### Definable $C^r$ sheaf on o-minimal spectrum

# 海上保安大学校 \* 藤田雅人 Masato Fujita Liberal Arts, Japan Coast Guard Academy

#### 概要

Consider an o-minimal expansion of the real field  $\widetilde{\mathbb{R}}$  and a definable  $\mathcal{C}^r$  submanifold M of  $\mathbb{R}^m$ , where r is a nonnegative integer. Let  $\mathcal{L}$  be the first-order language of  $\widetilde{\mathbb{R}}$ . The o-minimal spectrum  $\widetilde{M}$  of M is the set of all complete m-types of the first-order theory  $\mathrm{Th}_{\mathbb{R}}(\widetilde{\mathbb{R}})$  which imply a formula defining M. A stalk of the sheaf of definable  $\mathcal{C}^r$  functions on  $\widetilde{M}$  at a point  $\alpha \in \widetilde{M}$  is a local ring. Its residue field is naturally an  $\mathcal{L}$ -structure. We show that the residue field is a minimal elementary extension of the o-minimal structure  $\widetilde{\mathbb{R}}$  containing  $C^r_{\mathrm{df}}(M)/\mathrm{supp}(\alpha)$  and satisfying that, for any  $\overline{a} \in (C^r_{\mathrm{df}}(M))^n$  and any formula  $\phi(\overline{x})$ , the extension satisfies the sentence  $\phi(\overline{a})$  if and only if the definable subset of M defined by  $\phi(\overline{a})$  is an element of  $\alpha$ . Here, the notation  $C^r_{\mathrm{df}}(M)$  denotes the ring of all definable  $\mathcal{C}^r$  functions on M.

#### 1 Introduction and definitions

We fix an o-minimal expansion of the real field  $\widetilde{\mathbb{R}}$  in this paper. We also assume that the interpretation of any function symbol of the language  $\mathcal{L}$  in  $\widetilde{\mathbb{R}}$  is of class  $\mathcal{C}^r$  on its domain of definition throughout the paper. The definition of o-minimal structures and their basic properties are found in [4, 5]. The term 'definable' means 'definable in the o-minimal structure  $\widetilde{\mathbb{R}}$ ' in this paper. A typical example of  $\widetilde{\mathbb{R}}$  is the ordered field structure on the real field. A definable set is a semialgebraic set in this case.

Consider a Euclidean space  $\mathbb{R}^n$  and the real spectrum of the polynomial ring  $X = \operatorname{Sper}(\mathbb{R}[X_1, \dots, X_n])$ . Real spectrum of a commutative ring is defined in [2, Section

<sup>〒737-8512</sup> 広島県呉市若葉町 5-1

7.1]. A subset  $\widetilde{U}$  of X is defined for any semialgebraic subset U of  $\mathbb{R}^n$ . The sets  $\widetilde{U}$  are open bases in the spectral topology of X when U are semialgebraic open subsets of  $\mathbb{R}^n$ . The definition of  $\widetilde{U}$  is found in [2, Proposition 7.2.2]. Sheaves on subsets of X are defined and investigated in semialgebraic geometry. For instance, given an affine Nash submanifold M of  $\mathbb{R}^n$ , the sheaf  $\mathcal{N}_M$  is defined on  $\widetilde{M}$  such that, for any semialgebraic open subset U of M, the ring  $\mathcal{N}_M(\widetilde{U})$  is the ring of all Nash functions on U. The stalk of the sheaf  $\mathcal{N}_M$  at  $\alpha \in \widetilde{M}$  is the real closure  $k(\alpha)$  of the quotient field of  $\mathbb{R}[X_1,\ldots,X_n]/\sup(\alpha)$  with the ordering induced by the prime cone  $\alpha$  by [2, Proposition 8.8.1, Proposition 8.8.2, Proposition 8.8.3]. Note that the real closed field containing  $\mathbb{R}$  is an elementary extension of the real field  $\mathbb{R}$  as  $\mathcal{L}_{\text{of}}$ -structures, where  $\mathcal{L}_{\text{of}}$  is the first order language of ordered fields, because the theory of real closed fields has quantifier elimination by [2, Proposition 5.2.2].

A sheaf  $\widetilde{S^0}_{\widetilde{T}}$  on  $\widetilde{T}$  is another example, where T is a semialgebraic subset of  $\mathbb{R}^n$ . The ring  $\widetilde{S^0}_{\widetilde{T}}(\widetilde{U})$  coincides with the ring of all semialgebraic continuous functions on a semialgebraic open subset U of T. The residue field of the stalk of this sheaf at  $\alpha \in \widetilde{T}$  is also the real closure  $k(\alpha)$  by [2, Proposition 7.3.2, Proposition 7.3.3, Proposition 7.3.4].

We want to generalize these results to general o-minimal cases. In this paper, we consider a definable  $\mathcal{C}^r$  manifold M and definable  $\mathcal{C}^r$  functions on its definable subsets, where r is a nonnegative integer. We can neither use the real spectrum of the polynomial rings nor expect quantifier elimination in our cases. We must find another appropriate space. Candidates for such a space may be the spectrum or the real spectrum of the ring  $C^r_{\mathrm{df}}(M)$ , where  $C^r_{\mathrm{df}}(M)$  denotes the ring of all definable  $\mathcal{C}^r$  functions on M. However, they have too much points as demonstrated in Section 2. Another candidate is the o-minimal spectrum defined in [12, 6]. We consider sheaves on the o-minimal spectrum.

