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1 Introduction

This paper concerns a cocycle generated by linear operators, called a linear operator cocycle. Let
(Q, F,P) be a probability space and o : Q — Q be an invertible P-preserving ergodic transformation. For
a measurable space X, we say that a measurable map ® : Ny x Q x ¥ — ¥ is a random dynamical system

on Y over the driving system o if

PV =idy and (™ =l 0 (M
for each n,m € Ny and w € Q, with the notation <p&n) = ®(n,w,-) and cw = o(w), where Ny = NU {0}.
A standard reference for random dynamical systems is the monograph by Arnold [1]. It is easy to check
that

(n)

Pu ' = Pon—1w O Pgn=2y O 0Py (11)

with the notation ¢, = ®(1,w, ). Conversely, for each measurable map ¢ : Q@ x 3 = ¥ : (w, z) — @, (z),

the measurable map (n,w,x) — cp((un)

(x) given by (1.1) is a random dynamical system. We call it a
random dynamical system induced by ¢ over o, and simply denote it by (¢,0). When ¥ is a Banach
space (with its Borel measurable sets from its strong norm) and ¢, : ¥ — X is P-almost surely linear,
(p,0) is called a linear operator cocycle.

As a one of interesting class of the linear operator cocycle, we introduce a Markov operator cocycle
defined as follows. Let (X,.A,m) be a probability space and L'(X,m) the space of all m-integrable
functions on X endowed with the usual L'-norm || - |[11(x). Let D(X,m) be the set of all density

functions, i.e., a subset of L!(X,m) defined by
D(X,m) = {f € L*(X,m) : f > 0 m-almost everywhere, 1fllzx) = 1} .

We say that P : L'(X,m) — LY(X,m) is a Markov operator if P(D(X,m)) C D(X,m) holds. One
of the most important examples of Markov operators is the Perron-Frobenius operator induced by a
measurable and non-singular transformation 7 : X — X (that is, the probability measure m o T~1! is
absolutely continuous with respect to m). The Perron-Frobenius operator Lr : L' (X, m) — L' (X, m) of
T is defined by

/ Ly fgdm =/ fgoTdm for f € L'(X,m) and g € L™= (X, m). (1.2)
X X

We say that a linear operator cocycle (P, o) induced by a measurable map P : Q x L (X, m) — L(X,m)
over ¢ is called a Markov operator cocycle if P, = P(w,-) : L'(X,m) — L*(X,m) is a Markov operator

for P-almost every w € Q.



Markov operators naturally appear in the study of dynamical systems as Perron-Frobenius operators,
Markov processes as integral operators with stochastic kernels of the processes, and annealed type random
dynamical systems as integrations of Perron-Frobenius operators over environmental parameters (see [5,7]
for details). A Markov operator cocycle is given by compositions of potentially different Markov operators
which are provided with the environment {¢"(w)},>¢ driven by a measure-preserving transformation o

on a probability space (2, F,P),
Nx Qx LYX,m) = L*(X,m) : (n,w, f) — Pyn-1(w) © Pyn—2() 0 0 P,f.
Then, it essentially possesses two kinds of randomness:
(i) The evolution of densities at each time are dominated by Markov operators P,
(ii) The selection of each Markov operators is driven by the base dynamics o.

Thus, by considering Markov operator cocycles, we expect to understand more complicated phenomena in
multi-stochastic systems. The study of Markov operator cocycles follows measurable random dynamical
systems in the sense of [1]. We also refer to [8].

Now we recall the definition of invariant densities for linear operator cocycles (P, o), called random

invariant densities.

Definition 1.1. A measurable map h : Q — L'(X,m) with h(w) = h,, is called a random invariant
density if h,, € D(X,m) and P, h,, = hy, hold for P-almost every w € Q.

In this note, we summarize the mean ergodic theorem for a linear operator cocycle on a general Banach
space (Theorem 1), which guarantees the existence of random invariant density under certain conditions.
The conventional mean ergodic theorem provides that the average of the sequence {P™f}, converges
in strong, and the limit point becomes an invariant density. The classical mean ergodic theorem for a
single linear operator by von Neumann deals only with a reflexive Banach space, and after that, Yosida
and Kakutani [10] generalized the theorem to the case of a general Banach space under the assumption
of weak precompactness of Cesaro average of time evolution. As known in [2], the theorem for a linear
operator cocycle is fulfilled if the Banach space is reflexive. Then, giving an appropriate definition of
weak precompactness for the cocycle, we succeeded to obtain a general result for mean ergodic theorem of
linear operator cocycles, that guarantees the existence of invariant measures for linear operator cocycles.

See [9] for more precise descriptions including the proofs.

2 The lift operator and weak precompactness

In this section, we introduce our key tools: the lift operator & of a linear operator cocycle (P, o)
and weak precompactness of functions in fiberwise and global sense in order to construct a random
invariant density for the linear operator cocycle. We first prepare the Banach space of Bochner integrable
functions over a Banach space X (with norm ||-||;.) denoted by L' (€, X), based on [3,6]. Then, we define
the lift operator & over L (€2, X) associated with the linear operator cocycle and relate it with a random
invariant density.

