Mean ergodic theorem for linear operator cocycles and random invariant densities

Fumihiko Nakamura and Hisayoshi Toyokawa Faculty of engineering, Kitami Institute of Technology

1 Introduction

This paper concerns a cocycle generated by linear operators, called a linear operator cocycle. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\sigma : \Omega \to \Omega$ be an invertible \mathbb{P} -preserving ergodic transformation. For a measurable space Σ , we say that a measurable map $\Phi : \mathbb{N}_0 \times \Omega \times \Sigma \to \Sigma$ is a random dynamical system on Σ over the driving system σ if

$$\varphi_{\omega}^{(0)} = \mathrm{id}_{\Sigma} \quad \text{and} \quad \varphi_{\omega}^{(n+m)} = \varphi_{\sigma^{m}\omega}^{(n)} \circ \varphi_{\omega}^{(m)}$$

for each $n, m \in \mathbb{N}_0$ and $\omega \in \Omega$, with the notation $\varphi_{\omega}^{(n)} = \Phi(n, \omega, \cdot)$ and $\sigma \omega = \sigma(\omega)$, where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. A standard reference for random dynamical systems is the monograph by Arnold [1]. It is easy to check that

$$\varphi_{\omega}^{(n)} = \varphi_{\sigma^{n-1}\omega} \circ \varphi_{\sigma^{n-2}\omega} \circ \dots \circ \varphi_{\omega} \tag{1.1}$$

with the notation $\varphi_{\omega} = \Phi(1, \omega, \cdot)$. Conversely, for each measurable map $\varphi : \Omega \times \Sigma \to \Sigma : (\omega, x) \mapsto \varphi_{\omega}(x)$, the measurable map $(n, \omega, x) \mapsto \varphi_{\omega}^{(n)}(x)$ given by (1.1) is a random dynamical system. We call it a random dynamical system induced by φ over σ , and simply denote it by (φ, σ) . When Σ is a Banach space (with its Borel measurable sets from its strong norm) and $\varphi_{\omega} : \Sigma \to \Sigma$ is \mathbb{P} -almost surely linear, (φ, σ) is called a *linear operator cocycle*.

As a one of interesting class of the linear operator cocycle, we introduce a *Markov operator cocycle* defined as follows. Let (X, \mathcal{A}, m) be a probability space and $L^1(X, m)$ the space of all m-integrable functions on X endowed with the usual L^1 -norm $\|\cdot\|_{L^1(X)}$. Let D(X, m) be the set of all density functions, i.e., a subset of $L^1(X, m)$ defined by

$$D(X,m) = \left\{ f \in L^1(X,m) : f \ge 0 \text{ } m\text{-almost everywhere}, \|f\|_{L^1(X)} = 1 \right\}.$$

We say that $P: L^1(X,m) \to L^1(X,m)$ is a Markov operator if $P(D(X,m)) \subset D(X,m)$ holds. One of the most important examples of Markov operators is the *Perron-Frobenius operator* induced by a measurable and non-singular transformation $T: X \to X$ (that is, the probability measure $m \circ T^{-1}$ is absolutely continuous with respect to m). The Perron-Frobenius operator $\mathcal{L}_T: L^1(X,m) \to L^1(X,m)$ of T is defined by

$$\int_{X} \mathcal{L}_{T} f g dm = \int_{X} f g \circ T dm \quad \text{for } f \in L^{1}(X, m) \text{ and } g \in L^{\infty}(X, m).$$
(1.2)

We say that a linear operator cocycle (P, σ) induced by a measurable map $P: \Omega \times L^1(X, m) \to L^1(X, m)$ over σ is called a *Markov operator cocycle* if $P_{\omega} = P(\omega, \cdot) : L^1(X, m) \to L^1(X, m)$ is a Markov operator for \mathbb{P} -almost every $\omega \in \Omega$.

Markov operators naturally appear in the study of dynamical systems as Perron-Frobenius operators, Markov processes as integral operators with stochastic kernels of the processes, and annealed type random dynamical systems as integrations of Perron-Frobenius operators over environmental parameters (see [5,7] for details). A Markov operator cocycle is given by compositions of potentially different Markov operators which are provided with the environment $\{\sigma^n(\omega)\}_{n\geq 0}$ driven by a measure-preserving transformation σ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$,

$$\mathbb{N} \times \Omega \times L^1(X,m) \to L^1(X,m) : (n,\omega,f) \mapsto P_{\sigma^{n-1}(\omega)} \circ P_{\sigma^{n-2}(\omega)} \circ \cdots \circ P_{\omega}f.$$

Then, it essentially possesses two kinds of randomness:

- (i) The evolution of densities at each time are dominated by Markov operators P_{ω} ,
- (ii) The selection of each Markov operators is driven by the base dynamics σ .