We introduce notations necessary so as to describe our results more precisely. Consider an o-minimal expansion of the real field  $\widetilde{\mathbb{R}}$  and a definable  $\mathcal{C}^r$  manifold M. Note that all definable  $\mathcal{C}^r$  manifolds are affine by [10, Theorem 1.1] and [8, Theorem 1.3]. We use this fact without explicitly stated in this paper. Assume that M is a definable  $\mathcal{C}^r$  submanifold of  $\mathbb{R}^m$ . The o-minimal spectrum  $\widetilde{M}$  is the set of all complete m-types of the first-order theory  $\mathrm{Th}_{\mathbb{R}}(\widetilde{\mathbb{R}})$  which imply a formula defining M. It is equipped with the topology, called spectral topology, generated by the basic open sets of the

form

$$\widetilde{U} = \{ p \in \widetilde{M} \mid (\text{the formula defining } U) \in p \},$$

where U are definable open subsets of M.

The notation  $D_M$  denotes the set of all definable subsets of M. The set  $\mathcal{D}_M$  of all  $D_M$ -ultrafilters is our main concern. The definitions of filters are found in [1]. We define a topology in  $\mathcal{D}_M$  as follows: The open bases of the topology are the subsets of the form

$$\widetilde{U} = \{ \alpha \in \mathcal{D}_M \mid U \in \alpha \},\$$

where U are definable open subsets of M. The topological space  $\mathcal{D}_M$  is homeomorphic to  $\widetilde{M}$  by [6, Section 2]. We identify  $\widetilde{M}$  with  $\mathcal{D}_M$  in the rest of this paper.

We first investigate the relation between real spectrum and o-minimal spectrum. For that purpose, we consider three other topological spaces. Let  $DC_M$  be the lattice consisting of all definable closed subset of M. The first topological space  $\mathcal{DC}_M$  is the set of all prime  $DC_M$ -filters with the following topology. The open bases of the topology of  $DC_M$  are the subsets of the form

$$\widetilde{U} = \{ \alpha \in \mathcal{DC}_M \mid M \setminus U \not\in \alpha \},\$$

where U are definable open subsets of M.

The notation  $S_{\widetilde{\mathbb{R}}}$  denotes the set of all definable  $\mathcal{C}^r$  functions on  $\mathbb{R}$  which are odd, increasing, bijective and r-flat at the origin. A subset  $T \subset C^r_{\mathrm{df}}(M)$  is called  $S_{\widetilde{\mathbb{R}}}$ -fixed if any definable  $\mathcal{C}^r$  function g on M with  $\phi \circ g \in T$  for some  $\phi \in S_{\widetilde{\mathbb{R}}}$  is contained in T. The second topological space is a topological subspace of the spectrum  $\mathrm{Spec}(C^r_{\mathrm{df}}(M))$  of the ring  $C^r_{\mathrm{df}}(M)$  with the Zariski topology. Its underlying set consists of all  $S_{\widetilde{\mathbb{R}}}$ -fixed prime ideals. It is denoted by  $\mathrm{Spec}_{\mathrm{fixed}}(C^r_{\mathrm{df}}(M))$ . The last topological space  $\mathrm{Sper}_{\mathrm{fixed}}(C^r_{\mathrm{df}}(M))$  is a topological subspace of the real spectrum  $\mathrm{Sper}(C^r_{\mathrm{df}}(M))$  of the ring  $C^r_{\mathrm{df}}(M)$  with the spectral topology. Its underlying set is the set of all  $S_{\widetilde{\mathbb{R}}}$ -fixed prime cones. See [2, Section 7.1] for the definitions of real spectrum of a commutative ring and its topology.

Our first main theorem is the following theorem:

**Theorem 1.1.** Consider an o-minimal expansion of the real field  $\mathbb{R}$ . Let M be a definable  $C^r$  manifold. The five topological spaces  $\widetilde{M}$ ,  $\mathcal{D}_M$ ,  $\mathcal{DC}_M$ ,  $\operatorname{Spec}_{fixed}(C^r_{df}(M))$  and  $\operatorname{Sper}_{fixed}(C^r_{df}(M))$  are all homeomorphic to each other. Furthermore, the spaces

 $\operatorname{Spec}_{fixed}(C^r_{df}(M))$  and  $\operatorname{Sper}_{fixed}(C^r_{df}(M))$  coincide with the spectrum  $\operatorname{Spec}(C^r_{df}(M))$  and the real spectrum  $\operatorname{Sper}(C^r_{df}(M))$ , respectively, when the o-minimal structure  $\widetilde{\mathbb{R}}$  is polynomially bounded.

There is a sheaf  $\mathfrak{D}_M^r$  on  $\widetilde{M}$  such that the ring  $\mathfrak{D}_M^r(\widetilde{U})$  coincides with the ring  $C_{\mathrm{df}}^r(U)$  of all definable  $\mathcal{C}^r$  functions on a definable open subset U of M. The stalk  $(\mathfrak{D}_M^r)_{\alpha}$  of the sheaf  $\mathfrak{D}_M^r$  at a point  $\alpha \in \widetilde{M}$  is a local ring. The residue field of this local ring is denoted by  $k(\alpha)$ . Let  $\mathcal{L}$  be the language of the o-minimal structure  $\widetilde{\mathbb{R}}$ . We view the field  $k(\alpha)$  as an  $\mathcal{L}$ -structure. We denoted this  $\mathcal{L}$ -structure by  $\widetilde{k(\alpha)}$ . Consider an  $\mathcal{L}$ -formula  $\phi(\overline{x})$  with n free variables  $\overline{x} = (x_1, \ldots, x_n)$ . For any  $\overline{a} = (a_1, \ldots, a_n) \in k(\alpha)^n$ , we define that  $\phi(\overline{a})$  is satisfied in  $\widetilde{k(\alpha)}$  if the definable set  $\{x \in M \mid \widetilde{\mathbb{R}} \models \phi(F_1(x), \ldots, F_n(x))\}$  is contained in the ultrafilter  $\alpha$ , where  $F_i : U \to \mathbb{R}$  are definable  $C^r$  functions on a definable open subset U of M which are simultaneously representatives of the elements  $a_i \in k(\alpha)$  for all  $1 \leq i \leq n$ . We show that the above definition is well-defined in Section 3. In [12], Pillay gave the same definition only in the case in which M is an Euclidean space and r = 0. Our second main theorem is the following theorem. It is a variant of [3, Section 5.2, Section 5.3].