Let us define

LM (9Q,%) = {f : Q — X,strongly measurable and integrable},

N = {f : Q) — X, strongly measurable and ||p(w)||, =0, P-a.e.w € Q},



where f : Q — X is called strongly measurable provided that there exists a sequence of simple functions
fn = Efvzl 1pv; for some N = N(n) € N, {F; = F;(n) : i =1,...,N} € % and {v; = vi(n) : i =
1,...,N} C X such that lim, .« || f(w) — fn(w)||x = 0 for P-almost every w € . Then we define

LY (0, %) = 21 (Q0,%) /4.

Note that if X = L'(X,m) then L' (Q, L*(X,m)) is isometric to L' (2 x X,P x m) (see Lemma 4.1). The
space L'(Q, X) is equipped with the usual norm |||-||, given by

15l = [ Il @P) for f € L(@.)
The lift operator of a give linear operator cocycle is defined as follows.

Definition 2.1. For a linear operator cocycle (P, o) over a Banach space X where P, : ¥ — X is bounded
uniformly in w, the lift operator & : L*(,X) — L'(Q, X) is defined by

(‘@f)(w) = P(rflwfoﬁlw

for f € L' (Q,X) and P-almost every w € Q so that for each n € N we have
(2" 1) (@) = P0,  famre

for P-almost every w € Q.

Remark 2.1. (I) The above lift operator is a well-defined bounded linear operator over L(€2, X). Indeed,
if f:Q — X is strongly measurable then f is approximated by f, = >, 1pv; and

‘@fn = Z 1UF¢PJ*10J’UZ'
i=1
leads to strong measurability of &2 f. Moreover if f, f € L! (Q,%) and f — f € N, then we have

2 (=) = [ (a5

<M fo"lw - fo"lw

.

=0
x

for P-almost every w € Q where M is the supremum of the operator norm of P, and 2 f = 2 f P-almost

everwhere. We also have
II\9f||\1ZAIIPa—lwfo—lwllde(W) S/QMHfU—Iij{dP(w):M|Hf|||17

which implies that & is a bounded operator. In particular, if || P,|| < 1 for P-almost every w € Q then
2 is a contraction operator over L!(€, X).

(II) We note that h € L' (Q,L'(X,m)) is a random invariant density if and only if 2h = h (see
Proposition 4.2 (2) more precisely). |

Recall that a subset .# C L'(X,m) is called weak precompact if for any sequence {f,}, C .F there is
a further subsequence {f,, }» which converges weakly in L*(X,m). Now we define weak precompactness

in L1(©,X) in two senses.

Definition 2.2. A set % C L'(Q, X) is called fiberwise weakly precompact if for every sequence {f,}, C
7, there exists h € L*(£, X) such that for P-almost every w € €2, there exists a subsequence {ng}s =
{nk(w)}r C N such that {(fn,)(w)}r converges weakly to h(w).

A set F C L'(Q,X) is called globally weakly precompact if for every sequence {f,}, C .7, there is a
further subsequence {f,, }» which converges weakly in L!(Q, X).



Remark 2.2. Several sufficient conditions for weak precompactness are known as follows (IV.8, [4]). Tt

reads that {Pé’f)nwl X} is weakly precompact if one of the following three conditions holds:

(i) There exists g, € LY (X,m) = {f € L*(X,m) : f >0} such that for any n > 1

P 1X(x)‘ < gu(x) m-almost everyz € X;

o "w

(ii) There exists M,, > 0 and p,, > 1 such that

(iii) {P(n) 1 X} is uniformly integrable, namely, for any € > 0 there exists 6 > 0 such that

o "w

fﬂ”) 1X‘

o "w

wr

<
Lrw (X,m)

m(A) <6 implies / P™ 1xdm<e foralln> 1.
A

o "w

3 Mean ergodic theorem for linear operator cocycles

Let X be a weakly sequential complete Banach space and P : Q0 x X — X a linear operator cocycle which
is almost surely contraction. Let (2, F,P) be a probability space and ¢ be an invertible P-preserving
ergodic (i.e., 0 'E = E (mod P) implies E = §) or Q (mod P)) transformation on . We define the
operator &/" meaning the average of &" by

|
—

n n—1
(")) = = S P = = S P fon
k=0

E
Il

0

for f € L1(9,X) and P-almost every w € Q. Recall that a sequence {(@/™f)}, is fiberwise weakly
precompact for f € L1(€, X) if there exists h € L1(£, X) such that for P-almost every w € 2, there exists
a subsequence {ny}tr C N, ng = ng(w, f), such that (& f)(w) converges weakly to h(w) for P-almost
every w € €.

