) > 0\} = \inf\{s \geq 0 : \underline{P}_{\Phi}(s) < 0\}$. Rempe-Gillen and Urbański proved that the Hausdorff dimension of the limit set is the Bowen dimension of the NCIFS ([9, 1.1 Theorem]). For related results for non-autonomous systems, see [2].

In this paper, we study NIFSs with overlaps on \mathbb{R}^m . Here, we do not assume the OSC. We introduce transversal families of non-autonomous conformal iterated function systems on \mathbb{R}^m . We show that if a d-parameter family of such systems satisfies the transversality condition, then for almost every parameter value the Hausdorff dimension of the limit set is the minimum of m and the Bowen dimension. Moreover, we give an example of a family $\{\Phi_t\}_{t\in U}$ of parameterized NIFSs such that $\{\Phi_t\}_{t\in U}$ satisfies the transversality condition but Φ_t does not satisfy the OSC for any $t \in U$. The method of transversality is utilized for parametrized IFSs involving some complicated overaps (e.g., [8], [11], [4], [5], [10]). For some general family of functions with the transversality condition, see [10], [6], [13].

2. Main result

In this section we present the framework of transversal families of non-autonomous conformal iterated function systems and we present the main results on them. For each $j \in \mathbb{N}$,

let $I^{(j)}$ be a finite set. For any $n, k \in \mathbb{N}$ with $n \leq k$, we set

$$I_n^k := \prod_{j=n}^k I^{(j)}, I_n^{\infty} := \prod_{j=n}^{\infty} I^{(j)}, I^n := \prod_{j=1}^n I^{(j)}, \text{ and } I^{\infty} := \prod_{j=1}^{\infty} I^{(j)}.$$

Let $U \subset \mathbb{R}^d$. For any $t \in U$, let $\Phi_t = (\Phi_t^{(j)})_{j=1}^{\infty}$ be a sequence of collections of maps on a set $X \subset \mathbb{R}^m$, where

$$\Phi_t^{(j)} = \{\phi_{i,t}^{(j)} : X \to X\}_{i \in I^{(j)}}.$$

Let $n, k \in \mathbb{N}$ with $n \leq k$. For any $\omega = \omega_n \omega_{n+1} \cdots \omega_k \in I_n^k$, we set

$$\phi_{\omega,t} := \phi_{\omega_n,t}^{(n)} \circ \cdots \circ \phi_{\omega_k,t}^{(k)}.$$

Let $n \in \mathbb{N}$. For any $\omega = \omega_n \omega_{n+1} \cdots \in I_n^{\infty}$ and any $j \in \mathbb{N}$, we set

$$\omega|_j := \omega_n \omega_{n+1} \cdots \omega_{n+j-1} \in I_n^{n+j-1}.$$

Let $V \subset \mathbb{R}^m$ be an open set and let $\phi: V \to \phi(V)$ be a diffeomorphism. We denote by $D\phi(x)$ the derivative of ϕ evaluated at x. We say that ϕ is conformal if for any $x \in V$ $D\phi(x): \mathbb{R}^m \to \mathbb{R}^m$ is a similarity linear map, that is, $D\phi(x) = c_x \cdot A_x$, where $c_x > 0$ and A_x is an orthogonal matrix. For any conformal map $\phi: V \to \phi(V)$, we denote by $|D\phi(x)|$ its scaling factor at x, that is, if we set $D\phi(x) = c_x \cdot A_x$ we have $|D\phi(x)| = c_x$. For any set $A \subset V$, we set

$$||D\phi||_A := \sup\{|D\phi(x)| : x \in A\}.$$

We denote by \mathcal{L}_d the d-dimensional Lebesgue measure on \mathbb{R}^d . We introduce the transversal family of non-autonomous conformal iterated function systems by employing the settings in [9] and [10].

Definition 2.1 (Transversal family of non-autonomous conformal iterated function systems). Let $m \in \mathbb{N}$ and let $X \subset \mathbb{R}^m$ be a non-empty compact convex set. Let $d \in \mathbb{N}$ and let $U \subset \mathbb{R}^d$ be an open set. For each $j \in \mathbb{N}$, let $I^{(j)}$ be a finite set. Let $t \in U$. For any $j \in \mathbb{N}$, let $\Phi_t^{(j)}$ be a collection $\{\phi_{i,t}^{(j)}: X \to X\}_{i \in I^{(j)}}$ of maps $\phi_{i,t}^{(j)}$ on X. Let $\Phi_t = (\Phi_t^{(j)})_{j=1}^{\infty}$. We say that $\{\Phi_t\}_{t \in U}$ is a Transversal family of Non-autonomous Conformal Iterated Function Systems (TNCIFS) if $\{\Phi_t\}_{t \in U}$ satisfies the following six conditions.