**Theorem 1.2.** Consider an o-minimal expansion of the real field  $\mathbb{R}$  and its language  $\mathcal{L}$ . Let M be a definable  $\mathcal{C}^r$  manifold. The  $\mathcal{L}$ -structure  $\widehat{k(\alpha)}$  is an elementary extension of  $\mathbb{R}$  whose underlying set contains the ring  $C_{df}^r(M)/\sup(\alpha)$ . Here, the notation  $\sup(\alpha)$  is a prime ideal defined by  $\sup(\alpha) = \{F \in C_{df}^r(M) \mid F^{-1}(0) \in \alpha\}$ .

Let K be an elementary extension of  $\widetilde{\mathbb{R}}$  whose underlying set K contains the ring  $C_{df}^r(M)/\operatorname{supp}(\alpha)$ . Assume further that, for any  $\mathcal{L}$ -formula  $\phi(\overline{x})$  and  $\overline{F} = (F_1, \dots, F_n) \in (C_{df}^r(M))^n$ , the following two conditions are equivalent:

- $\mathcal{K} \models \phi(\overline{F})$ , and
- the ultrafilter  $\alpha$  contains the definable set  $\{x \in M \mid \widetilde{\mathbb{R}} \models \phi(F_1(x), \dots, F_n(x))\}.$

Then, there exists a unique elementary embedding  $\widetilde{k(\alpha)} \prec \mathcal{K}$ .

This paper is organized as follows: We first demonstrate Theorem 1.1 in Section 2. Propositions similar to Theorem 1.1 are found in [9], and the results in [9] are often used in this section. We show that the above interpretation in  $\widetilde{k(\alpha)}$  is well-defined in Section 3. Section 3 is also devoted to the proof of Theorem 1.2.

## 2 Correspondence among $\mathcal{D}_M$ , $\mathcal{DC}_M$ , $\operatorname{Spec}(C^r_{\mathsf{df}}(M))$ and $\operatorname{Sper}(C^r_{\mathsf{df}}(M))$

We first show that the topological space  $\widetilde{M}$  is compact.

**Proposition 2.1.** Let M be a definable  $C^r$  manifold. The topological space  $\widetilde{M}$  is compact.

Proof. The set  $D_M$  is a boolean subalgebra of the boolean algebra of subsets of M. The Stone space of  $D_M$  defined in [2, Section 7.1] has the same underlying set as  $\mathcal{D}_M$ , and its topology is finer than the topology of  $\mathcal{D}_M$ . Since the Stone space is compact,  $\mathcal{D}_M$  is also compact. The topological space  $\widetilde{M}$  is also compact because they are homeomorphic.

The following theorem is a part of Theorem 1.1.

**Theorem 2.2.** Let M be a definable  $C^r$  manifold. The map  $\tau: \mathcal{D}_M \to \mathcal{D}C_M$  given by

$$\tau(\alpha) = \{ C \in \mathrm{DC}_M \mid C \in \alpha \}$$

is a homeomorphism.

*Proof.* We may assume that M is a definable subset of a Euclidean space  $\mathbb{R}^n$  because M is affine. It is easy to show that  $\tau(\alpha)$  is a prime  $\mathrm{DC}_M$ -filter.

We first demonstrate that  $\tau$  is injective. Let  $\alpha_1, \alpha_2 \in \mathcal{D}_M$  with  $\tau(\alpha_1) = \tau(\alpha_2)$ . We have only to show that  $\alpha_1 \subset \alpha_2$  by symmetry. Consider an arbitrary element  $C \in \alpha_1$  and a definable cell decomposition of  $\mathbb{R}^n$  partitioning C by [4, Chapter 3, (2.11)]. Since  $\alpha_1$  is an ultrafilter, at least one cell contained in C is an element of  $\alpha_1$ . Let D be such a cell of the minimum dimension. We lead a contradiction assuming that  $D \notin \alpha_2$ . Let E be the closure of D, which is an element of  $\alpha_1$  because  $D \in \alpha_1$  and  $D \subset E$ . It is simultaneously an element of  $\tau(\alpha_1)$ . We have  $E \in \tau(\alpha_2)$  because  $\tau(\alpha_1) = \tau(\alpha_2)$ . In particular, E is an element of  $\alpha_2$ . Since E is a union of the cells, there exists a cell D' which is contained in E and is simultaneously an element of  $\alpha_2$ . Note that the dimension of D' is smaller than that of D because  $D \notin \alpha_2$ . We can show that the closure E' of D' is an element of  $\alpha_1$  in the same way as above. At

least one of the cells contained in E' is an element of  $\alpha_1$ . This cell is of dimension strictly smaller than the dimension of D. It contradicts the assumption that D has the minimum dimension. We have shown that  $\alpha_1 \subset \alpha_2$ . We have demonstrated that  $\tau$  is injective.

