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1. INTRODUCTION

A Non-autonomous Iterated Function System (NIFS) & = ({qbl(»j)}iel(j));-’il on a compact
subset X C R™ consists of a sequence of finite collections of uniformly contracting maps

¢(j VX 5 X , where I is a finite set. The system ® is an Iterated Function System (for

short, IFS) if the collections {¢§j )}ie 1) are independent of j. In comparison to usual IFSs,

we allow the contractions gb,gj ) applied at each step j to vary as j changes.
Rempe-Gillen and Urbanski [9] introduced Non-autonomous Conformal Iterated Function

Systems (NCIFSs). An NCIFS ¢ = ({gbz(‘j)}ielﬁ))?il on a compact subset X C R consists

of a sequence of collections of uniformly contracting conformal maps ¢§j VX o X satisfying
some mild conditions containing the Open Set Condition (OSC) which is defined as follows.

We say that a sequence ({qﬁl(.j )}z‘e 1))§2 of finite collections of maps on a compact subset X
with int(X) # () satisfies the OSC if for all j € N and all distinct indices a,b € I\,

¢ (int(X)) N o (int(X)) = 0. (1)

Then the limit set of the NCIFS & = ({gb,gj )} iert))j2 is defined as the set of possible limit

points of sequences ¢£,11 ((]55)22)( g)(x)))), w; € IV) for all j € {1,2,...,i}, = € X. Rempe-
Gillen and Urbanski introduced the lower pressure function Pg : [0,00) — [—00,00] of the
NCIFS ®. Then the Bowen dimension s of the NCIFS @ is defined by sg = sup{s >
0 : Pg(s) >0} =inf{s > 0 : Pg(s) < 0}. Rempe-Gillen and Urbanski proved that the
Hausdorff dimension of the limit set is the Bowen dimension of the NCIFS ([9, 1.1 Theorem]).
For related results for non-autonomous systems, see [2].

In this paper, we study NIFSs with overlaps on R™. Here, we do not assume the OSC.
We introduce transversal families of non-autonomous conformal iterated function systems
on R™. We show that if a d—parameter family of such systems satisfies the transversality
condition, then for almost every parameter value the Hausdorff dimension of the limit set
is the minimum of m and the Bowen dimension. Moreover, we give an example of a family
{®:}1ev of parameterized NIFSs such that {®;};cp satisfies the transversality condition but
®; does not satisfy the OSC for any ¢t € U. The method of transversality is utilized for
parametrized IFSs involving some complicated overaps (e.g., [8], [11], [4], [5], [10]). For some
general family of functions with the transversality condition, see [10], [6], [13].

2. MAIN RESULT

In this section we present the framework of transversal families of non-autonomous con-
formal iterated function systems and we present the main results on them. For each j € N,



let () be a finite set. For any n,k € N with n < k, we set

k oo n oo
Ih=1[19. 10 = [ 19,17 = ][ 1Y, and 1 == [ ] 1.
Jj=n Jj=n j=1 j=1

Let U c R?. For any t € U, let &, = (Cbgj));?';l be a sequence of collections of maps on a
set X C R™, where

o) = {fﬁz(;jt) t X = X}iero)-

Let n,k € N with n < k. For any w = wpwpt1 -+ wg € I,’i, we set

k
b = dnyo 0l
Let n € N. For any w = wpwp41 -+ € I° and any j € N, we set

. j—1
w|j 1= WnWnp4l ** Wptj—1 € Ig+] .

Let V. C R™ be an open set and let ¢ : V. — ¢(V) be a diffeomorphism. We denote
by D¢(z) the derivative of ¢ evaluated at x. We say that ¢ is conformal if for any x € V
D¢(x) : R™ — R™ is a similarity linear map, that is, Dp(x) = ¢, - Ay, where ¢; > 0 and
A, is an orthogonal matrix. For any conformal map ¢ : V' — ¢(V'), we denote by |D¢(x)]
its scaling factor at z, that is, if we set Dp(x) = ¢, - Ay we have |D¢(x)| = ¢,. For any set
A CV, we set

[| Dl 4 :=sup{|Do(x)| : = € A}.

We denote by L4 the d-dimensional Lebesgue measure on R%. We introduce the transversal
family of non-autonomous conformal iterated function systems by employing the settings in
[9] and [10].

Definition 2.1 (Transversal family of non-autonomous conformal iterated function systems).
Let m € N and let X C R™ be a non-empty compact convex set. Let d € N and let U C R¢
be an open set. For each j € N, let IU) be a finite set. Let t € U. For any j € N, let (IDI(tj) be a
collection {¢%)) : X = X},c;0) of maps ¢%%) on X. Let & = (@)% ,. We say that {®;}rev
is a Transversal family of Non-autonomous Conformal Iterated Function Systems (TNCIFS)
if {®,;}1er satisfies the following six conditions.