Thus, by considering Markov operator cocycles, we expect to understand more complicated phenomena in multi-stochastic systems. The study of Markov operator cocycles follows measurable random dynamical systems in the sense of [1]. We also refer to [8].

Now we recall the definition of invariant densities for linear operator cocycles (P, σ) , called random invariant densities.

Definition 1.1. A measurable map $h: \Omega \to L^1(X,m)$ with $h(\omega) = h_\omega$ is called a random invariant density if $h_\omega \in D(X,m)$ and $P_\omega h_\omega = h_{\sigma\omega}$ hold for \mathbb{P} -almost every $\omega \in \Omega$.

In this note, we summarize the mean ergodic theorem for a linear operator cocycle on a general Banach space (Theorem 1), which guarantees the existence of random invariant density under certain conditions. The conventional mean ergodic theorem provides that the average of the sequence $\{P^nf\}_n$ converges in strong, and the limit point becomes an invariant density. The classical mean ergodic theorem for a single linear operator by von Neumann deals only with a reflexive Banach space, and after that, Yosida and Kakutani [10] generalized the theorem to the case of a general Banach space under the assumption of weak precompactness of Cesàro average of time evolution. As known in [2], the theorem for a linear operator cocycle is fulfilled if the Banach space is reflexive. Then, giving an appropriate definition of weak precompactness for the cocycle, we succeeded to obtain a general result for mean ergodic theorem of linear operator cocycles, that guarantees the existence of invariant measures for linear operator cocycles.

See [9] for more precise descriptions including the proofs.

2 The lift operator and weak precompactness

In this section, we introduce our key tools: the lift operator \mathscr{P} of a linear operator cocycle (P, σ) and weak precompactness of functions in fiberwise and global sense in order to construct a random invariant density for the linear operator cocycle. We first prepare the Banach space of Bochner integrable functions over a Banach space \mathfrak{X} (with norm $\|\cdot\|_{\mathfrak{X}}$) denoted by $L^1(\Omega,\mathfrak{X})$, based on [3,6]. Then, we define the lift operator \mathscr{P} over $L^1(\Omega,\mathfrak{X})$ associated with the linear operator cocycle and relate it with a random invariant density.

Let us define

$$\begin{split} \mathscr{L}^1\left(\Omega,\mathfrak{X}\right) &= \left\{f: \Omega \to \mathfrak{X}, \text{strongly measurable and integrable}\right\}, \\ \mathscr{N} &= \left\{f: \Omega \to \mathfrak{X}, \text{ strongly measurable and } \|\varphi(\omega)\|_{\mathfrak{X}} = 0, \text{ \mathbb{P}-a.e.} \omega \in \Omega\right\}, \end{split}$$

where $f: \Omega \to \mathfrak{X}$ is called *strongly measurable* provided that there exists a sequence of simple functions $f_n = \sum_{i=1}^N 1_{F_i} v_i$ for some $N = N(n) \in \mathbb{N}$, $\{F_i = F_i(n) : i = 1, ..., N\} \in \mathscr{F}$ and $\{v_i = v_i(n) : i = 1, ..., N\} \subset \mathfrak{X}$ such that $\lim_{n \to \infty} \|f(\omega) - f_n(\omega)\|_{\mathfrak{X}} = 0$ for \mathbb{P} -almost every $\omega \in \Omega$. Then we define

$$L^{1}(\Omega, \mathfrak{X}) := \mathscr{L}^{1}(\Omega, \mathfrak{X}) / \mathscr{N}.$$

Note that if $\mathfrak{X} = L^1(X, m)$ then $L^1(\Omega, L^1(X, m))$ is isometric to $L^1(\Omega \times X, \mathbb{P} \times m)$ (see Lemma 4.1). The space $L^1(\Omega, \mathfrak{X})$ is equipped with the usual norm $\|\cdot\|_1$ given by

$$\|\|f\|\|_1 := \int_{\Omega} \|f_{\omega}\|_{\mathfrak{X}} d\mathbb{P}(\omega) \quad \text{for } f \in L^1(\Omega, \mathfrak{X}).$$

The lift operator of a give linear operator cocycle is defined as follows.