Secondly, we demonstrate that  $\tau$  is surjective. For any  $\beta \in \mathcal{DC}_M$ , define  $d(\beta)$  as the minimum of the dimensions of all the elements in  $\beta$ . We define a subset  $\alpha$  of  $D_M$  as follows:

$$\alpha = \{ C \in \mathcal{D}_M \mid V \cap C \neq \emptyset \text{ and } \dim(V \cap C) \geq d(\beta) \text{ for all } V \in \beta \}.$$

We first show that  $\alpha$  is an ultrafilter.

- (i) It is obvious that  $M \in \alpha$  and  $\emptyset \notin \alpha$ .
- (ii) We show that  $C_1 \cap C_2 \in \alpha$  when  $C_1 \in \alpha$  and  $C_2 \in \alpha$ . We have to show that  $V \cap C_1 \cap C_2 \neq \emptyset$  and dim  $V \cap C_1 \cap C_2 \geq d(\beta)$  for any  $V \in \beta$ . There exists a definable closed set  $V' \in \beta$  of dimension  $d(\beta)$  contained in V for any  $V \in \beta$ . In fact, let  $W \in \beta$  with dim  $W = d(\beta)$ , then the intersection  $V' = W \cap V$  is an element of  $\beta$  of dimension  $d(\beta)$ . We have  $V \cap C_1 \cap C_2 \neq \emptyset$  and dim  $V \cap C_1 \cap C_2 \geq$  $d(\beta)$  if  $V' \cap C_1 \cap C_2 \neq \emptyset$  and dim  $V' \cap C_1 \cap C_2 \geq d(\beta)$ . Therefore, we may assume that V is of dimension  $d(\beta)$  without loss of generality. Consider a definable cell decomposition of  $\mathbb{R}^n$  partitioning V,  $C_1$  and  $C_2$ . Let  $\{D_i\}_{i=1}^m$  be the collection of cells of dimension  $d(\beta)$  contained in V. The closure of  $D_i$  is denoted by  $E_i$  for each  $1 \le i \le m$ . We have  $V = \bigcup_{i=1}^m E_i \cup F$ , where F is a definable closed set of dimension smaller than  $d(\beta)$ . Since  $\beta$  is a prime  $DC_M$ -filter, we get  $E_i \in \beta$  for some  $1 \leq i \leq m$ . The equality  $\dim(E_i \cap C_1) = d(\beta)$  should be satisfied because  $E_i \in \beta$  and  $C_1 \in \alpha$ . We get  $D_i \subset C_1$  because  $D_i$  is a cell of the definable cell decomposition partitioning  $C_1$ . We also get  $D_i \subset C_2$  in the same way. We have demonstrated that  $D_i$  is contained in  $V \cap C_1 \cap C_2$ . We have  $V \cap C_1 \cap C_2 \neq \emptyset$ and dim  $V \cap C_1 \cap C_2 \ge d(\beta)$ . It means that  $C_1 \cap C_2 \in \alpha$ .
- (iii) It is obvious that any element of  $D_M$  containing an element of  $\alpha$  is also an element of  $\alpha$ .
- (iv) We finally show that, for any  $C_1, C_2 \in D_M$  with  $C_1 \cup C_2 \in \alpha$ , at least one of  $C_1$  and  $C_2$  is an element of  $\alpha$ . Assume the contrary. There exist  $V_1, V_2 \in \beta$  with  $\dim(V_i \cap C_i) < d(\beta)$  for i = 1, 2. We have  $\dim((C_1 \cup C_2) \cap V_1 \cap V_2) =$

 $\max\{\dim(C_1\cap V_1\cap V_2), \dim(C_2\cap V_1\cap V_2)\} \le \max\{\dim(C_1\cap V_1), \dim(C_2\cap V_2)\} < d(\beta)$ . It is a contradiction because  $V_1\cap V_2\in\beta$  and  $C_1\cup C_2\in\alpha$ .

We have shown that the subset  $\alpha$  is a  $D_M$ -ultrafilter.

We next demonstrate that  $\beta = \tau(\alpha)$ . The inclusion  $\beta \subset \tau(\alpha)$  is obvious. We show the opposite inclusion. The set  $\tau(\alpha)$  is described as follows:

$$\tau(\alpha) = \{ V \in DC_M \mid W \cap V \neq \emptyset \text{ and } \dim W \cap V \geq d(\beta) \text{ for all } W \in \beta \}.$$

Take an arbitrary element  $V \in \tau(\alpha)$  and an element  $W \in \beta$  of dimension  $d(\beta)$ . Consider a definable cell decomposition of  $\mathbb{R}^n$  partitioning V and W. Let  $\{D_i\}_{i=1}^m$  be the collection of cells of dimension  $d(\beta)$  contained in W. The closure of  $D_i$  is denoted by  $E_i$  for each  $1 \leq i \leq m$ . We have  $W = \bigcup_{i=1}^m E_i \cup F$  for some definable closed subset F of M of dimension smaller than  $d(\beta)$ . A definable closed set  $E_i$  is an element of  $\beta$  for some  $1 \leq i \leq m$  because  $\beta$  is a prime filter. We have  $\dim(V \cap E_i) = d(\beta)$  because  $V \in \tau(\alpha)$ . Hence, the cell  $D_i$  is contained in V. The closure  $E_i$  is also contained in V because V is closed. We get  $V \in \beta$  because  $E_i \subset V$  and  $E_i \in \beta$ . We have shown that  $\beta = \tau(\alpha)$ . We have demonstrated that  $\tau$  is surjective.

