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Consider an o-minimal expansion of the real field R and a definable C” sub-
manifold M of R™, where r is a nonnegatlve integer. Let £ be the first-order
language of R. The o-minimal spectrum M of M is the set of all complete
m-types of the first-order theory ThR( ) which imply a formula defining M.
A stalk of the sheaf of definable C” functions on M at a point a € M is a
local ring. Its residue field is naturally an L-structure. We show that the
residue field is a minimal elementary extension of the o-minimal structure R
containing C§¢(M)/supp() and satisfying that, for any @ € (Cg(M))" and
any formula ¢(Z), the extension satisfies the sentence ¢(a) if and only if the
definable subset of M defined by ¢(a) is an element of . Here, the notation
C3(M) denotes the ring of all definable C" functions on M.

Introduction and definitions

We fix an o-minimal expansion of the real field R in this paper. We also assume
that the interpretation of any function symbol of the language £ in R is of class C" on
its domain of definition throughout the paper. The definition of o-minimal structures

and their basic properties are found in [4, 5]. The term ‘definable’ means ‘definable

field structure on the real field. A definable set is a semialgebraic set in this case.
Consider a Euclidean space R™ and the real spectrum of the polynomial ring X =

Sper(R[X1,..., X,]). Real spectrum of a commutative ring is defined in [2, Section
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A typical example of R is the ordered



7.1]. A subset U of X is defined for any semialgebraic subset U of R™. The sets U
are open bases in the spectral topology of X when U are semialgebraic open subsets
of R™. The definition of U is found in [2, Proposition 7.2.2]. Sheaves on subsets
of X are defined and investigated in semialgebraic geometry. For instance, given an
affine Nash submanifold M of R", the sheaf Ny, is defined on M such that, for any
semialgebraic open subset U of M, the ring N, M(ﬁ ) is the ring of all Nash functions
on U. The stalk of the sheaf Ny at o € M is the real closure k() of the quotient
field of R[ X1, ..., X,]/supp(«) with the ordering induced by the prime cone « by [2,
Proposition 8.8.1, Proposition 8.8.2, Proposition 8.8.3]. Note that the real closed field
containing R is an elementary extension of the real field R as L¢-structures, where
Lof is the first order language of ordered fields, because the theory of real closed fields
has quantifier elimination by [2, Proposition 5.2.2].

A sheaf :S'VOT on T is another example, where T is a semialgebraic subset of R™. The
ring /5\61:([7 ) coincides with the ring of all semialgebraic continuous functions on a
semialgebraic open subset U of T'. The residue field of the stalk of this sheaf at o € T
is also the real closure k(«) by [2, Proposition 7.3.2, Proposition 7.3.3, Proposition
7.3.4].

We want to generalize these results to general o-minimal cases. In this paper,
we consider a definable C" manifold M and definable C" functions on its definable
subsets, where r is a nonnegative integer. We can neither use the real spectrum of
the polynomial rings nor expect quantifier elimination in our cases. We must find
another appropriate space. Candidates for such a space may be the spectrum or the
real spectrum of the ring C7;(M), where CJ;(M) denotes the ring of all definable C"
functions on M. However, they have too much points as demonstrated in Section 2.
Another candidate is the o-minimal spectrum defined in [12, 6]. We consider sheaves
on the o-minimal spectrum.

We introduce notations necessary so as to describe our results more precisely. Con-
sider an o-minimal expansion of the real field R and a definable C™ manifold M. Note
that all definable C" manifolds are affine by [10, Theorem 1.1] and [8, Theorem 1.3].
We use this fact without explicitly stated in this paper. Assume that M is a definable
C" submanifold of R™. The o-minimal spectrum M is the set of all complete m-types
of the first-order theory ThR(I@) which imply a formula defining M. It is equipped
with the topology, called spectral topology, generated by the basic open sets of the
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form B .
U = {p € M | (the formula defining U) € p},

where U are definable open subsets of M.

The notation Dj,; denotes the set of all definable subsets of M. The set Dy, of all
Djps-ultrafilters is our main concern. The definitions of filters are found in [1]. We
define a topology in D, as follows: The open bases of the topology are the subsets

of the form N
U={aeDy |U € a},

where U are definable open subsets of M. The topological space D}, is homeomorphic
to M by [6, Section 2]. We identify M with Dy in the rest of this paper.

We first investigate the relation between real spectrum and o-minimal spectrum.
For that purpose, we consider three other topological spaces. Let DC,; be the lattice
consisting of all definable closed subset of M. The first topological space DC,; is
the set of all prime DC,-filters with the following topology. The open bases of the
topology of DC)y, are the subsets of the form

U={aeDCy | M\U €&a},

where U are definable open subsets of M.

The notation Sz denotes the set of all definable C" functions on R which are odd,
increasing, bijective and r-flat at the origin. A subset 7' C C};(M) is called Sz-fized
if any definable C" function g on M with ¢og € T for some ¢ € Sg is contained in 7.
The second topological space is a topological subspace of the spectrum Spec(C(M))
of the ring Cf;(M) with the Zariski topology. Its underlying set consists of all Sz-
fixed prime ideals. It is denoted by Specgyoq(Chi(M)). The last topological space
SPergyed (Ch(M)) is a topological subspace of the real spectrum Sper(C;(M)) of the
ring Cl(M) with the spectral topology. Its underlying set is the set of all Sg-fixed
prime cones. See (2, Section 7.1] for the definitions of real spectrum of a commutative
ring and its topology.