- 1. Conformality: There exists an open connected set $V \supset X$ (independent of i, j and t) such that for any i, j and $t \in U$, $\phi_{i,t}^{(j)}$ extends to a C^1 conformal map on V such that $\phi_{i,t}^{(j)}(V) \subset V$.
- 2. Uniform contraction: There is a constant $0 < \gamma < 1$ such that for any $t \in U$, any $n \in \mathbb{N}$, any $\omega \in I_n^{\infty}$ and any $j \in \mathbb{N}$,

$$|D\phi_{\omega|_j,t}(x)| \le \gamma^j$$

for any $x \in X$.

3. Bounded distortion: There exists a Borel measurable locally bounded function $K: U \to [1, \infty)$ such that for any $t \in U$, any $n \in \mathbb{N}$, any $\omega \in I_n^{\infty}$ and any $j \in \mathbb{N}$,

$$|D\phi_{\omega|_{i},t}(x_1)| \le K(t)|D\phi_{\omega|_{i},t}(x_2)| \tag{2}$$

for any $x_1, x_2 \in V$.

4. Distortion continuity: For any $\eta > 0$ and $t_0 \in U$, there exists $\delta = \delta(\eta, t_0) > 0$ such that for any $t \in U$ with $|t - t_0| \le \delta$, for any $n, j \in \mathbb{N}$ and for any $\omega \in I_n^{\infty}$,

$$\exp(-j\eta) \le \frac{||D\phi_{\omega|_j,t_0}||_X}{||D\phi_{\omega|_j,t}||_X} \le \exp(j\eta). \tag{3}$$

We define the address map as follows. Let $t \in U$. For all $n \in \mathbb{N}$ and all $\omega \in I_n^{\infty}$,

$$\bigcap_{j=1}^{\infty} \phi_{\omega|_j,t}(X)$$

is a singleton by the uniform contraction property. It is denoted by $\{y_{\omega,n,t}\}$. The map

$$\pi_{n,t}\colon I_n^\infty\to X$$

is defined by $\omega \mapsto y_{\omega,n,t}$. Then $\pi_{n,t}$ is called the *n*-th address map corresponding to t. Note that for any $t \in U$ and $n \in \mathbb{N}$ the map $\pi_{n,t}$ is continuous with respect to the product topology on I_n^{∞} .

- 5. Continuity: Let $n \in \mathbb{N}$. The function $I_n^{\infty} \times U \ni (\omega, t) \mapsto \pi_{n,t}(\omega)$ is continuous.
- 6. Transversality condition: For any compact subset $G \subset U$ there exists a sequence of positive constants $\{C_n\}_{n=1}^{\infty}$ with

$$\lim_{n \to \infty} \frac{\log C_n}{n} = 0$$

such that for all $\omega, \tau \in I_n^{\infty}$ with $\omega_n \neq \tau_n$ and for all r > 0,

$$\mathcal{L}_d\left(\left\{t \in G : |\pi_{n,t}(\omega) - \pi_{n,t}(\tau)| \le r\right\}\right) \le C_n r^m.$$

Remark 2.2. If $m \ge 2$, the Conformality condition implies the Bounded distortion condition. For the details, see [9, page. 1984 Remark].

Remark 2.3. Let $n \in \mathbb{N}$ and let $t \in U$. Then for any $\omega \in I_n^{\infty}$,

$$\pi_{n,t}(\omega) = \lim_{j \to \infty} \phi_{\omega|_j,t}(x),$$

where $x \in X$.

Remark 2.4. In the case of usual IFSs, the constants C_n in the transversality condition are independent of n since the n-th address maps $\pi_{n,t}$ are independent of n.