It remains to show that the bijective map  $\tau$  is a homeomorphism. Set  $\widetilde{U}^{\mathrm{D}} = \{\alpha \in \mathcal{D}_{M} \mid U \in \alpha\}$  and  $\widetilde{U}^{\mathrm{DC}} = \{\beta \in \mathcal{D}_{M} \mid M \setminus U \not\in \beta\}$  for all definable open subsets U of M. We have only to show that  $\tau(\widetilde{U}^{\mathrm{D}}) = \widetilde{U}^{\mathrm{DC}}$ . We first show the inclusion  $\tau(\widetilde{U}^{\mathrm{D}}) \subset \widetilde{U}^{\mathrm{DC}}$ . Let  $\alpha \in \widetilde{U}^{\mathrm{D}}$ . We have  $U \in \alpha$ , and  $M \setminus U \not\in \alpha$ ; hence,  $M \setminus U \not\in \tau(\alpha)$ . We have shown that  $\tau(\alpha) \in \widetilde{U}^{\mathrm{DC}}$ . The next task is to illustrate the opposite inclusion. We assume that  $\beta \in \widetilde{U}^{\mathrm{DC}}$ . We have  $M \setminus U \not\in \beta$ . Since  $\tau$  is onto, there is  $\alpha \in \mathcal{D}_{M}$  with  $\beta = \tau(\alpha)$ . We get  $M \setminus U \not\in \alpha$ . Since  $\alpha$  is an ultrafilter, we have  $U \in \alpha$ . We have shown the opposite inclusion.

Consider the ring  $C^r_{\mathrm{df}}(M)$  of all definable  $\mathcal{C}^r$  functions on a definable  $\mathcal{C}^r$  manifold M. The author showed that three topological spaces  $\mathcal{DC}_M$ ,  $\mathrm{Spec}(C^r_{\mathrm{df}}(M))$  and  $\mathrm{Sper}(C^r_{\mathrm{df}}(M))$  are all homeomorphic to each other when the o-minimal structure  $\widetilde{\mathbb{R}}$  is polynomially bounded in [9, Theorem 2.11, Corollary 2.12].

An open basis of  $\mathcal{DC}_M$  is defined as a set of the form  $\{\beta \in \mathcal{DC}_M \mid V \notin \beta\}$  in [9], where  $V = \bigcup_{i=1}^k \{x \in M \mid f_i(x) \leq 0\}$  for some  $f_1, \ldots, f_k \in C^r_{\mathrm{df}}(M)$ . It seems slightly different from the definition in this paper, but they are identical. In fact, an open basis in [9] is an open basis in this paper because  $U = M \setminus V$  is a definable open set.

On the contrary, for any definable open subset U in M, there exists a definable  $C^r$  function on M with  $f^{-1}(0) = M \setminus U$  by [9, Lemma 2.1]. Set  $V = \{x \in M \mid f^2(x) \leq 0\}$ , then we get  $\widetilde{U} = \{\beta \in \mathcal{DC}_M \mid V \not\in \beta\}$ . An open basis in this paper is an open basis in [9].

The example in [9, Example 3.1] shows that  $\mathcal{DC}_M$  is not homeomorphic to the spectrum  $\operatorname{Spec}(C^r_{\operatorname{df}}(M))$  when the o-minimal structure  $\widetilde{\mathbb{R}}$  is not polynomially bounded. We consider appropriate subsets  $\operatorname{Spec}_{\operatorname{fixed}}(C^r_{\operatorname{df}}(M))$  and  $\operatorname{Sper}_{\operatorname{fixed}}(C^r_{\operatorname{df}}(M))$  of  $\operatorname{Spec}(C^r_{\operatorname{df}}(M))$  and  $\operatorname{Sper}(C^r_{\operatorname{df}}(M))$ , and show that they are homeomorphic to  $\mathcal{DC}_M$ .

We review the maps defined in [9]. The map  $\mathcal{I}: \mathcal{DC}_M \to \operatorname{Spec}(C^r_{\operatorname{df}}(M))$  is given by

$$\mathcal{I}(\beta) = \{ f \in C^r_{\mathrm{df}}(M) \mid f^{-1}(0) \in \beta \},\$$

and it is continuous by [9, Proposition 2.4]. The map  $\alpha : \mathcal{DC}_M \to \operatorname{Sper}(C^r_{\operatorname{df}}(M))$  is given by

$$\alpha(\beta) = \{ f \in C^r_{\mathrm{df}}(M) \mid f^{-1}([0, \infty)) \in \beta \},\$$

and it is also continuous by [9, Lemma 2.6]. We call this map  $\Lambda$  instead of  $\alpha$  because we use the symbol  $\alpha$  to represent an element of  $\mathcal{D}_M$  in this section. Finally, the continuous map  $\Phi_r : \operatorname{Sper}(C^r_{\operatorname{df}}(M)) \to \operatorname{Spec}(C^r_{\operatorname{df}}(M))$  is given by  $\Phi_r(P) = \sup(P) = \{f \in C^r_{\operatorname{df}}(M) \mid f \in P \text{ and } -f \in P\}.$ 

**Lemma 2.3.** The maps  $\mathcal{I}$  and  $\Lambda$  send a prime  $DC_M$ -filter to an  $S_{\widetilde{\mathbb{R}}}$ -fixed prime ideal and an  $S_{\widetilde{\mathbb{R}}}$ -fixed prime cone, respectively.

*Proof.* The maps  $\mathcal{I}$  and  $\Lambda$  send a prime  $\mathrm{DC}_M$ -filter to a prime ideal and a prime cone by [9, Proposition 2.4, Lemma 2.6]. It is obvious that they are  $\mathrm{S}_{\widetilde{\mathbb{R}}}$ -fixed.