Our first main theorem is the following theorem:

Theorem 1.1. Consider an o-minimal expansion of the real field R. Let M be a
definable C" manifold. The five topological spaces M, Dys, DCar, Specigeq(Coy(M))

and Sper ,,4(Cy(M)) are all homeomorphic to each other. Furthermore, the spaces

3



SPecigeq(Ca(M)) and Sper i, q(Cy{M)) coincide with the spectrum Spec(Cy(M))
and the real spectrum Sper(Cy(M)), respectively, when the o-minimal structure R is

polynomially bounded.

There is a sheaf ', on M such that the ring @}"\4(& ) coincides with the ring
C1:(U) of all definable C" functions on a definable open subset U of M. The stalk
(D7) of the sheaf ®}, at a point « € M is a local ring. The residue field of this
local ring is denoted by k(«). Let £ be the language of the o-minimal structure
R. We view the field k() as an L-structure. We denoted this £-structure by k/(\c;)
Consider an L-formula ¢(Z) with n free variables T = (x1,...,2,). For any a =
(a1,...,a,) € k(a)", we define that ¢(a) is satisfied in kf(;y/) if the definable set
{reM| R = ¢(F (), ... , Fr(z))} is contained in the ultrafilter v, where F; : U — R
are definable C" functions on a definable open subset U of M which are simultaneously
representatives of the elements a; € k(a) for all 1 < i < n. We show that the above
definition is well-defined in Section 3. In [12], Pillay gave the same definition only in
the case in which M is an Euclidean space and » = 0. Our second main theorem is

the following theorem. It is a variant of [3, Section 5.2, Section 5.3].

Theorem 1.2. Consider an o-minimal expansion of the real field R and its language
L. Let M be a definable C" manifold. The L-structure k/(\(;) 1 an elementary extension
of R whose underlying set contains the ring Cy(M)/supp(cr). Here, the notation
supp(a) is a prime ideal defined by supp(a) = {F € Cy(M) | F~1(0) € a}.

Let K be an elementary extension of R whose underlying set K contains
the ring Cy(M)/supp(e). Assume further that, for any L-formula ¢() and

F=(F,... F,)c (Cy(M))", the following two conditions are equivalent:

o K= ¢(F), and
e the ultrafilter o contains the definable set {x € M |R = ¢(Fy(x), ..., Fa(x))}.

Then, there exists a unique elementary embedding k(a) < K.

This paper is organized as follows: We first demonstrate Theorem 1.1 in Section 2.
Propositions similar to Theorem 1.1 are found in [9], and the results in [9] are often

used in this section. We show that the above interpretation in k(«) is well-defined in

Section 3. Section 3 is also devoted to the proof of Theorem 1.2.



2 Correspondence among Dy, DCyy, Spec(C(M)) and
Sper(Cg(M))

We first show that the topological space M is compact.

Proposition 2.1. Let M be a definable C" manifold. The topological space M is

compact.

Proof. The set Dj; is a boolean subalgebra of the boolean algebra of subsets of M.
The Stone space of Djs defined in [2, Section 7.1] has the same underlying set as
Dy, and its topology is finer than the topology of D). Since the Stone space is
compact, D,y is also compact. The topological space M is also compact because they

are homeomorphic. Ol

The following theorem is a part of Theorem 1.1.

Theorem 2.2. Let M be a definable C" manifold. The map 7 : Dyy — DCyhr given

by
() ={C €DCy |C € a}

18 a homeomorphism.

Proof. We may assume that M is a definable subset of a Euclidean space R™ because
M is affine. It is easy to show that 7(«a) is a prime DCyfilter.

We first demonstrate that 7 is injective. Let aq,a0 € Dy with 7(aq) = 7(ag).
We have only to show that a; C as by symmetry. Consider an arbitrary element
C € a; and a definable cell decomposition of R™ partitioning C' by [4, Chapter 3,
(2.11)]. Since «; is an ultrafilter, at least one cell contained in C'is an element of a;.
Let D be such a cell of the minimum dimension. We lead a contradiction assuming
that D &€ ay. Let E be the closure of D, which is an element of a; because D €
and D C E. It is simultaneously an element of 7(c1). We have E € 7(a3) because
T(a1) = 7(a2). In particular, F is an element of as. Since E is a union of the cells,
there exists a cell D’ which is contained in E and is simultaneously an element of
as. Note that the dimension of D’ is smaller than that of D because D & as. We

can show that the closure E’ of D’ is an element of a7 in the same way as above. At



least one of the cells contained in E’ is an element of «;. This cell is of dimension

strictly smaller than the dimension of D. It contradicts the assumption that D has

the minimum dimension. We have shown that oy C as. We have demonstrated that

T is injective.

Secondly, we demonstrate that 7 is surjective. For any S € DC,;, define d(3) as

the minimum of the dimensions of all the elements in 5. We define a subset « of Dy,

as follows:

a={C €Dy |VNC#Dand dim(V NC) > d(B) for all V € §}.

We first show that « is an ultrafilter.

(i)
(i)

(iii)

(iv)

It is obvious that M € « and 0 & a.

We show that C1 N Cy € a@ when C7 € o« and C5 € . We have to show that
VNCNCy # () and dimV NCy NCy > d(B) for any V € . There exists a
definable closed set V' € 8 of dimension d(3) contained in V for any V € . In
fact, let W € § with dim W = d(B), then the intersection V' = W NV is an
element of 8 of dimension d(3). We have VNC1NCy # ) and dimVNCyNCy >
d(B) it V'NC1NCy # ) and dim V'NC1NCy > d(B). Therefore, we may assume
that V' is of dimension d(3) without loss of generality. Consider a definable cell
decomposition of R™ partitioning V, C; and Csy. Let {D;}, be the collection
of cells of dimension d(3) contained in V. The closure of D; is denoted by E; for
each 1 <i <m. We have V =J." | E; UF, where F is a definable closed set of
dimension smaller than d(5). Since f is a prime DC;-filter, we get E; € § for
some 1 < i < m. The equality dim(FE; N Cy) = d(f) should be satisfied because
E; € g and C; € a. We get D; C (7 because D; is a cell of the definable cell
decomposition partitioning C. We also get D; C (5 in the same way. We have
demonstrated that D; is contained in VN C; NCs. We have VN CiNCy # 0
and dimV N Cy N Cy > d(B). It means that C; N Cs € a.