Let $\{\Phi_t\}_{t\in U}$ be a TNCIFS. For any $n\in\mathbb{N}$ and $t\in U$, the n-th limit set $J_{n,t}$ of Φ_t is defined by

$$J_{n,t} := \pi_{n,t}(I_n^{\infty}).$$

For any $t \in U$, we define the lower pressure function $\underline{P}_t : [0, \infty) \to [-\infty, \infty]$ of Φ_t as the following. For any $s \geq 0$ and $n \in \mathbb{N}$, we set

$$Z_{n,t}(s) := \sum_{\omega \in I^n} (||D\phi_{\omega,t}||_X)^s,$$

and

$$\underline{P}_t(s) := \liminf_{n \to \infty} \frac{1}{n} \log Z_{n,t}(s) \in [-\infty, \infty].$$

By [9, Lemma 2.6], the lower pressure function has the following monotonicity. If $s_1 < s_2$, then either both $\underline{P}_t(s_1)$ and $\underline{P}_t(s_2)$ are equal to ∞ , both are equal to $-\infty$, or $\underline{P}_t(s_1) > \underline{P}_t(s_2)$. Then for any $t \in U$, we set

$$s(t) := \sup\{s \ge 0 : \underline{P}_t(s) > 0\} = \inf\{s \ge 0 : \underline{P}_t(s) < 0\},\$$

where we set $\sup \emptyset = 0$ and $\inf \emptyset = \infty$. The value s(t) is called the Bowen dimension of Φ_t . We set $J_t := J_{1,t}$ for any $t \in U$. We now give the main result of this paper.

Main Theorem. Let $\{\Phi_t\}_{t\in U}$ be a TNCIFS. Suppose that the function $t\mapsto s(t)$ is a real-valued and continuous function on U. Then

$$\dim_H(J_t) = \min\{m, s(t)\}\$$

for \mathcal{L}_d -a.e. $t \in U$.

Main Theorem is a generalization of [10, Theorem 3.1 (i)].

3. Example

In this section, we give an example of a family $\{\Phi_t\}_{t\in U}$ of parameterized NCIFSs such that $\{\Phi_t\}_{t\in U}$ satisfies the transversality condition but Φ_t does not satisfy the open set condition for any $t\in U$. We set $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$. For any holomorphic function f on \mathbb{D} , we denote by f'(z) the complex derivative of f evaluated at $z\in\mathbb{D}$. For the transversality condition, we now give a slight variation of [11, Lemma 5.2]. For the reader's convenience we include the proof in Appendix.

Lemma 3.1. Let \mathcal{H} be a compact subset of the space of holomorphic functions on \mathbb{D} endowed with the compact open topology. We set

$$\tilde{\mathcal{M}}_H := \{ \lambda \in \mathbb{D} : \text{there exists } f \in \mathcal{H} \text{ such that } f(\lambda) = f'(\lambda) = 0 \}.$$

Let G be a compact subset of $\mathbb{D}\backslash \tilde{\mathcal{M}}_H$. Then there exists $K = K(\mathcal{H}, G) > 0$ such that for any $f \in \mathcal{H}$ and any r > 0,

$$\mathcal{L}_2\left(\left\{\lambda \in G : |f(\lambda)| \le r\right\}\right) \le Kr^2. \tag{4}$$

We now give a family $\{\Phi_t\}_{t\in U}$ of parametrized systems such that $\{\Phi_t\}_{t\in U}$ is a TNCIFS but Φ_t does not satisfy the open set condition (1) for any $t\in U$. In order to do that, we set

$$U := \{ t \in \mathbb{C} : |t| < 2 \times 5^{-5/8}, \ t \notin \mathbb{R} \}.$$

Note that $2 \times 5^{-5/8} \approx 0.73143 > 1/\sqrt{2}$. Let $t \in U$. For each $j \in \mathbb{N}$, we define

$$\Phi_t^{(j)} = \{ z \mapsto \phi_{1,t}^{(j)}(z), z \mapsto \phi_{2,t}^{(j)}(z) \} := \left\{ z \mapsto tz, z \mapsto tz + \frac{1}{j} \right\}.$$

Proposition 3.2. For any $t \in U$, the system $(\Phi_t^{(j)})_{j=1}^{\infty}$ does not satisfy the open set condition.

Proof. Suppose that the system $(\Phi_t^{(j)})_{j=1}^{\infty}$ satisfies the open set condition (1). Then there exists a compact subset $X \subset \mathbb{C}$ with $\operatorname{int}(X) \neq \emptyset$ such that $\phi_{1,t}^{(j)}(\operatorname{int}(X)) \cap \phi_{2,t}^{(j)}(\operatorname{int}(X)) = \emptyset$. Hence there exist $x \in X$ and r > 0 such that

$$\phi_{1,t}^{(j)}(B(x,r)) \cap \phi_{2,t}^{(j)}(B(x,r)) = B(tx,|t|r) \cap B(tx+1/j,|t|r) = \emptyset.$$

In particular, we have for all $j \in \mathbb{N}$,

$$2|t|r < \frac{1}{i}.$$

This is a contradiction.