Definition 2.1. For a linear operator cocycle (P, σ) over a Banach space \mathfrak{X} where $P_{\omega} : \mathfrak{X} \to \mathfrak{X}$ is bounded uniformly in ω , the *lift operator* $\mathscr{P} : L^1(\Omega, \mathfrak{X}) \to L^1(\Omega, \mathfrak{X})$ is defined by

$$(\mathscr{P}f)(\omega) := P_{\sigma^{-1}\omega} f_{\sigma^{-1}\omega}$$

for $f \in L^1(\Omega, \mathfrak{X})$ and \mathbb{P} -almost every $\omega \in \Omega$ so that for each $n \in \mathbb{N}$ we have

$$(\mathscr{P}^n f)(\omega) = P_{\sigma^{-n}\omega}^{(n)} f_{\sigma^{-n}\omega}$$

for \mathbb{P} -almost every $\omega \in \Omega$.

Remark 2.1. (I) The above lift operator is a well-defined bounded linear operator over $L^1(\Omega, \mathfrak{X})$. Indeed, if $f: \Omega \to \mathfrak{X}$ is strongly measurable then f is approximated by $f_n = \sum_{i=1}^n 1_{F_i} v_i$ and

$$\mathscr{P}f_n = \sum_{i=1}^n 1_{\sigma F_i} P_{\sigma^{-1}\omega} v_i$$

leads to strong measurability of $\mathscr{P}f$. Moreover if $f, \tilde{f} \in L^1(\Omega, \mathfrak{X})$ and $f - \tilde{f} \in \mathscr{N}$, then we have

$$\left\| \mathscr{P}\left(f - \tilde{f} \right) (\omega) \right\|_{\mathfrak{X}} = \left\| P_{\sigma^{-1}\omega} \left(f_{\sigma^{-1}\omega} - \tilde{f}_{\sigma^{-1}\omega} \right) \right\|_{\mathfrak{X}}$$

$$\leq M \left\| f_{\sigma^{-1}\omega} - \tilde{f}_{\sigma^{-1}\omega} \right\|_{\mathfrak{X}} = 0$$

for \mathbb{P} -almost every $\omega \in \Omega$ where M is the supremum of the operator norm of P_{ω} and $\mathscr{P}f = \mathscr{P}\tilde{f}$ \mathbb{P} -almost everwhere. We also have

$$\||\mathscr{P}f||_1 = \int_{\Omega} \|P_{\sigma^{-1}\omega}f_{\sigma^{-1}\omega}\|_{\mathfrak{X}} d\mathbb{P}(\omega) \le \int_{\Omega} M \|f_{\sigma^{-1}\omega}\|_{\mathfrak{X}} d\mathbb{P}(\omega) = M \|f\|_1,$$

which implies that \mathscr{P} is a bounded operator. In particular, if $||P_{\omega}|| \leq 1$ for \mathbb{P} -almost every $\omega \in \Omega$ then \mathscr{P} is a contraction operator over $L^1(\Omega, \mathfrak{X})$.

(II) We note that $h \in L^1(\Omega, L^1(X, m))$ is a random invariant density if and only if $\mathscr{P}h = h$ (see Proposition 4.2 (2) more precisely).

Recall that a subset $\mathscr{F} \subset L^1(X,m)$ is called weak precompact if for any sequence $\{f_n\}_n \subset \mathscr{F}$ there is a further subsequence $\{f_{n_k}\}_k$ which converges weakly in $L^1(X,m)$. Now we define weak precompactness in $L^1(\Omega,\mathfrak{X})$ in two senses.

Definition 2.2. A set $\mathscr{F} \subset L^1(\Omega, \mathfrak{X})$ is called *fiberwise weakly precompact* if for every sequence $\{f_n\}_n \subset \mathscr{F}$, there exists $h \in L^1(\Omega, \mathfrak{X})$ such that for \mathbb{P} -almost every $\omega \in \Omega$, there exists a subsequence $\{n_k\}_k = \{n_k(\omega)\}_k \subset \mathbb{N}$ such that $\{(f_{n_k})(\omega)\}_k$ converges weakly to $h(\omega)$.