It is obvious that any element of Dj; containing an element of a is also an
element of a.

We finally show that, for any C1,C5 € Dy, with C; UCy € a, at least one of
C; and Cj5 is an element of . Assume the contrary. There exist Vi, V5 €
with dim(V; N C;) < d(pB) for i = 1,2. We have dim((C; U Cy) N'Vi N Vs,) =



max{dim(C;NV;NV3),dim(CoNnViNVs)} < max{dim(C;NV;),dim(CaNVa)} <
d($3). It is a contradiction because V1 NV, € g and C; U Cs € a.

We have shown that the subset « is a D s-ultrafilter.
We next demonstrate that f = 7(a). The inclusion 5 C 7(«) is obvious. We show

the opposite inclusion. The set 7(«) is described as follows:

(o) ={V eDCpy | WNV #0 and dimW NV > d(S) for all W € §}.

Take an arbitrary element V € 7(a) and an element W € f of dimension d(/3).
Consider a definable cell decomposition of R™ partitioning V' and W. Let {D;}", be
the collection of cells of dimension d(3) contained in W. The closure of D; is denoted
by E; for each 1 < ¢ < m. We have W = U?;l FE; UF for some definable closed subset
F of M of dimension smaller than d(8). A definable closed set E; is an element of
for some 1 < i < m because § is a prime filter. We have dim(V N E;) = d(3) because
V € 7(a). Hence, the cell D; is contained in V. The closure E; is also contained in
V because V is closed. We get V € 8 because F; C V and E; € . We have shown
that 8 = 7(«). We have demonstrated that 7 is surjective.

It remains to show that the bijective map 7 is a homeomorphism. Set UP = {a €
Dy | U € a} and UPC = {8 € DCy | M\ U & B} for all definable open subsets
U of M. We have only to show that 7(UP) = UPC. We first show the inclusion
7(UP) € UPC. Let a € UP. We have U € a, and M \ U & «; hence, M \ U & 7(a).
We have shown that 7(a) € UPC. The next task is to illustrate the opposite inclusion.
We assume that g € UPC. We have M \U ¢ . Since 7 is onto, there is a € Dy,
with = 7(«). We get M \ U € . Since « is an ultrafilter, we have U € a. We have

shown the opposite inclusion. O

Consider the ring CJ;(M) of all definable C" functions on a definable C" mani-
fold M. The author showed that three topological spaces DC s, Spec(Ch(M)) and
Sper(Cj¢(M)) are all homeomorphic to each other when the o-minimal structure R is
polynomially bounded in [9, Theorem 2.11, Corollary 2.12].

An open basis of DC) is defined as a set of the form {5 € DCy; | V & S} in [9],
where V = Ule{a: € M | fi(z) <0} for some fi,..., fr € Ch(M). It seems slightly
different from the definition in this paper, but they are identical. In fact, an open

basis in [9] is an open basis in this paper because U = M \ V is a definable open set.
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On the contrary, for any definable open subset U in M, there exists a definable C”
function on M with f~1(0) = M\U by [9, Lemma 2.1]. Set V = {z € M | f*(x) < 0},
then we get U= {B€DCyr |V &S} An open basis in this paper is an open basis
in [9].

The example in [9, Example 3.1] shows that DCj; is not homeomorphic to
the spectrum Spec(C%(M)) when the o-minimal structure R is not polynomially
bounded. We consider appropriate subsets Specgy.q(Che(M)) and Sperg,.q(Ch(M))
of Spec(Cj;(M)) and Sper(Cj(M)), and show that they are homeomorphic to DC ;.

We review the maps defined in [9]. The map Z : DCps — Spec(Cf(M)) is given by

Z(B) = {f € Ca(M) | f7(0) € B},

and it is continuous by [9, Proposition 2.4]. The map « : DCy; — Sper(Cj(M)) is
given by

a(B) = {f € C&() | f~([0,00)) € B},
and it is also continuous by [9, Lemma 2.6]. We call this map A instead of a because
we use the symbol « to represent an element of Dy, in this section. Finally, the
continuous map @, : Sper(Cf(M)) — Spec(Cl(M)) is given by @, (P) = supp(P) =
{f€CL(M)|fePand —fe P}

Lemma 2.3. The maps T and A send a prime DCyy-filter to an Sg-fived prime ideal

and an Sg-fized prime cone, respectively.

Proof. The maps Z and A send a prime DC;-filter to a prime ideal and a prime cone

by [9, Proposition 2.4, Lemma 2.6]. It is obvious that they are Sg-fixed. O
Lemma 2.4. The map Z : Specf,.q(Cy(M)) — DCy defined by

Z(p)={f"10) | f €p}

is a continuous map, and the equality Z(Z(p)) = p holds true for any Sg-fived prime
ideal p of CyM).

Proof. The set Z(p) is a DCy-filter by [9, Proposition 2.4]. We show that it is a
prime DCy;-filter. Let A and B be definable closed subsets of M with AU B € Z(p).
There are definable C™ functions f,g € C(M) with f~'(0) = A and ¢~'(0) = B
by [9, Lemma 2.2]. Since AU B € Z(p), there is a definable C" function h € p with
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AUB = h7(0). There exist 0 € Sz and u € Ci(M) with o o (fg) = uh € p by
[9, Lemma 2.1]. We have fg € p because p is Sz-fixed; and, we get f € por g € p
because p is a prime ideal. We have shown that A € Z(p) or B € Z(p). The set Z(p)
is a prime DC,-filter.