1. Conformality : There exists an open connected set V O X (independent of ¢, j and ¢)
such that for any 4,j and t € U, qﬁﬁ extends to a C! conformal map on V such that
(bz(?t)(V) cV.

2. Uniform contraction : There is a constant 0 < 7 < 1 such that for any ¢ € U, any
n €N, any w € I;° and any j € N,

1D 4(2)] < 7

for any x € X.
3. Bounded distortion : There exists a Borel measurable locally bounded function K :
U — [1,00) such that for any ¢t € U, any n € N, any w € I;° and any j € N,

D, (21)] < K(8)[ Dy, 1 (22)] (2)

for any x1,x22 € V.



4. Distortion continuity : For any n > 0 and tg € U, there exists § = §(n,ty) > 0 such
that for any ¢ € U with |t — to| < 6, for any n,j € N and for any w € I2°,

1D, 0]1x
exp(—jn) < T < exp(jn). (3)
1D @y, el x

We define the address map as follows. Let t € U. For all n € N and all w € I°,
m qswlj,t (X>
j=1

is a singleton by the uniform contraction property. It is denoted by {ywn:}. The
map

Tnt: IZO — X

is defined by w + ¥y n¢. Then m,; is called the n-th address map corresponding to
t. Note that for any ¢t € U and n € N the map 7, is continuous with respect to the
product topology on I:°.

5. Continuity : Let n € N. The function I;° x U 3 (w,t) — mp+(w) is continuous.

6. Transversality condition : For any compact subset G C U there exists a sequence of
positive constants {Cy, }22; with

logC,,

lim 0
n—oo n

such that for all w, 7 € I;° with w, # 7, and for all » > 0,

Li{teG : |mpi(w) —mp(r)] <r}) < Cpr™.

Remark 2.2. If m > 2, the Conformality condition implies the Bounded distortion condition.
For the details, see [9, page. 1984 Remark].

Remark 2.3. Let n € N and let t € U. Then for any w € 1.7,
Wn,t(“)) = lim ¢w|j,t(£>7
Jj—o00
where z € X.

Remark 2.4. In the case of usual IFSs, the constants C,, in the transversality condition are
independent of n since the n-th address maps 7, are independent of n.

Let {®;}cy be a TNCIFS. For any n € N and t € U, the n-th limit set Jp, + of ®; is defined
by

T = g (1),

For any t € U, we define the lower pressure function P, : [0,00) — [—o00,00] of ®; as the
following. For any s > 0 and n € N, we set

Zna(s) =Y (I[Dusllx)*,

weln

and

1
P,(s) := liggi(}r(l)fﬁlog Zny(s) € [—00,00].



By [9, Lemma 2.6], the lower pressure function has the following monotonicity. If s; < s2,
then either both P,(s1) and P,(s2) are equal to oo, both are equal to —oo, or P,(s1) > P,(s2).
Then for any t € U, we set

s(t) :==sup{s >0 : P,(s) >0} =inf{s >0 : P,(s) <0},

where we set sup () = 0 and inf () = co. The value s(t) is called the Bowen dimension of ®;.
We set J; := Ji 4 for any t € U. We now give the main result of this paper.

Main Theorem. Let {®;};cr be a TNCIFS. Suppose that the function ¢ — s(t) is a real-
valued and continuous function on U. Then

dimg(J;) = min{m, s(t)}
for Lg-ae. t € U.

Main Theorem is a generalization of [10, Theorem 3.1 (i)].

3. EXAMPLE

In this section, we give an example of a family {®; };cy of parameterized NCIFSs such that
{®;}1cv satisfies the transversality condition but ®; does not satisfy the open set condition
for any t € U. We set D := {z € C : |z| < 1}. For any holomorphic function f on D,
we denote by f’(z) the complex derivative of f evaluated at z € D. For the transversality
condition, we now give a slight variation of [11, Lemma 5.2]. For the reader’s convenience we
include the proof in Appendix.

Lemma 3.1. Let H be a compact subset of the space of holomorphic functions on D endowed
with the compact open topology. We set

My :={\€D : there exists f € H such that f(\) = f'(\) = 0}.

Let G be a compact subset of D\My. Then there exists K = K(H,G) > 0 such that for any
feH and any r > 0,

Ly(fxeG:|f(V] <)) < Kr?. (4)

We now give a family {®;};cp of parametrized systems such that {®;},cp is a TNCIFS
but ®; does not satisfy the open set condition (1) for any ¢ € U. In order to do that, we set

U:={teC : |t|<2x57°°5 t¢R}.
Note that 2 x 57%/8 ~ (0.73143 > 1/\/§ Let t € U. For each j € N, we define
(I)z(tj) ={z— ¢§{2(Z)7Z — gbgg(z)} = {z —tz,z =tz + ;} .
Proposition 3.2. For anyt € U, the system (@ij));gl does not satisfy the open set condition.