We set

$$X := \left\{ z \in \mathbb{C} : |z| \le \frac{1}{1 - 2 \times 5^{-5/8}} \right\}.$$

Then we have that for any $t \in U$, for any $j \in \mathbb{N}$ and for any $i \in I^{(j)} := \{1, 2\}, \phi_{i,t}^{(j)}(X) \subset X$. We set $b_1^{(j)} = 0$ and $b_2^{(j)} = 1/j$ for each j. Let $n, j \in \mathbb{N}$. We give the following lemma.

Lemma 3.3. Let $t \in U$. For any $\omega = \omega_n \cdots \omega_{n+j-1} \in I_n^{n+j-1}$ and any $z \in X$ we have

$$\phi_{\omega,t}(z) = \phi_{\omega_n,t}^{(n)} \circ \cdots \circ \phi_{\omega_{n+j-1},t}^{(n+j-1)}(z) = t^j z + \sum_{i=1}^j b_{\omega_{n+i-1}}^{(n+i-1)} t^{i-1},$$

where $b_{\omega_{n+i-1}}^{(n+i-1)} \in \{0, \frac{1}{n+i-1}\}$. In particular, for any $\omega = \omega_n \cdots \omega_{n+j-1} \cdots \in I_n^{\infty}$,

$$\pi_{n,t}(\omega) = \sum_{i=1}^{\infty} b_{\omega_{n+i-1}}^{(n+i-1)} t^{i-1}.$$

Proof. This can be shown by induction on j.

We can show that the family $\{\Phi_t\}_{t\in U}$ of systems is a TNCIFS as follows.

1. Conformality: Let $t \in U$. For any $j \in \mathbb{N}$ and any $i \in I^{(j)}$, $\phi_{i,t}^{(j)}(z) = tz + b_i^{(j)}$ is a similarity map on \mathbb{C} .

2. Uniform Contraction: We set $\gamma = 2 \times 5^{-5/8}$. Then for any $\omega \in I_n^{n+j-1}$ and $z \in X$,

$$|D\phi_{\omega,t}(z)| = |t|^j \le \gamma^j$$

by Lemma 3.3.

3. Bounded distortion: By Lemma 3.3, for any $\omega = \omega_n \cdots \omega_{n+j-1} \in I_n^{n+j-1}$ and $z \in \mathbb{C}$, $|D\phi_{\omega,t}(z)| = |t|^j$. We define the Borel measurable locally bounded function $K: U \to [1,\infty)$ by K(t) = 1. Then for any $\omega \in I_n^{n+j-1}$,

$$|D\phi_{\omega,t}(z_1)| \le K(t)|D\phi_{\omega,t}(z_2)|$$

for all $z_1, z_2 \in \mathbb{C}$.

4. Distortion continuity: Fix $t_0 \in U$. Since the map $t \mapsto \log |t|$ is continuous at $t_0 \in U$, for any $\eta > 0$ there exists $\delta = \delta(\eta, t_0) > 0$ such that for any $t \in U$ with $|t_0 - t| < \delta$,

$$|\log|t_0| - \log|t|| < \eta.$$

Hence we have

$$|\log|t_0|^j/|t|^j| < j\eta,$$

which implies that for any $\omega \in I_n^{n+j-1}$,

$$\exp(-j\epsilon) < \frac{||D\phi_{\omega,t_0}||}{||D\phi_{\omega,t}||} = \exp(\log|t_0|^j/|t|^j) < \exp(j\epsilon).$$

5. Continuity: By Lemma 3.3, we have for any $t \in U$ and any $\omega \in I_n^{\infty}$,

$$\pi_{n,t}(\omega) = \sum_{i=1}^{\infty} b_{\omega_{n+i-1}}^{(n+i-1)} t^{i-1}.$$

Hence the map $(\omega, t) \mapsto \pi_{n,t}(\omega)$ is continuous on $I_n^{\infty} \times U$.