**Lemma 2.4.** The map  $\mathcal{Z}: \operatorname{Spec}_{fixed}(C^r_{df}(M)) \to \mathcal{DC}_M$  defined by

$$\mathcal{Z}(\mathfrak{p}) = \{ f^{-1}(0) \mid f \in \mathfrak{p} \}$$

is a continuous map, and the equality  $\mathcal{I}(\mathcal{Z}(\mathfrak{p})) = \mathfrak{p}$  holds true for any  $S_{\widetilde{\mathbb{R}}}$ -fixed prime ideal  $\mathfrak{p}$  of  $C^r_{df}(M)$ .

Proof. The set  $\mathcal{Z}(\mathfrak{p})$  is a DC<sub>M</sub>-filter by [9, Proposition 2.4]. We show that it is a prime DC<sub>M</sub>-filter. Let A and B be definable closed subsets of M with  $A \cup B \in \mathcal{Z}(\mathfrak{p})$ . There are definable  $\mathcal{C}^r$  functions  $f, g \in C^r_{\mathrm{df}}(M)$  with  $f^{-1}(0) = A$  and  $g^{-1}(0) = B$  by [9, Lemma 2.2]. Since  $A \cup B \in \mathcal{Z}(\mathfrak{p})$ , there is a definable  $\mathcal{C}^r$  function  $h \in \mathfrak{p}$  with

 $A \cup B = h^{-1}(0)$ . There exist  $\sigma \in S_{\widetilde{\mathbb{R}}}$  and  $u \in C_{\mathrm{df}}^r(M)$  with  $\sigma \circ (fg) = uh \in \mathfrak{p}$  by [9, Lemma 2.1]. We have  $fg \in \mathfrak{p}$  because  $\mathfrak{p}$  is  $S_{\widetilde{\mathbb{R}}}$ -fixed; and, we get  $f \in \mathfrak{p}$  or  $g \in \mathfrak{p}$  because  $\mathfrak{p}$  is a prime ideal. We have shown that  $A \in \mathcal{Z}(\mathfrak{p})$  or  $B \in \mathcal{Z}(\mathfrak{p})$ . The set  $\mathcal{Z}(\mathfrak{p})$  is a prime  $DC_M$ -filter.

We next show the  $\mathcal{I}(\mathcal{Z}(\mathfrak{p})) = \mathfrak{p}$  for any  $S_{\widetilde{\mathbb{R}}}$ -fixed prime ideal  $\mathfrak{p}$  of  $C_{\mathrm{df}}^r(M)$ . The inclusion  $\mathfrak{p} \subset \mathcal{I}(\mathcal{Z}(\mathfrak{p}))$  is obvious. We show the opposite inclusion. Let  $f \in \mathcal{I}(\mathcal{Z}(\mathfrak{p}))$ , there exists a definable  $\mathcal{C}^r$  function  $g \in \mathfrak{p}$  with  $f^{-1}(0) = g^{-1}(0)$ . There exist  $\sigma \in S_{\widetilde{\mathbb{R}}}$  and  $h \in C_{\mathrm{df}}^r(M)$  with  $\sigma \circ f = gh \in \mathfrak{p}$  by [9, Lemma 2.1]. Since  $\mathfrak{p}$  is  $S_{\widetilde{\mathbb{R}}}$ -fixed, we have  $f \in \mathfrak{p}$ .

We finally illustrate that  $\mathcal{Z}$  is continuous. Let U be a definable open subset of M. There exists a definable  $\mathcal{C}^r$  function  $f \in C^r_{\mathrm{df}}(M)$  with  $M \setminus U = f^{-1}(0)$  by [9, Lemma 2.2]. We have only to show that

$$\mathcal{Z}^{-1}(\widetilde{U}) = \{ \mathfrak{p} \in \operatorname{Spec}_{\operatorname{fixed}}(C^r_{\operatorname{df}}(M)) \mid f \notin \mathfrak{p} \}.$$

Assume that  $f \in \mathfrak{p}$ , then  $M \setminus U \in \mathcal{Z}(\mathfrak{p})$ , and  $\mathcal{Z}(\mathfrak{p}) \notin \widetilde{U}$ . On the other hand, if  $\mathcal{Z}(\mathfrak{p}) \notin \widetilde{U}$ , we have  $M \setminus U \in \mathcal{Z}(\mathfrak{p})$ , and  $f \in \mathcal{I}(\mathcal{Z}(\mathfrak{p})) = \mathfrak{p}$ .

**Lemma 2.5.** If a prime cone  $P \in \operatorname{Sper}(C^r_{df}(M))$  is  $S_{\widetilde{\mathbb{R}}}$ -fixed, the support  $\operatorname{supp}(P)$  is an  $S_{\widetilde{\mathbb{R}}}$ -fixed prime ideal.

Proof. The set  $\operatorname{supp}(P)$  is a prime ideal by [2, Proposition 4.3.2]. We have only to show that, if  $g \in C^r_{\operatorname{df}}(M)$  and  $\sigma \in S_{\widetilde{\mathbb{R}}}$  with  $\sigma \circ g \in \operatorname{supp}(P)$ , the element g is contained in  $\operatorname{supp}(P)$ . We have  $g \in P$  because  $\sigma \circ g \in P$  and P is  $S_{\widetilde{\mathbb{R}}}$ -fixed. Remember that  $\sigma : \mathbb{R} \to \mathbb{R}$  is an odd function. We also have  $-g \in P$  because  $\sigma \circ (-g) = -\sigma \circ g \in P$ . It means that  $g \in \operatorname{supp}(P)$ .

Theorem 2.6. The restriction

$$\Phi_r|_{\operatorname{Sper}_{fixed}(C^r_{df}(M))}: \operatorname{Sper}_{fixed}(C^r_{df}(M)) \to \operatorname{Spec}_{fixed}(C^r_{df}(M))$$

is a homeomorphism, and its inverse map is  $\Lambda \circ \mathcal{Z}$ .