Proof. Suppose that the system (@l(tj ));‘;1 satisfies the open set condition (1). Then there

exists a compact subset X C C with int(X) # () such that ¢§]72 (int(X)) N ¢é]72 (int(X)) = 0.
Hence there exist x € X and r > 0 such that

V) (B(x,r)) NS} (B(x,r)) = Bt |t|r) N Btz + 1/4, |tr) = 0.
In particular, we have for all j € N,
1
2|t|7’ < .
J

This is a contradiction. O



We set

1
= . <—
X {zGC.|z|_1_2X5_5/8}.

Then we have that for any ¢t € U, for any j € N and for any i € 1) := {1,2}, QBZ(»’];)(X) c X.
We set bgj) =0 and bgj) = 1/j for each j. Let n,j € N. We give the following lemma.

I;Ll+j -1

Lemma 3.3. Lett € U. For any w = wy -~ Wp4j—1 € and any z € X we have

Whtj—1,t Wn4i—1

Gua(2) = 85 00 @l (2) =tz 4 Y plntizDyit,
=1

where b&ﬁ:ij) €0, n+1—1}' In particular, for any w = wp - wWpipjo1--- € 10,
[e.¢]
Tna(w) = D 0GP
i=1
Proof. This can be shown by induction on j. a

We can show that the family {®;},cp of systems is a TNCIFS as follows.
1. Conformality : Let t € U. For any j € N and any i € 1), qbl(?t)(z) =tz + bl(j) is a
similarity map on C. ‘
2. Uniform Contraction : We set v = 2 x 575/8. Then for any w € I and 2 € X,

|Dousa(2)] = [t <+’

by Lemma 3.3. ‘
3. Bounded distortion : By Lemma 3.3, for any w = wy, - - Wn4j-1 € I and 2 € C,
|D¢,.1(2)| = |t]’. We define the Borel measurable locally bounded function K : U —

[1,00) by K(t) = 1. Then for any w € I}/,

D i(z1)] < K ()| D i(22)]

for all z1, 29 € C.
4. Distortion continuity : Fix ty € U. Since the map t — log|t| is continuous at ¢ty € U,
for any 7 > 0 there exists § = §(n,t9) > 0 such that for any ¢ € U with |tg — t| < J,

| log [to| — log [t]] < n.

Hence we have
|log [to) /[t | < g,

which implies that for any w € I !,

[ Dt
1D 4|

5. Continuity : By Lemma 3.3, we have for any ¢t € U and any w € I°,

exp(—je) < = exp(log [tol’ /[t) < exp(je).

o0
Tnp(w) = _ b=yt

i=1

Hence the map (w,t) — 7, +(w) is continuous on I;° x U.



6. Tmnsve(sality condition : We introduce a set G of holomorphic functions on D and
the set Oz of double zeros in D for functions which belong to G.

G:=< f(t) ::|:1+§:ajtj taj € [—-1,1]

j=1
Oy := {t €D : there exists f € G such that f(t) = f'(t) = 0}.

Note that G is a compact subset of the space of holomorphic functions on D endowed
with the compact open topology. Let n € N. Then we have for any t € U and any
w,T € I° with w, # 7,

oo
Tt (@) = (7 Z ot Zb&:ﬁ: i
— _ pn) plnti 1) _ pnti 1)) pi—1
= n n+Z(wn+zl Tnﬂl)t

<il+z ( bl plnt- 11)>tz 1)

Then the function ¢ — +£1+> > 27 (bgfii Dyt 1))751 ! is a holomorphic function

Tn4i—
which belongs to G. Let G C ]D)\Og be a compact subset. By Lemma 3.1, there exists
K = K(G,G) > 0 such that for any w, 7 € I?° with w,, # 7, and any r > 0,

Lo({t € G : |mpt(w) — mnp(T)] < 7})

Wn4i—1 Tn+i—1

=Lo({te G : [£14+> n@t D — b0t Dyl < nr})

< K(nr)?.
If we set C,, := Kn? for any n € N, we have
Lo({t € G : |mpi(w) — mpe(1)] < 7}) < Cpr?
and
llogC = llogK+ zlogn -0
n n n

as n — oQ.
Finally, we use the following theorem.

Theorem 3.4. [12, Proposition 2.7] A power series of the form 1+ Z;L ajzj, with

€ [—1,1], cannot have a non-real double zero of modulus less than 2 x 55/8.