We next show the Z(Z(p)) = p for any Sg-fixed prime ideal p of Cl(M). The
inclusion p C Z(Z(p)) is obvious. We show the opposite inclusion. Let f € Z(Z(p)),
there exists a definable C" function g € p with f~1(0) = g~!(0). There exist o € Sg
and h € C(M) with o o f = gh € p by [9, Lemma 2.1]. Since p is Sz-fixed, we have
fep.

We finally illustrate that Z is continuous. Let U be a definable open subset of M.
There exists a definable C” function f € Cj(M) with M \ U = f~1(0) by [9, Lemma
2.2]. We have only to show that

Z 1(U) = {p € Specanea (Car(M)) | f & p}-

Assume that f € p, then M \ U € Z(p), and Z(p) & U. On the other hand, if
Z(p) € U, we have M\ U € Z(p), and f € Z(Z(p)) = p. O

Lemma 2.5. If a prime cone P € Sper(C’gf(M)) is Sg-fized, the support supp(P) is

an Sg-fized prime ideal.

Proof. The set supp(P) is a prime ideal by [2, Proposition 4.3.2]. We have only to
show that, if g € Cj;(M) and o € Sg with oog € supp(P), the element g is contained
in supp(P). We have g € P because 0 o g € P and P is Sz-fixed. Remember that
o :R — R is an odd function. We also have —g € P because o o (—g) = —cog € P.
It means that g € supp(P). O

Theorem 2.6. The restriction
(I’r|sperﬁm(cgf(M)) 1 Sper 4 (C(M)) — Specgyeqa(Ca(M))
18 a homeomorphism, and its inverse map is A o Z.

Proof. The continuous map @,. is well-defined by Lemma 2.5, The map A o Z is also
well-defined and continuous by Lemma 2.3 and Lemma 2.4. The remaining task is to
show that the composition of two maps are the identity maps.

We first show that P = A(Z(®,(P))) for any P € Sperg,.q(Ch(M)). Set P’ =
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A(Z(®,.(P)), then we have supp(P’) = Z(Z(supp(P))) by [9, Lemma 2.6]. Apply
Lemma 2.4, then we get supp(P’) = supp(P). The prime cones P and P’ coincide by
9, Proposition 2.8].

The equality ®,(A(Z(p))) = p is easy to prove, where p € Specg,.q(Ci(M)). In
fact, we have ®,.(A(Z(p))) = Z(Z(p)) by [9, Lemma 2.6]. The right hand side of the
equality coincides with p by Lemma 2.4. U

Theorem 2.7. The map I : DCyr — Specyoq(Cy(M)) is a homeomorphism, and

its inverse map 1S Z.

Proof. The maps Z and Z are continuous by [9, Proposition 2.4] and Lemma 2.4. We
also have Z(Z(p)) = p for any Sg-fixed prime ideal p of Cf(M). It is obvious that
Z(Z(pB)) = p for any prime DC);-filter 5. O

The author promised that Theorem 1.1 is proved in this section. In fact, Theo-
rem 1.1 follows from Theorem 2.2, Theorem 2.6, Theorem 2.7, [6, Section 2] and [9,
Theorem 2.11, Corollary 2.12].

3 Sheaf of definable C" functions on o-minimal spectrum and
its stalk

We introduce several lemmas and propositions used in the proof of Theorem 1.2.

Lemma 3.1. Let M be a definable C" manifold with 0 < r < oco. Let X and Y
be definable closed subsets of M with X NY = (). Then, there exists a definable C"
function f: M — [0,1] with f~2(0) = X and f~*(1) =Y.

Proof. There exist definable C™ functions g, h : M — R with ¢7*(0) = X and h=1(0) =
Y by [9, Proposition 2.2]. The function f : M — [0,1] defined by f(z) = %
satisfies the requirement. U
Lemma 3.2. Let M be a definable C" manifold with 0 < r < oo. Let C' and U be

definable closed and open subsets of M, respectively. Assume that C' is contained in
U. Then, there exists a definable open subset V. of M with C C V. Cc V C U.

Proof. There is a definable continuous function h : M — [0,1] with A~ (0) = C and
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h~*(1) = M \ U by Lemma 3.1. The set V = {x € M; h(z) < 4} satisfies the

requirement. U

Lemma 3.3 (Partition of unity). Let M C R™ be an a definable C" manifold. Given
a finite definable open covering {U;}l_, of M, there exist nonnegative definable C"
functions X\; on M for all 1 <i < q such that _,_; \i = 1 and the closure of the set
{z € M | \i(x) > 0} is contained in U;.

Proof. Let h;(x) = dist(x, M \ U;) be the distance between a point x € M and the
closed set M \ U; for any 1 <i < q. Set V; = {x € M | hi(z) > maxi<;<q h;(x)/2}.
The closure of V; in M is contained in U;. In fact, let = be a point in the closure of
Vi. We have h;(z) > 0 for some 1 < j < ¢ because {U;}{_, is an open covering. Since
hi(xz) > maxi<;<q h;(x)/2 > 0, we get x € U;. We next show that {V;}{_, is a finite
definable open covering of M. Fix an arbitrary point € M. There exists an integer
1 <i < qwith x € U;, and h;(x) > 0. Let k be the positive integer with 1 < k < ¢

and hy(r) = maxi<;j<q hj(xz) > 0. It is obvious that the point = belongs to V.
There exists a definable C™ function f; on M with f;1(0) = M\V; by [9, Lemma 2.2].
Set \; = f?/ Z?:l fj2. The definable C" functions \; on M satisfy the requirements.
O

Lemma 3.4. Let M C R" be a definable C" submanifold of R™, which is closed in
R™. For any definable C" function f on M, there exists a definable C" extension F' to
R™.