*Proof.* The continuous map  $\Phi_r$  is well-defined by Lemma 2.5, The map  $\Lambda \circ \mathcal{Z}$  is also well-defined and continuous by Lemma 2.3 and Lemma 2.4. The remaining task is to show that the composition of two maps are the identity maps.

We first show that  $P = \Lambda(\mathcal{Z}(\Phi_r(P)))$  for any  $P \in \operatorname{Sper}_{\operatorname{fixed}}(C^r_{\operatorname{df}}(M))$ . Set P' =

 $\Lambda(\mathcal{Z}(\Phi_r(P)))$ , then we have  $\operatorname{supp}(P') = \mathcal{I}(\mathcal{Z}(\operatorname{supp}(P)))$  by [9, Lemma 2.6]. Apply Lemma 2.4, then we get  $\operatorname{supp}(P') = \operatorname{supp}(P)$ . The prime cones P and P' coincide by [9, Proposition 2.8].

The equality  $\Phi_r(\Lambda(\mathcal{Z}(\mathfrak{p}))) = \mathfrak{p}$  is easy to prove, where  $\mathfrak{p} \in \operatorname{Spec}_{\operatorname{fixed}}(C^r_{\operatorname{df}}(M))$ . In fact, we have  $\Phi_r(\Lambda(\mathcal{Z}(\mathfrak{p}))) = \mathcal{I}(\mathcal{Z}(\mathfrak{p}))$  by [9, Lemma 2.6]. The right hand side of the equality coincides with  $\mathfrak{p}$  by Lemma 2.4.

**Theorem 2.7.** The map  $\mathcal{I}: \mathcal{DC}_M \to \operatorname{Spec}_{fixed}(C^r_{df}(M))$  is a homeomorphism, and its inverse map is  $\mathcal{Z}$ .

*Proof.* The maps  $\mathcal{I}$  and  $\mathcal{Z}$  are continuous by [9, Proposition 2.4] and Lemma 2.4. We also have  $\mathcal{I}(\mathcal{Z}(\mathfrak{p})) = \mathfrak{p}$  for any  $S_{\widetilde{\mathbb{R}}}$ -fixed prime ideal  $\mathfrak{p}$  of  $C_{\mathrm{df}}^r(M)$ . It is obvious that  $\mathcal{Z}(\mathcal{I}(\beta)) = \beta$  for any prime  $\mathrm{DC}_M$ -filter  $\beta$ .

The author promised that Theorem 1.1 is proved in this section. In fact, Theorem 1.1 follows from Theorem 2.2, Theorem 2.6, Theorem 2.7, [6, Section 2] and [9, Theorem 2.11, Corollary 2.12].

### 3 Sheaf of definable $C^r$ functions on o-minimal spectrum and its stalk

We introduce several lemmas and propositions used in the proof of Theorem 1.2.

**Lemma 3.1.** Let M be a definable  $C^r$  manifold with  $0 \le r < \infty$ . Let X and Y be definable closed subsets of M with  $X \cap Y = \emptyset$ . Then, there exists a definable  $C^r$  function  $f: M \to [0,1]$  with  $f^{-1}(0) = X$  and  $f^{-1}(1) = Y$ .

Proof. There exist definable  $C^r$  functions  $g, h : M \to \mathbb{R}$  with  $g^{-1}(0) = X$  and  $h^{-1}(0) = Y$  by [9, Proposition 2.2]. The function  $f : M \to [0,1]$  defined by  $f(x) = \frac{g(x)^2}{g(x)^2 + h(x)^2}$  satisfies the requirement.

**Lemma 3.2.** Let M be a definable  $C^r$  manifold with  $0 \le r < \infty$ . Let C and U be definable closed and open subsets of M, respectively. Assume that C is contained in U. Then, there exists a definable open subset V of M with  $C \subset V \subset \overline{V} \subset U$ .

*Proof.* There is a definable continuous function  $h: M \to [0,1]$  with  $h^{-1}(0) = C$  and

 $h^{-1}(1) = M \setminus U$  by Lemma 3.1. The set  $V = \{x \in M : h(x) < \frac{1}{2}\}$  satisfies the requirement.

**Lemma 3.3** (Partition of unity). Let  $M \subset \mathbb{R}^m$  be an a definable  $C^r$  manifold. Given a finite definable open covering  $\{U_i\}_{i=1}^q$  of M, there exist nonnegative definable  $C^r$  functions  $\lambda_i$  on M for all  $1 \le i \le q$  such that  $\sum_{i \in I} \lambda_i = 1$  and the closure of the set  $\{x \in M \mid \lambda_i(x) > 0\}$  is contained in  $U_i$ .

Proof. Let  $h_i(x) = \operatorname{dist}(x, M \setminus U_i)$  be the distance between a point  $x \in M$  and the closed set  $M \setminus U_i$  for any  $1 \leq i \leq q$ . Set  $V_i = \{x \in M \mid h_i(x) > \max_{1 \leq j \leq q} h_j(x)/2\}$ . The closure of  $V_i$  in M is contained in  $U_i$ . In fact, let x be a point in the closure of  $V_i$ . We have  $h_j(x) > 0$  for some  $1 \leq j \leq q$  because  $\{U_i\}_{i=1}^q$  is an open covering. Since  $h_i(x) \geq \max_{1 \leq j \leq q} h_j(x)/2 > 0$ , we get  $x \in U_i$ . We next show that  $\{V_i\}_{i=1}^q$  is a finite definable open covering of M. Fix an arbitrary point  $x \in M$ . There exists an integer  $1 \leq i \leq q$  with  $x \in U_i$ , and  $h_i(x) > 0$ . Let k be the positive integer with  $1 \leq k \leq q$  and  $h_k(x) = \max_{1 \leq j \leq q} h_j(x) > 0$ . It is obvious that the point x belongs to  $V_k$ .