6. Transversality condition: We introduce a set \mathcal{G} of holomorphic functions on \mathbb{D} and the set $\tilde{\mathcal{O}}_2$ of double zeros in \mathbb{D} for functions which belong to \mathcal{G} .

$$\mathcal{G} := \left\{ f(t) = \pm 1 + \sum_{j=1}^{\infty} a_j t^j : a_j \in [-1, 1] \right\},$$

$$\tilde{\mathcal{O}}_2 := \{ t \in \mathbb{D} : \text{there exists } f \in \mathcal{G} \text{ such that } f(t) = f'(t) = 0 \}.$$

Note that \mathcal{G} is a compact subset of the space of holomorphic functions on \mathbb{D} endowed with the compact open topology. Let $n \in \mathbb{N}$. Then we have for any $t \in U$ and any $\omega, \tau \in I_n^{\infty}$ with $\omega_n \neq \tau_n$,

$$\pi_{n,t}(\omega) - \pi_{n,t}(\tau) = \sum_{i=1}^{\infty} b_{\omega_{n+i-1}}^{(n+i-1)} t^{i-1} - \sum_{i=1}^{\infty} b_{\tau_{n+i-1}}^{(n+i-1)} t^{i-1}$$

$$= b_{\omega_n}^{(n)} - b_{\tau_n}^{(n)} + \sum_{i=2}^{\infty} \left(b_{\omega_{n+i-1}}^{(n+i-1)} - b_{\tau_{n+i-1}}^{(n+i-1)} \right) t^{i-1}$$

$$= \frac{1}{n} \left(\pm 1 + \sum_{i=2}^{\infty} n \left(b_{\omega_{n+i-1}}^{(n+i-1)} - b_{\tau_{n+i-1}}^{(n+i-1)} \right) t^{i-1} \right).$$

Then the function $t \mapsto \pm 1 + \sum_{i=2}^{\infty} n(b_{\omega_{n+i-1}}^{(n+i-1)} - b_{\tau_{n+i-1}}^{(n+i-1)})t^{i-1}$ is a holomorphic function which belongs to \mathcal{G} . Let $G \subset \mathbb{D} \setminus \widetilde{\mathcal{O}}_2$ be a compact subset. By Lemma 3.1, there exists $K = K(\mathcal{G}, G) > 0$ such that for any $\omega, \tau \in I_n^{\infty}$ with $\omega_n \neq \tau_n$ and any r > 0,

$$\mathcal{L}_{2}(\{t \in G : |\pi_{n,t}(\omega) - \pi_{n,t}(\tau)| \leq r\})$$

$$= \mathcal{L}_{2}(\{t \in G : |\pm 1 + \sum_{i=2}^{\infty} n(b_{\omega_{n+i-1}}^{(n+i-1)} - b_{\tau_{n+i-1}}^{(n+i-1)})t^{i-1}| \leq nr\})$$

$$\leq K(nr)^{2}.$$

If we set $C_n := Kn^2$ for any $n \in \mathbb{N}$, we have

$$\mathcal{L}_2(\{t \in G : |\pi_{n,t}(\omega) - \pi_{n,t}(\tau)| \le r\}) \le C_n r^2$$

and

$$\frac{1}{n}\log C_n = \frac{1}{n}\log K + \frac{2}{n}\log n \to 0$$

as $n \to \infty$.

Finally, we use the following theorem.

Theorem 3.4. [12, Proposition 2.7] A power series of the form $1 + \sum_{j=1}^{\infty} a_j z^j$, with $a_j \in [-1, 1]$, cannot have a non-real double zero of modulus less than $2 \times 5^{-5/8}$.

By using the above theorem, we have that $U = \{t \in \mathbb{C} : |t| < 2 \times 5^{-5/8}, t \notin \mathbb{R}\} \subset \mathbb{D} \setminus \tilde{\mathcal{O}}$. Hence the family $\{\Phi_t\}_{t \in U}$ satisfies the transversality condition.

By the above arguments, we get the following.

Proposition 3.5. The family $\{\Phi_t\}_{t\in U}$ of parametrized systems is a TNCIFS.