Proof. There exists a definable open neighborhood U of M and definable C"™ map

p : U — M such that the restriction of p to M is the identity map by [7, Theorem

1.9]. Let V be a definable open neighborhood of M with M Cc V C V C U given in

Lemma 3.2. There exists a definable C™ function h on R™ with A=1(0) = R™ \ V and

h=1(1) = M by Lemma 3.1. A definable C" extension F' : R* — R of f is given by
F(z) = { h(z)f(p(z)) ifzeV,

0 otherwise.

O

Lemma 3.5. Let M C R" be a definable C" submanifold of R™, which is closed in R™.
Consider a definable continuous function f on M which is of class C™ on M\ f=1(0).
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There exists a definable continuous extension F' of f to R™ which is of class C" on
R™ \ F~1(0).

Proof. We can construct an extension F' in the same way as Lemma 3.4. U

Proposition 3.6. Let M be a definable C™ manifold. Consider a definable subset A
of M and a definable C" function on A. Assume that, for any vo € A\ A, the limit of
the function f at xo exists and it is zero. Then, there exists an element o € Sg such

that the composition o o f has a definable C" extension to M.

Proof. Since M is affine, there is a definable C" embedding ¢ : M < R™. Since M \ M
is a definable closed set, there exists a definable C” function H on R™ vanishing only on
M\M by [5, Theorem C.11]. The image of the definable C" embedding ¢/ : M — R"*+!
given by /() = (v(x),1/H(x)) is a closed subset. Hence, we may assume that M is
a definable C" submanifold of a Euclidean space R™, which is simultaneously closed
in R"™.
Consider a definable continuous function F': M — R defined by
R A

It is of class C” on M \ F1(0). There is a definable continuous extension F : R™ — R
of F such that it is of class C" on R™ \ (F)~1(0) by Lemma 3.5. The composition
oo F is a definable C” function for some o € Sz by [5, Corollary C.10]. Hence, the

composition o o f has a definable C" extension to M. O

Lemma 3.7. For any definable continuous function f : R — R, there exists a positive
definable C" function p : R — R such that |f(z)| < p(z) for any z € R.

Proof. We may assume that [ is not negative by considering |f| instead of f. There
exists a finite subset {t1,...,t;,} of R such that f is of class C" on Vi = R\{t1,...,tm}
by [4, Theorem 3.2 and Exercise 3.3 of Chapter 7]. Set y; = f(t;) +1 and V; =
{t e R| f(t) < y;} for all 1 < i < m. The family {Vy,V3,...,V,,} is a definable
open covering of R. Let {\;}™, be a definable C" partition of unity subordinate to
{Vo,Vi,...,Vin} given in Lemma 3.3. Set p(z) = >0, vidi(z) + Ao(z)(f(z) + 1),
then it is a definable C" function with f(x) < p(z) for any = € R. O
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Lemma 3.8. For any definable C” function f : R™ — R, there exists a positive defin-
able C" function g : R™ — R such that lim,| 500 () = 0 and lim |, 500 f(2)g(x) =
0.

Proof. Consider a definable continuous function ¢ : R — R given by

{ max |f(z)] ift>0,

=)=t

) = |£(0)] otherwise,

where O is the origin of R™. There exists a positive definable C" function p : R —
R with ¢(t) < p(t) for any t € R by Lemma 3.7. Set r(t) = W,
have lim;_,o £(t) = 0 and limy_, o ¢(t)k(t) = 0. Set g(z) = s(||z||*), then we have
lim||y)| 00 g(2) = 0 and lim) ;|00 f(2)g(x) = 0. O

then we

Lemma 3.9. Consider a definable C" manifold M. Let f : U — R be a definable C"

function on a definable open subset U of M. Then, there exists a definable C™ function

g on M such that g is positive on U, zero on the boundary of U and o lim f(z)g(x) =
ST—X0

0 for any point xq in the boundary of U.

Proof. We may assume that M is a definable C" submanifold of R™ and closed in
R™ in the same way as the proof of Proposition 3.6. There exists a definable C"
function H on R™ such that OU = U \ U = H~'(0) by [5, Theorem C.11]. The
definable C"™ map ¢ : R® \ U — R™*! is given by i(z) = (:c, ﬁ) Consider the
function f o ¢~ defined on «(U). Since +(U) is closed in R" ™1, we have its definable
C" extension F' to R"*! by Lemma 3.4. We can take a positive definable C" function
G on R™"! such that limy, e G(z) = 0 and lim ;|00 F(2)G(2) = 0 by Lemma
3.8. Since the restriction of G o+ to U satisfies the assumption of Proposition 3.6,
there exists 0 € Sg such that o o G o has a definable C" extension g to M. It
is obvious that ¢ is positive on U and zero on the boundary of U. Let xy be a
g(x) . 0oGoux)

point of the boundary of U. The limit Ualaivrgmo Gou) = Ualglcrgmo GO—L(HZ) exists

because o is an element of Sz and lim Go(x) =0. We have lim f(x)g(x) =
USx—xq Usx—xg

(,dim, FenG)) -, dm 20) —o .

Lemma 3.10. Let {C;}™, be a definable C" cell decomposition of R™ given in [4,

Theorem 3.2 and Exercise 3.3 of Chapter 7], where r is a nonnegative integer. For

13



any 1 < i < m, there exist a definable open neighborhood W; of C; in R™ and a
definable C"™ map p; : W; — C; such that the restriction of p; to C; s the identity

map.