Theorem 1. Let X be a weakly sequential complete Banach space, o an invertible P-preserving ergodic
transformation over the probability space (0, F,P), and P, a linear operator which maps X into itself.
Assume that |P,]| < 1 for P-almost every w € Q and {/" [}, is fiberwise weakly precompact for any
f € LYQ,X). Then there exists h € L*(Q, X) such that

lim_[|(&" f)(w) = h(w)[lx = 0,

n—r oo

and P,h,, = hgy, for P-almost every w € Q.

4 Skew product for the case X = L'(X)

In this section, we introduce some useful facts for the case X = L'(X). We first show the following
isometric isomorphism between L!(Q, L' (X, m)) and L' (2 x X,Pxm), that identifies a random invariant
density h € L' (2, L* (X, m)) as a function in L'(Q x X,P x m).

Proposition 4.1. L' (Q,L'(X,m)) = L'(Q x X,P x m) holds.



From the proposition, we have
L' (Q,D(X,m)) C L' (2, L'(X,m)) 2 L' (2 x X,P x m)

and we frequently identify h € L' (Q, D(X,m)) as a function in L'(Q x X, P x m). We can characterize a
random invariant density h € L'(Q, L' (X, m)) as a fixed point of & as a function of L*(Q x X,P x m).

Proposition 4.2. The following statements are true:

1. The lift operator & can be naturally identified with a Markov operator over L*(2 x X, P x m) (this

operator is also denoted by the same symbol);

2. h € L' (2, D(X,m)) is a random invariant density if and only if 2h = h as a function of D(2 x
X,Pxm);

3. the following diagram commutes:

LM, LY(X,m)) —Z— L}(Q, LY (X, m))
[,J O lz,
LY(Q x X,P x m) 7L1(Q x X,P xm)

where ¢ is the isometry arises in Proposition 4.1.

An important example of the lift operator & of a Markov operator cocycle is the Perron-Frobenius

operator of a skew product transformation of a random transformations.

Proposition 4.3. Let © be a P x m non-singular skew product transformation over Q x X given by
O(w, z) = (ow, T,x)

where T, : X — X is a non-singular transformation for w € Q and o : Q@ — Q is an invertible ergodic
measure-preserving transformation. Then the lift operator associated with the cocyle of L, the Perron-

Frobenius operator of T, is the Perron-Frobenius operator of ©.

Example 4.1. Let X and © be a unit interval [0,1]. Set 8 = @, that is, 2 — 8 — 1 = 0 holds.
Consider the transformations 77 and 75 on X defined by

Ty(x) = fr (mod 1), To(x)=4"" (@el0.1/8) (4.1)
B D41 (ee /B )

Next, let o : © — € be an irrational rotation with angle 1/8, namely, o(w) = w + 1/8 (mod 1).

T T o
: 1/8 ' 1/8

0 /8 1 0 1/ 1 0 1-1/8 1

Figure 1: Illustrations of the map T3, T and o.



Let P; be a Perron-Frobenius operator corresponding to T;, i = 1,2. We define P, by

n_ P ifwel0,1-1/8) 12
P, ifwell—1/8,1]

Then, the Markov operator cocycle given by above setting admits a random invariant density h €
D(9Q, L*(X)), that is, P,h, = hy, holds for P-almost every w € §2. Moreover, h is given by

() = hi(z) ifwe[0,1/8) (43)
ho(z) fwell/s,1)
with 5 )
hi(x) = 1oy (x), ha(z) = ﬁl[o,l/ﬁ)(x) + 51[1/3,1]-

Indeed, putting I; =[0,1 —1/8), Is =[1—1/8,1/8) and I3 = [1/5,1], We know that
O'(Il):Ig, O'(Iz)CIl, O’(Ig)CIl U .

Moreover, we immediately find that Pyhy = ha, Pohy = Poho = hy. Then, we can check the fact through
the following three cases.
Case 1: if w € Iy, then we have P,h,, = Pihy = hy. Moreover, hy,, = hg since o(w) € I3.
Case 2: if w € Iy, then we have P, h, = Pyhi = hy. Moreover, hy,, = hy since o(w) € I.
Case 3: if w € I3, then we have P, h, = Pyhy = hy. Moreover, hy,, = hy since o(w) € I; U I5.
Therefore, the invariance P, h,, = hy,, is proven for P-almost every w € Q.
We finally consider the skew product transformation F' : X x Q — X x Q defined by

F(z,w) = (Tu(z),0(w)), (4.4)
and let Pr be a Perron-Frobenius operator for F. Then the function h € D(X x ) given by
2 1
h(z,w) = 1j0,1x[0,1/8) (T, w) + 5 Lo,1/8)x[1/p.1) (%, w) + 3 /gy (@, w)

satisfies Prh = h because of Figure 2.

1/8x (B—-1)/8

X 1/

Figure 2: Illustration of the evolution of density h by Pr on X x Q. The numbers in each square denote
the hight of density.
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