A set $\mathscr{F} \subset L^1(\Omega, \mathfrak{X})$ is called *globally weakly precompact* if for every sequence $\{f_n\}_n \subset \mathscr{F}$, there is a further subsequence $\{f_n\}_k$ which converges weakly in $L^1(\Omega, \mathfrak{X})$.

Remark 2.2. Several sufficient conditions for weak precompactness are known as follows (IV.8, [4]). It reads that $\left\{P_{\sigma^{-n}\omega}^{(n)}1_X\right\}_n$ is weakly precompact if one of the following three conditions holds:

(i) There exists $g_{\omega} \in L^1_+(X,m) := \{ f \in L^1(X,m) : f \geq 0 \}$ such that for any $n \geq 1$

$$\left|P_{\sigma^{-n}\omega}^{(n)}1_X(x)\right| \leq g_{\omega}(x) \quad m\text{-almost every} x \in X;$$

(ii) There exists $M_{\omega} > 0$ and $p_{\omega} > 1$ such that

$$\left\| P_{\sigma^{-n}\omega}^{(n)} 1_X \right\|_{L^{p_{\omega}}(X,m)} \le M_{\omega};$$

(iii) $\left\{P_{\sigma^{-n}\omega}^{(n)}1_X\right\}_n$ is uniformly integrable, namely, for any $\varepsilon>0$ there exists $\delta>0$ such that

$$m(A) < \delta$$
 implies $\int_A P_{\sigma^{-n}\omega}^{(n)} 1_X dm < \varepsilon$ for all $n \ge 1$.

3 Mean ergodic theorem for linear operator cocycles

Let \mathfrak{X} be a weakly sequential complete Banach space and $P: \Omega \times \mathfrak{X} \to \mathfrak{X}$ a linear operator cocycle which is almost surely contraction. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and σ be an invertible \mathbb{P} -preserving ergodic (i.e., $\sigma^{-1}E = E \pmod{\mathbb{P}}$ implies $E = \emptyset$ or $\Omega \pmod{\mathbb{P}}$) transformation on Ω . We define the operator \mathscr{A}^n meaning the average of \mathscr{P}^n by

$$(\mathscr{A}^n f)(\omega) := \frac{1}{n} \sum_{k=0}^{n-1} (\mathscr{P}^k f)(\omega) = \frac{1}{n} \sum_{k=0}^{n-1} P_{\sigma^{-k}\omega}^k f_{\sigma^{-k}\omega}$$

for $f \in L^1(\Omega, \mathfrak{X})$ and \mathbb{P} -almost every $\omega \in \Omega$. Recall that a sequence $\{(\mathscr{A}^n f)\}_n$ is fiberwise weakly precompact for $f \in L^1(\Omega, \mathfrak{X})$ if there exists $h \in L^1(\Omega, \mathfrak{X})$ such that for \mathbb{P} -almost every $\omega \in \Omega$, there exists a subsequence $\{n_k\}_k \subset \mathbb{N}$, $n_k = n_k(\omega, f)$, such that $(\mathscr{A}^{n_k} f)(\omega)$ converges weakly to $h(\omega)$ for \mathbb{P} -almost every $\omega \in \Omega$.

Theorem 1. Let \mathfrak{X} be a weakly sequential complete Banach space, σ an invertible \mathbb{P} -preserving ergodic transformation over the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and P_{ω} a linear operator which maps \mathfrak{X} into itself. Assume that $\|P_{\omega}\| \leq 1$ for \mathbb{P} -almost every $\omega \in \Omega$ and $\{\mathscr{A}^n f\}_n$ is fiberwise weakly precompact for any $f \in L^1(\Omega, \mathfrak{X})$. Then there exists $h \in L^1(\Omega, \mathfrak{X})$ such that

$$\lim_{n\to\infty} \|(\mathscr{A}^n f)(\omega) - h(\omega)\|_{\mathfrak{X}} = 0,$$

and $P_{\omega}h_{\omega} = h_{\sigma\omega}$ for \mathbb{P} -almost every $\omega \in \Omega$.