Proof. We fix an integer 1 < i < m. The maps m; : R® — R! are the projections
onto the first [ coordinates for all 1 <1 < n. We inductively define a definable open
neighborhood W;; C R! of 7;(C;) and a definable C" map pii: Wiy — m(C;) such
that the restriction of p;; to m(C;) is the identity map.

When [ = 1, m1(C;) consists of a single point a or is a connected open interval
I C R. Set W; 1 =R and p; 1(z) = a in the former case. Set W; 1 =1 and p; 1(z) =z
in the latter case.

When [ > 1, the definable set m;(C};) is one of the following forms:
m(Ci) = {(
m(Ci) = {(
where f, f; and fo are definable C" functions on m;_1(C;). Set W;; = W, ;1 x Rin
the former case. The definable C" map p;; : W;; = W; ;1 x R = m;(C;) is given by
pii(@,t) = (pig—1(x), f(pig—1(x))). Set Wiy = {(z,t) € Wiy—1 x R | fi(piu-1(x)) <
t < fa(pis—1(x))} in the latter case. The definable C"™ map p;; : Wi — m(C;) is

given by p;i(z,t) = (pia-1(z),1).
The definable open set W; = W, ,, and the definable C" map p; = p; ,, satisfy the

Ci) ={(z,t) e m_1(C;) xR |t = f(x)} and
C;) ={(7,t) € m_1(Ci) xR | fi(z) <t < fa(z)},

Z,
Ty

conditions required in this lemma. ]

We have finished introducing the preliminary results. We begin to define a sheaf

on the o-minimal spectrum.

Proposition 3.11. Let M be a definable C" manifold. There exists a sheaf D%, on
M such that, for any definable open subset U of M, the equality @’1"\4(17) = Qf(U) is
satisfied.

Proof. The proof is the same as the proof of [2, Proposition 7.3.2]. We omit the
proof. O

Proposition 3.12. Let M be a definable C" manifold. The stalk (D%,)q of the sheaf
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D' at a point o € M is a local ring, and its maximal ideal s given by
ma = {f € D)o | F71(0) € a},

where ' € Cy(U) is a representative of the element f € (Df)a and U is a definable
open subset of M with U € «.

Proof. We first show that m, is an ideal. Let f € m, and g € (D},)s. The definable
C" functions F' € CJ(U) and G € CJ(U’) are their representatives. We may assume
that U’ = U considering the intersection U N U’. We have (GF)~1(0) > F~1(0) €
a; hence (GF)™1(0) € o and gf € m,. When fi,fo € m,, we can take their
representatives Fi, Fy € Cl(U) for some common definable open subset U of M in
the same way as the previous case. We get (Fy + F»)~1(0) D F, 1(0) N F, *(0) € o
hence, (F} + %) 1(0) € a and f; + f> € m,. We have shown that m,, is an ideal.
We next show that all the elements in (D7,)q \ m, are units. Let f € (D7) \ My
and F € C%,(U) be a representative of f. Set V = U\ F~1(0). It is an element of «
because f ¢ m,. The restriction F'|y of F' to V is also a representative of f and the
function 1/F|y € Cl(V) is a representative of the multiplicative inverse of f. The

element f is a unit in (D}, )a. O

Lemma 3.13. Let r be a nonnegative integer. Let M be a definable C" manifold,
and o € M. Given any f € (Dls)as there exist g,h € Cy(M) and o € Si such that

g¢&m, and oo (gf) =h in (D )a-

Proof. Let F' € C:(U) be a representative of f, where U is a definable open subset
of M with o € U. There exists a definable C" function g on M such that g is positive
on U and Ualirgmog(:c)F(a:) =0 for all zyp € U \ U by Lemma 3.9. We have g € m,
because g is positive on U and U € «. Using Proposition 3.6, we can find o € Sg such
that o o (gf) is extendable to M as a definable C" function. Let h be the extension.
We have oo (gf) = h in (D)a- O

Let « be an arbitrary element of M. We want to define an interpretation of
L-formulae in the residue field k(). For that purpose, we first determine an in-

terpretation in the stalk (©%,),. For any constant symbol ¢, the interpretation

R

of ¢ in (®};)q is given by c®ume = (R The notation ¢® denotes the interpre-

tation of the constant symbol ¢ in R. Let g be a function symbol in n variables
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in £. For any fi,...,fn € (®},)a, the interpretation of ¢ in (D},), is given by
g®la(fy . f) = R(F, ..., FL) € (Dh))a, where F; : U — R are definable C”
functions which are representatives of f; for all 1 < ¢ < n. We finally consider a

relation symbol R in n variables. The interpretation of R in (®7,), is given by
R = {(f1,..., fn) € (D)a)" | {z €U | (Fi(2)....,Fu(2)) € R*} € a}.

It is easy to check that the above definitions are independent of the choice of the
representatives Fi, ..., F,. Under the above interpretation, the local ring (D%,) is

P

an L-structure. We denote this L-structure by (D%,)a.

Proposition 3.14. Consider a definable C" manifold M, where r is a nonnegative

integer. Let o € M be a Ds-ultrafilter, ¢(T) be an L-formula with n free variables

and f = (f1,.-, fn) € (D4)a)™. The L-structure (D4,)q satisfies ¢(f) if and only

if the set _
{x eU | R 'Z ¢(F1(.T),,Fn($))}

belongs to the Dys-ultrafilter o, where F; : U — R are definable C" functions which

are representatives of f; for all 1 <1 <n.

Proof. We prove the proposition by induction on the complexity of the formula ¢().

The proposition is obviously true when ¢(7) is an atomic formula. It is easy to show

the proposition when ¢ = ¢1 A ¢o or ¢ = — 9 for some L formulae ¢, ¢ and 2.