We calculate the lower pressure function \underline{P}_t for Φ_t , $t \in U$ as the following. For any $s \in [0, \infty)$,

$$\underline{P}_t(s) = \liminf_{n \to \infty} \frac{1}{n} \log \sum_{\omega \in I^n} ||D\phi_{\omega,t}||^s$$

$$= \liminf_{n \to \infty} \frac{1}{n} \log \sum_{\omega \in I^n} |t|^{ns}$$

$$= \liminf_{n \to \infty} \frac{1}{n} \log(2^n |t|^{ns})$$

$$= \log 2 + s \log |t|.$$

Hence for each $t \in U$, $\underline{P}_t(s)$ has the zero

$$s(t) = \frac{\log 2}{-\log|t|}$$

and the function $t \mapsto s(t)$ is continuous on U. Let J_t be the (1st) limit set corresponding to t. Then by Main Theorem, we have

$$\dim_H(J_t) = \min\{2, s(t)\} = s(t)$$

for a.e. $t \in \{t \in \mathbb{C} : |t| \le 1/\sqrt{2}, t \notin \mathbb{R}\}$ and

$$\dim_H(J_t) = \min\{2, s(t)\} = 2$$

for a.e. $t \in \{t \in \mathbb{C} : 1/\sqrt{2} \le |t| < 2 \times 5^{-5/8}, t \notin \mathbb{R}\}.$

APPENDIX

In order to prove Lemma 3.1, we give some definition and remark.

Definition 3.6. Let G be a compact subset of \mathbb{R}^d . We say that a family of balls $\{B(x_i, r_i)\}_{i=1}^k$ in \mathbb{R}^d is packing for G if for each $i \in \{1, ..., k\}$, $x_i \in G$ and for each $i, j \in \{1, ..., k\}$ with $i \neq j$, $B(x_i, r_i) \cap B(x_j, r_j) = \emptyset$.

Remark 3.7. Let G be a compact subset of \mathbb{R}^d , let r > 0 and let $\{B(x_i, r)\}_{i=1}^k$ be a family of balls in \mathbb{R}^d . If $\{B(x_i, r)\}_{i=1}^k$ is packing for G, then there exists $N \in \mathbb{N}$ which depends only on G and r such that $k \leq N$.

Proof. There exists a finite covering $\{B(y_j, r/2)\}_{j=1}^N$ for G since G is compact. Here, N depends only on G and r. Since $x_i \in G$ for each i, there exists j_i such that $x_i \in B(y_{j_i}, r/2)$. Since $\{B(x_i, r)\}_{i=1}^k$ is a disjoint family, if $i \neq l \in \{1, ..., k\}$, then $j_i \neq j_l$. Thus $k \leq N$.

We give a proof of Lemma 3.1.

(proof of Lemma 3.1). Since \mathcal{H} is compact and the set $\tilde{\mathcal{M}}_H$ is the set of possible double zeros, we have that there exists $\delta = \delta_{\mathcal{H},G} > 0$ such that for any $f \in \mathcal{H}$,

$$|f(\lambda)| < \delta \Rightarrow |f'(\lambda)| > \delta \text{ for } \lambda \in G.$$
 (5)

We assume that $r < \delta$, otherwise (4) holds with $K = \mathcal{L}_2(G)/\delta^2$. Let

$$\Delta_r := \{ \lambda \in G : |f(\lambda)| \le r \}.$$

Let Co(G) be the convex hull of G. We set $M = M_G := \sup\{|g''(\lambda)| \in [0, \infty) : \lambda \in Co(G), g \in \mathcal{H}\}$. Since Co(G) is compact and \mathcal{H} is compact, $M < \infty$. Fix $z_0 \in \Delta_r$. By Taylor's formula, for $z \in G$,

$$|f(z) - f(z_0)| = |f'(z_0)(z - z_0) + \int_{z_0}^{z} (z - \xi)f''(\xi)d\xi|,$$

where the integration is performed along the straight line path from z_0 to z. Then $|f'(z_0)| > \delta$ by (5). Hence

$$|f(z) - f(z_0)| \ge |f'(z_0)||z - z_0| - M|z - z_0|^2 > \delta|z - z_0| - M|z - z_0|^2.$$

Now if we set

$$A_{z_0,r} := \left\{ z \in \mathbb{D}^* : \frac{4r}{\delta} < |z - z_0| < \frac{\delta}{2M} \right\},$$

then for any $z \in A_{z_0,r}$,

$$|\delta|z-z_0|-M|z-z_0|^2=|z-z_0|(\delta-M|z-z_0|)>\frac{4r}{\delta}\frac{\delta}{2}=2r,$$

and $|f(z)| \ge |f(z) - f(z_0)| - |f(z_0)| > r$. It follows that the annulus $A_{z_0,r}$ does not intersect Δ_r .