4 Skew product for the case $\mathfrak{X} = L^1(X)$

In this section, we introduce some useful facts for the case $\mathfrak{X} = L^1(X)$. We first show the following isometric isomorphism between $L^1(\Omega, L^1(X, m))$ and $L^1(\Omega \times X, \mathbb{P} \times m)$, that identifies a random invariant density $h \in L^1(\Omega, L^1(X, m))$ as a function in $L^1(\Omega \times X, \mathbb{P} \times m)$.

Proposition 4.1. $L^1(\Omega, L^1(X, m)) \cong L^1(\Omega \times X, \mathbb{P} \times m)$ holds.

From the proposition, we have

$$L^1(\Omega, D(X, m)) \subset L^1(\Omega, L^1(X, m)) \cong L^1(\Omega \times X, \mathbb{P} \times m)$$

and we frequently identify $h \in L^1(\Omega, D(X, m))$ as a function in $L^1(\Omega \times X, \mathbb{P} \times m)$. We can characterize a random invariant density $h \in L^1(\Omega, L^1(X, m))$ as a fixed point of \mathscr{P} as a function of $L^1(\Omega \times X, \mathbb{P} \times m)$.

Proposition 4.2. The following statements are true:

- 1. The lift operator \mathscr{P} can be naturally identified with a Markov operator over $L^1(\Omega \times X, \mathbb{P} \times m)$ (this operator is also denoted by the same symbol);
- 2. $h \in L^1(\Omega, D(X, m))$ is a random invariant density if and only if $\mathscr{P}h = h$ as a function of $D(\Omega \times X, \mathbb{P} \times m)$;
- 3. the following diagram commutes:

$$L^{1}(\Omega, L^{1}(X, m)) \xrightarrow{\mathscr{P}} L^{1}(\Omega, L^{1}(X, m))$$

$$\downarrow \downarrow \qquad \qquad \qquad \downarrow \iota$$

$$L^{1}(\Omega \times X, \mathbb{P} \times m) \xrightarrow{\mathscr{P}} L^{1}(\Omega \times X, \mathbb{P} \times m)$$

where ι is the isometry arises in Proposition 4.1.

An important example of the lift operator \mathcal{P} of a Markov operator cocycle is the Perron-Frobenius operator of a skew product transformation of a random transformations.

Proposition 4.3. Let Θ be a $\mathbb{P} \times m$ non-singular skew product transformation over $\Omega \times X$ given by

$$\Theta(\omega, x) = (\sigma \omega, T_{\omega} x)$$

where $T_{\omega}: X \to X$ is a non-singular transformation for $\omega \in \Omega$ and $\sigma: \Omega \to \Omega$ is an invertible ergodic measure-preserving transformation. Then the lift operator associated with the cocycle of \mathcal{L}_{ω} the Perron-Frobenius operator of G.

Example 4.1. Let X and Ω be a unit interval [0,1]. Set $\beta = \frac{\sqrt{5}+1}{2}$, that is, $\beta^2 - \beta - 1 = 0$ holds. Consider the transformations T_1 and T_2 on X defined by

$$T_1(x) = \beta x \pmod{1}, \quad T_2(x) = \begin{cases} \beta x & (x \in [0, 1/\beta)) \\ \frac{\beta}{\beta - 1}(x - 1) + 1 & (x \in [1/\beta, 1]) \end{cases}. \tag{4.1}$$

Next, let $\sigma: \Omega \to \Omega$ be an irrational rotation with angle $1/\beta$, namely, $\sigma(\omega) = \omega + 1/\beta \pmod{1}$.

Figure 1: Illustrations of the map T_1 , T_2 and σ .

Let P_i be a Perron-Frobenius operator corresponding to T_i , i = 1, 2. We define P_{ω} by

$$P_{\omega} = \begin{cases} P_1 & \text{if } \omega \in [0, 1 - 1/\beta) \\ P_2 & \text{if } \omega \in [1 - 1/\beta, 1] \end{cases}$$
 (4.2)

Then, the Markov operator cocycle given by above setting admits a random invariant density $h \in D(\Omega, L^1(X))$, that is, $P_{\omega}h_{\omega} = h_{\sigma\omega}$ holds for \mathbb{P} -almost every $\omega \in \Omega$. Moreover, h is given by

$$h_{\omega}(x) = \begin{cases} h_1(x) & \text{if } \omega \in [0, 1/\beta) \\ h_2(x) & \text{if } \omega \in [1/\beta, 1) \end{cases}$$

$$(4.3)$$

with

$$h_1(x) = 1_{[0,1]}(x), \quad h_2(x) = \frac{2}{\beta} 1_{[0,1/\beta)}(x) + \frac{1}{\beta} 1_{[1/\beta,1]}.$$