The remaining case is the case in which ¢(Z) = Jy ¥ (Z,y). We may assume that the

formula ¢ (Z, y) satisfies the statement of the proposition by the induction hypothesis.
We first consider the case in which the definable set

X={zecU|RE¢F(z)....,Fu(z))}
is an element of a. Consider the definable set Y given by
Y ={(z.y) € X xR R} $(Fi(@),.... Fula). p)}.

Let 7 : Y — X be the projection, then the definable map 7 is onto by the definition
of X.
We may assume that M is a definable C" submanifold of a Euclidean space R™.

Apply the definable C" cell decomposition theorem [4, Theorem 3.2 and Exercise 3.3
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of Chapter 7]. We get a definable C" cell decomposition of R™*1 partitioning Y. One
of cells in R™, say C, is contained in X and belongs to a. There exists a definable C”
function h : C'— R such that the definable set {(z, h(z)) | z € C} is contained in Y.
In fact, a cell D with 7(D) = C is contained in Y because 7 is onto. Set h = u if the
cell D is of the from {(z,y) € C xR |y = u(x)} for some definable C" function u on
C. Set h = 152 if the cell D is of the from {(z,y) € C xR | u1(z) < y < up(x)} for
some definable C" functions u; and us on C. There exists a definable open subset W
of M and a definable C" map p: W — C with C C W and p|¢c = id by Lemma 3.10.
We have W € « because C C W and C € a. Set G = h o p, and let g be the image
of G in (D). The definable set

Z={zeUNW |RE ¢(Fi(x),..., Fulx),G(x))}

P

contains C, hence; we have Z € a. We get (D%,)a = ¥(f,g) by the induction
hypothesis. We obtain (D%,) = ¢(f).

We next consider the case in which the relation (55)/& = ¢(f) is satisfied. There
exists g € (D%,)a wWith (55)/& = (f,g9). Let G : U — R be a representative of g.
We may assume that Fi,..., F, and G have the common domain U by shrinking U
if necessary. Set A = {z € U | R £ ¢(Fy(z),...,Fy(z),G(x))}. It belongs to o by
the induction hypothesis. For any = € A, the formula 3y ¢(Fy(x),..., F,(x),y) holds

true by taking y = G(x). It means that the set
X={zeU|RE¢F(2),.... Ful2))}
contains A; therefore, the set X belongs to a. O

Proposition 3.15. Consider a definable C" manifold M, where r is a nonnegative

integer. Let o € M bea D -ultrafilter. Let ¢(T) be an L-formula with n free variables.
Let f = (f1,---sfn), 3= (91---,9n) € (D4))a)™ with fi —g; €My, for all 1 < i < n.

~——

Here, m,, is the mazimal ideal of the local ring (Dy;)a. The L-structure (D';)a

satisfies ¢(f) if and only if $(g) is true in (57;47@

P

Proof. By symmetry, we have only to show that (D%,)s E ¢(3) if (D%,)a E 6(f).
Let F; and G; be representatives of f; and g; for all 1 < i < n, respectively. We may
assume that the domains of F; and G; are common without loss of generality. Let U

be the common domain. It is an element of . Set Z; = {x € U | Fi(z) = G;(z)} for
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all 1 <4 < n, then it belongs to a by the definition of the maximal ideal m,. The
intersection Z = (), Z; is also an element of a.

Set X = {2z € U | R E ¢Fi(x),....Foz)} and Y = {z € U | R |
d(G1(x),...,Gp(x))}. We have X € « by the assumption and Proposition 3.14. We
get YNZ € abecause YNZ = XNZ and X,Z € a. We obtain Y € a because

—~——

Y NZ CY. We finally have (9%,). = ¢(g) by Proposition 3.14. O

Let M be a definable C" manifold. The residue field k() of the stalk of the sheaf 7,
at a point a € M can be considered an L-structure under the following interpretation:
For any L-formula ¢(Z) with n free variables and @ = (aq,...,a,) € (k(a))™, the
sentence ¢(a) is true if (5};7@ = o(f1,..., fn), where f; € (D},)q is a representative
of a; for each 1 < ¢ < n. The above definition is independent of the choice of the

representatives fi,..., f, by Proposition 3.15. This L-structure is denoted by k().

We are finally ready to demonstrate Theorem 1.2.

Theorem 3.16. The L-structure k/(\c;) 1s an elementary extension of R.
Let K be an elementary extension of R whose underlying set K contains
the ring Cy(M)/supp(a).  Assume further that, for any L-formula () and

F=(F,....F,) € (C’gf(M))”, the following two conditions are equivalent:

o K= ¢(F), and
e the ultrafilter o contains the definable set {x € M | R = ¢(Fy (), ..., Fa(x))}.

—

Then, there exists a unique elementary embedding k(a) < K.

Proof. We first demonstrate that k:f(g) is an elementary extension of R. Consider an
L-formula ¢(Z,y). Let @ = (a1,...,a,) be a sequence of real numbers and f € k(«)
with k/(\c;) = ¢(a, f). We have only to show that R = ¢(a,b) for some b € R by [11,
Proposition 2.3.5]. The set C = {x € U | R |= ¢(ay, ..., an, F(z))} is contained in o
by Proposition 3.14, where ' € C%;(U) is a representative of f. In particular, C is
not an empty set. Take ¢ € C and set b = F(c). It is obvious that R = ¢(a,b). We
have shown that k;/(\oj) is an elementary extension of R.