By using the above theorem, we have that U = {t € C : |t| < 2x57%8 t ¢ R} C
D\O. Hence the family {®;},cp satisfies the transversality condition.
By the above arguments, we get the following.

Proposition 3.5. The family {®;}icv of parametrized systems is a TNCIFS.

We calculate the lower pressure function P, for @4, t € U as the following. For any
s € [0,00),



|
Py(s) = liminf —log » _ || Depul|*

weln

s 1 ns
= hnrr_kgfalog Z |t]
weln

: : 1 n ns
= hnrr_ligfglog(Z |t]™)
= log 2 + slog |t|.

Hence for each t € U, P,(s) has the zero

log 2

() = —log |

and the function ¢ — s(t¢) is continuous on U. Let J; be the (1st) limit set corre-
sponding to t. Then by Main Theorem, we have

dimp (J;) = min{2, 5(¢)} = s(t)
fora.e. t € {t € C : |t| <1/v/2,t ¢ R} and
dimp (J;) = min{2, s(t)} = 2
forae t€{teC : 1/vV2<|t| <2x5 %% t¢R}.

APPENDIX

In order to prove Lemma 3.1, we give some definition and remark.

Definition 3.6. Let G be a compact subset of R?. We say that a family of balls { B(x;, ri)}le
in R? is packing for G if for each i € {1,...,k}, x; € G and for each 4,5 € {1,...,k} with i # j,
B(:Ei, ’I”i) N B([L’j, T‘j) = 0.

Remark 3.7. Let G be a compact subset of R%, let r > 0 and let {B(z;,7)}¥_, be a family
of balls in R%. If { B(x;,)}F_, is packing for G, then there exists N € N which depends only
on G and r such that k£ < N.

Proof. There exists a finite covering {B(y;,7/2) j-Vzl for G since G is compact. Here, N
depends only on G and r. Since z; € G for each i, there exists j; such that x; € B(y;,,r/2).
Since {B(zi,r)}r_, is a disjoint family, if i # I € {1,...,k}, then j; # j;. Thus k < N. O

We give a proof of Lemma 3.1.

(proof of Lemma 3.1). Since H is compact and the set My is the set of possible double
zeros, we have that there exists § = d3,¢ > 0 such that for any f € H,

IfO)| <= |f/(\)]>§ for A€ @G. (5)
We assume that r <, otherwise (4) holds with K = £5(G)/62. Let
Api={AeG:|f(N)| <r}.



Let Co(G) be the convex hull of G. We set M = M¢ := sup{|¢” ()| € [0,00) : A € Co(G),g €
H}. Since Co(G) is compact and H is compact, M < oo. Fix zg € A,. By Taylor’s formula,
for z € G,

£(2) = f(z0)| = [f'(20) (2 — 20) + /z(z = §).1"(©)dg],

where the integration is performed along the straight line path from zg to z. Then | f'(z0)| > 0
by (5). Hence

1f(2) = f(20)] = |/ (20)]|2 — 20| — M|z = 20]* > 8|z — 20| — M|z — zo|*.
Now if we set

4r

Ayr = {z eD* : 5

<|_ |<i
z 20 2M y

then for any z € A, ,,

4r é
52
and | f(z)| > |f(2) — f(z0)| — | f(20)| > r. It follows that the annulus A, does not intersect

8|z — 20| = M|z — 2> = |2 — 20|/(6 — M|z — 20|) > = 2r,

Assume that 4r/§ < §/4M, otherwise (4) holds with K = L5(G)(16M/6%)2. Then the disc
B(zp,0/4M) centered at zp with the radius 6 /4M covers A,N{z : |z —zp| < §/2M }. Then fix
z1 € A\{z : |z — 20| < 0/2M}. Since the annulus A, , does not intersect A,, B(z1,6/4M)
covers (A \{z : |z—z0] < §/2M})N{z: |z—2z1| < §/2M} and B(zp,d/4M)NB(z1,6/4M) = (.
If we repeat the procedure, we get a finite covering {B(z;,§/4M)}%_ for A, since A, is
compact. Then {B(z;,d/4M)}%_ is packing for G. By Remark 3.7, there exists N € N
which depends only on ‘H and G such that £ < N. Since the annulus A, , does not intersect
A, for each i € {0,...,k}, {B(z;,4r/8)}F_, is also a covering for A,. Hence we have

k
Lo(Ar) < Lo(| {B(1,4r/5)})

=0
k
= Lo({B(zi,4r/5)})
=0
< NC(45—T)2 = NC(%)QTQv

where the constant C' does not depend on 7. If we set K := NC(4/6)?, we get the desired
inequality.
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