Indeed, putting $I_1 = [0, 1 - 1/\beta)$, $I_2 = [1 - 1/\beta, 1/\beta)$ and $I_3 = [1/\beta, 1]$, We know that

$$\sigma(I_1) = I_3, \quad \sigma(I_2) \subset I_1, \quad \sigma(I_3) \subset I_1 \cup I_2.$$

Moreover, we immediately find that $P_1h_1 = h_2$, $P_2h_1 = P_2h_2 = h_1$. Then, we can check the fact through the following three cases.

Case 1: if $\omega \in I_1$, then we have $P_{\omega}h_{\omega} = P_1h_1 = h_2$. Moreover, $h_{\sigma\omega} = h_2$ since $\sigma(\omega) \in I_3$.

Case 2: if $\omega \in I_2$, then we have $P_{\omega}h_{\omega} = P_2h_1 = h_1$. Moreover, $h_{\sigma\omega} = h_1$ since $\sigma(\omega) \in I_1$.

Case 3: if $\omega \in I_3$, then we have $P_{\omega}h_{\omega} = P_2h_2 = h_1$. Moreover, $h_{\sigma\omega} = h_1$ since $\sigma(\omega) \in I_1 \cup I_2$.

Therefore, the invariance $P_{\omega}h_{\omega}=h_{\sigma\omega}$ is proven for \mathbb{P} -almost every $\omega\in\Omega$.

We finally consider the skew product transformation $F: X \times \Omega \to X \times \Omega$ defined by

$$F(x,\omega) = (T_{\omega}(x), \sigma(\omega)), \qquad (4.4)$$

and let P_F be a Perron-Frobenius operator for F. Then the function $h \in D(X \times \Omega)$ given by

$$h(x,\omega) = 1_{[0,1]\times[0,1/\beta)}(x,\omega) + \frac{2}{\beta} \cdot 1_{[0,1/\beta]\times[1/\beta,1)}(x,\omega) + \frac{1}{\beta} \cdot 1_{[1/\beta,1]\times[1/\beta,1)}(x,\omega)$$

satisfies $P_F h = h$ because of Figure 2.

Figure 2: Illustration of the evolution of density h by P_F on $X \times \Omega$. The numbers in each square denote the hight of density.

References

- [1] L. Arnold, Random dynamical systems, Springer, Berlin, Heidelberg, 1995.
- A. Beck and T. J. Schwartz, A vector-valued random ergodic theorem, Proc. of the Amer. Math. Soc., 8 (1957),1049– 1059.
- [3] J. Diestel and J. J. Uhl, Vector measures, With a foreword by B. J. Pettis. Mathematical Surveys, No. 15. Amer. Math. Soc., Providence, R.I., 1977.
- [4] N. Dunford and J. T. Schwartz, *Linear operators. Part I.* General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1988.
- [5] S. R. Foguel, Selected topics in the study of Markov operators, Carolina Lecture Series, 9. University of North Carolina, Department of Mathematics, Chapel Hill, N.C., 1980.
- [6] A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48 Springer-Verlag New York Inc., New York, 1969.
- [7] A. Lasota and M. C. Mackey, Chaos, fractals, and noise. Stochastic aspects of dynamics. Second edition, Applied Mathematical Sciences, 97. Springer-Verlag, New York, 1994.
- [8] F. Nakamura, Y. Nakano and H. Toyokawa, Mixing and observation for Markov operator cocycles, *Nonlinearity* **35** 66 (2020).
- [9] F. Nakamura and H. Toyokawa, Random invariant densities for Markov operator cocycles and random mean ergodic theorem, arXiv:2101.04878. (2021).
- [10] K. Yosida and S. Kakutani, Operator-theoretical treatment of Markoff's process and mean ergodic theorem, Annals of Math., (1941), 188–228.

Faculty of engineering

Kitami Institute of Technology

Hokkaido 090-8507

JAPAN

E-mail address: nfumihiko@mail.kitami-it.ac.jp

北見工業大学·工学部 中村 文彦