Let K be an elementary extension of R satisfying the conditions in the theorem.
We construct a map ¢ : k(o) — K. Consider an arbitrary element a € k(«). Let
f € (D)o be a representative of a. There exist g.h € Cj(M) and o € Sg such that
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g € supp(a) and oo (gf) = h in (D%;)s by Lemma 3.13. Since K is an elementary
extension of I,@, there exists a unique definable C" bijective extension ox : K — K of

o to K. We define
v(a) = ox' (h)/g. (1)

We demonstrate that the map ¢ is an elementary embedding. Assume that M is
a definable C" submanifold of R™. The notation X; denotes the restriction of the
i-th coordinate function on R™ to M or the its image in k(«) for each 1 < i < m.
Let @ = (a1,...,a,) € (k(a))™. Let F; : U — R be a definable C" function which
is a representative of a;. We have U € «. The notation ®(z1,...,x,,) denotes the
formula representing the definable set U, that is, U = {T € R™ | R | ®(7)}. We

have
KE®X,...,Xn) (2)

by the assumption on K because X1, ... X,, are definable C" functions on M.

The formula W;(x1,...,x,,y) represents the relation y = F;(x1,...,x,,). It means
that y = Fj(z1,...,2,,) if and only if R E Vi(r1,...,Tm,y) for any (z1,...,2,) €
R™ and y € R. We first show the following claim:

Claim. For any 1 < 7 < n, the unique element y € K satisfying the formula
Ui(Xqy,..., X, y) in K is t(a;).

We begin to prove the claim. We get
R Ve Vo, ly (D(zy, ..., 2m) = Wi(z1, .., Ty y)) (3)
for all 1 <4 < n. Since R < IC, the same sentence holds true in /C, that is;
KEVYry - -Ve,y (P(xq,...,2m) = Vi(x1, ..., 2m,9)).
Using the relation (2), we get
KE3y ¥ (Xq,...,Xm,9).

It means that only one element y € K can satisfy the formula ¥;(Xy,..., X,,,y) in
IC. The remaining task to complete the proof of the claim is to demonstrate that
KEVi(X1,..., Xm (a;)).
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There exist definable C" functions g;, h; on M and o; € Sz with g; € supp(«) and
o; 0 (giF;) = h; in (D%;) by Lemma 3.13. It implies that the definable set

{x € M |REVYy (0:(gi(x)y) = hi(z) = ~®(z) V ¥;(z,7))}
belongs to a by shrinking U if necessary. We obtain

by the assumption on K. By the definition of ¢(a;) given in the equality (1), the
equality o;(g;t(a;)) = h; is satisfied in K. Hence, we have K = U;(X1,..., X, t(a;)).

We have demonstrated the claim.

The map ¢ is well-defined because the solution of the relation K = ¥; (X1, ..., X, y)
is unique and we can show that, if we take another o;, g; and h;, the element
y = o, '(h;)/g; satisfies the relation K = W;(X1,...,X,,,y) in the same way as
above.

We begin to prove that the map ¢ is an elementary extension. Consider an L-
formula ¢(Z) with n free variables. We first show that the condition that kj(\oj) = ¢(a)
implies the condition that K | ¢(c(a)), where v(a) := (v(ay),...,t(a,)) € K™. Let
Y= (y1,-..,Yyn) be free variables. Set

n

(@G = N(@@1, . xm) = Wiz, 2, i) A D7)

=1

We have

k(e) = (X1, ..., Xm, @)

because we assume that k(a) = ¢(a@). The definable set V = {z € M | R |=
Y(x, Fi(x),...,F,(x))} is contained in o by Proposition 3.14. Set ¢/(z) = Iy ¢ (T,7)
and W = {x € M | R |= ¢/(z)}. The definable set W contains the definable set
V; and we get W € «. Since Xi,...,X,, are definable C" functions on M, we get
K E¢'(X1,...,X,) by the assumption on K. It means the following:

K ): Ely ’lvb(XlaXﬂ’my)

However, by the relation (2) and the above claim, the only ¢(a@) € K™ satisfies the first
condition A”_, (®(X1,...,Xm) = ¥i(X1,..., Xm, i) of ¥(X1,...,X,,,7). Hence,
we have K = (X1, ..., X, t(a)); therefore, K = ¢(c(a)).
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We show the opposite implication, that is; we demonstrate that the con-
dition that K | ¢(u(a)) implies the condition that k/(\&) E ¢(a). We have
KE No Ui(X1, ..., Xm, t(a;)) A ¢(u(a)) by the above claim and the assumption.
We get K = 35 Ay Wi(X1,..., X, ui) A ¢(7). Using the assumption on K, the

definable set {x € M |3y Ai_, Vi(z,y;) A $(7)} is an element of a. We get

k(o) = 3y A\ WX X 0) A O(T) (4)

by Proposition 3.14. On the other hand, the relation (3) implies the relation that

k(o) E Ve Ve, y (P(xy, ... xm) = V(1,0 oy Ty Y))
because R < k/(\c;) as we have demonstrated. The relation lc/(\c;) EO(Xy,...,Xp) is

obviously satisfied by the definition of U and Proposition 3.14. We get

k(o) | 3ly Ui(Xq,..., Xon, y) (5)

from the above relations. The relation

k(Oé) |: \Ili(Xl,...,Xm,ai) (6)

is obvious by the definition of F; and Proposition 3.14. Using the relations (4), (5)
and (6), we get k/(\o?) = ¢(a). We have demonstrated that the map ¢ is an elementary
embedding.

The remaining task is to show that the map ¢ is the unique elementary embedding.
Let ¢/ : k/(\(;) < K be an elementary embedding. Let v be an arbitrary element of
k(). We have only to show that ¢(v) = +/(v). There exist g,h € C3(M) and o € Sg
such that g # 0 in k(a) and o o (gv) = h in k(a) in the same way as above. We have
ok (g-t(v)) = hin K because ¢’ is an elementary embedding. Since ok is a bijection,

we get t(v) =/ (v) by the equality (1). O
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