Assume that $4r/\delta \leq \delta/4M$, otherwise (4) holds with $K = \mathcal{L}_2(G)(16M/\delta^2)^2$. Then the disc $B(z_0, \delta/4M)$ centered at z_0 with the radius $\delta/4M$ covers $\Delta_r \cap \{z : |z-z_0| < \delta/2M\}$. Then fix $z_1 \in \Delta_r \setminus \{z : |z-z_0| < \delta/2M\}$. Since the annulus $A_{z_1,r}$ does not intersect Δ_r , $B(z_1, \delta/4M)$ covers $(\Delta_r \setminus \{z : |z-z_0| < \delta/2M\}) \cap \{z : |z-z_1| < \delta/2M\}$ and $B(z_0, \delta/4M) \cap B(z_1, \delta/4M) = \emptyset$. If we repeat the procedure, we get a finite covering $\{B(z_i, \delta/4M)\}_{i=0}^k$ for Δ_r since Δ_r is compact. Then $\{B(z_i, \delta/4M)\}_{i=0}^k$ is packing for G. By Remark 3.7, there exists $N \in \mathbb{N}$ which depends only on \mathcal{H} and G such that $k \leq N$. Since the annulus $A_{z_i,r}$ does not intersect Δ_r for each $i \in \{0, ..., k\}$, $\{B(z_i, 4r/\delta)\}_{i=0}^k$ is also a covering for Δ_r . Hence we have

$$\mathcal{L}_2(\Delta_r) \le \mathcal{L}_2(\bigcup_{i=0}^k \{B(z_i, 4r/\delta)\})$$

$$= \sum_{i=0}^k \mathcal{L}_2(\{B(z_i, 4r/\delta)\})$$

$$\le NC(\frac{4r}{\delta})^2 = NC(\frac{4}{\delta})^2 r^2,$$

where the constant C does not depend on r. If we set $K := NC(4/\delta)^2$, we get the desired inequality.

Acknowledgement. This study is supported by JSPS KAKENHI Grant Number JP 19J21038. This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

- [1] K. Falconer, Fractal geometry-Mathematical foundations and applications (Third edition), WILEY, 2014.
- [2] M. Holland and Y. Zhang, Dimension results for inhomogeneous Moran set constructions, Dyn. Syst. 28(2) (2013), 222-250.
- [3] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
- [4] T. Jordan, Dimension of fat Sierpiński gaskets, Real Anal. Exchange, 31(1) (2005/06), 97-110.

- [5] T. Jordan and M. Pollicott, Properties of measures supported on fat Sierpiński carpets, Ergodic Theory Dynam. Systems, 26(3) (2006), 739-754.
- [6] E. Mihailescu and M. Urbański, *Transversal families of hyperbolic skew- products*, Discrete and Continuous Dynamical Systems A, 2008, 21 (3): 907-928.
- [7] R. D. Mauldin and M. Urbański, *Graph directed Markov systems*, Geometry and dynamics of limit sets, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, 2003.
- [8] M. Pollicott and K. Simon, The Hausdorff dimension of λ-expansions with deleted digits, Trans. Amer. Math. Soc., 347, no. 3 (1995), 967-983.
- [9] L. Rempe-Gillen and M. Urbański, Non-autonomous conformal iterated function systems and Moran-set constructions, Trans. Amer. Math. Soc., 368(3) (2016), 1979-2017.
- [10] K. Simon, B. Solomyak and M. Urbański, Hausdorff dimension of limit sets for parabolic IFS with overlaps, Pacific J. Math. 201 (2001), 441-478.
- [11] B. Solomyak, Measure and dimension for some fractal families, Math. Proc. Camb. Phil. Soc. 124, 531-46 (1998)
- [12] B. Solomyak and H. Xu, On the 'Mandelbrot set' for a pair of linear maps and complex Bernoulli convolutions, Nonlinearity 16, no. 5, 1733-1749 (2003).
- [13] H. Sumi and M. Urbański, Transversality family of expanding rational semigroups, Adv. Math. 234 (2013) 697-734.

Yuto Nakajima

Course of Mathematical Science, Department of Human Coexistence, Graduate School of Human and Environmental Studies, Kyoto University Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan E-mail: nakajima.yuuto.32n@st.kyoto-u.ac.jp