There exists a definable  $C^r$  function  $f_i$  on M with  $f_i^{-1}(0) = M \setminus V_i$  by [9, Lemma 2.2]. Set  $\lambda_i = f_i^2 / \sum_{j=1}^q f_j^2$ . The definable  $C^r$  functions  $\lambda_i$  on M satisfy the requirements.

**Lemma 3.4.** Let  $M \subset \mathbb{R}^n$  be a definable  $C^r$  submanifold of  $\mathbb{R}^n$ , which is closed in  $\mathbb{R}^n$ . For any definable  $C^r$  function f on M, there exists a definable  $C^r$  extension F to  $\mathbb{R}^n$ .

Proof. There exists a definable open neighborhood U of M and definable  $\mathcal{C}^r$  map  $\rho: U \to M$  such that the restriction of  $\rho$  to M is the identity map by [7, Theorem 1.9]. Let V be a definable open neighborhood of M with  $M \subset V \subset \overline{V} \subset U$  given in Lemma 3.2. There exists a definable  $\mathcal{C}^r$  function h on  $\mathbb{R}^n$  with  $h^{-1}(0) = \mathbb{R}^n \setminus V$  and  $h^{-1}(1) = M$  by Lemma 3.1. A definable  $\mathcal{C}^r$  extension  $F: \mathbb{R}^n \to \mathbb{R}$  of f is given by

$$F(x) = \begin{cases} h(x)f(\rho(x)) & \text{if } x \in V, \\ 0 & \text{otherwise.} \end{cases}$$

**Lemma 3.5.** Let  $M \subset \mathbb{R}^n$  be a definable  $C^r$  submanifold of  $\mathbb{R}^n$ , which is closed in  $\mathbb{R}^n$ . Consider a definable continuous function f on M which is of class  $C^r$  on  $M \setminus f^{-1}(0)$ . There exists a definable continuous extension F of f to  $\mathbb{R}^n$  which is of class  $\mathcal{C}^r$  on  $\mathbb{R}^n \setminus F^{-1}(0)$ .

*Proof.* We can construct an extension F in the same way as Lemma 3.4.

**Proposition 3.6.** Let M be a definable  $C^r$  manifold. Consider a definable subset A of M and a definable  $C^r$  function on A. Assume that, for any  $x_0 \in \overline{A} \setminus A$ , the limit of the function f at  $x_0$  exists and it is zero. Then, there exists an element  $\sigma \in S_{\widetilde{\mathbb{R}}}$  such that the composition  $\sigma \circ f$  has a definable  $C^r$  extension to M.

Proof. Since M is affine, there is a definable  $\mathcal{C}^r$  embedding  $\iota: M \hookrightarrow \mathbb{R}^n$ . Since  $\overline{M} \setminus M$  is a definable closed set, there exists a definable  $\mathcal{C}^r$  function H on  $\mathbb{R}^n$  vanishing only on  $\overline{M} \setminus M$  by [5, Theorem C.11]. The image of the definable  $\mathcal{C}^r$  embedding  $\iota': M \to \mathbb{R}^{n+1}$  given by  $\iota'(x) = (\iota(x), 1/H(x))$  is a closed subset. Hence, we may assume that M is a definable  $\mathcal{C}^r$  submanifold of a Euclidean space  $\mathbb{R}^n$ , which is simultaneously closed in  $\mathbb{R}^n$ .

Consider a definable continuous function  $F: M \to \mathbb{R}$  defined by

$$F(x) = \begin{cases} f(x) & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases}$$

It is of class  $C^r$  on  $M \setminus F^{-1}(0)$ . There is a definable continuous extension  $\widetilde{F} : \mathbb{R}^n \to \mathbb{R}$  of F such that it is of class  $C^r$  on  $\mathbb{R}^n \setminus (\widetilde{F})^{-1}(0)$  by Lemma 3.5. The composition  $\sigma \circ \widetilde{F}$  is a definable  $C^r$  function for some  $\sigma \in S_{\widetilde{\mathbb{R}}}$  by [5, Corollary C.10]. Hence, the composition  $\sigma \circ f$  has a definable  $C^r$  extension to M.

**Lemma 3.7.** For any definable continuous function  $f : \mathbb{R} \to \mathbb{R}$ , there exists a positive definable  $C^r$  function  $\rho : \mathbb{R} \to \mathbb{R}$  such that  $|f(x)| < \rho(x)$  for any  $x \in \mathbb{R}$ .

Proof. We may assume that f is not negative by considering |f| instead of f. There exists a finite subset  $\{t_1, \ldots, t_m\}$  of  $\mathbb{R}$  such that f is of class  $\mathcal{C}^r$  on  $V_0 = \mathbb{R} \setminus \{t_1, \ldots, t_m\}$  by [4, Theorem 3.2 and Exercise 3.3 of Chapter 7]. Set  $y_i = f(t_i) + 1$  and  $V_i = \{t \in \mathbb{R} \mid f(t) < y_i\}$  for all  $1 \le i \le m$ . The family  $\{V_0, V_1, \ldots, V_m\}$  is a definable open covering of  $\mathbb{R}$ . Let  $\{\lambda_i\}_{i=0}^m$  be a definable  $\mathcal{C}^r$  partition of unity subordinate to  $\{V_0, V_1, \ldots, V_m\}$  given in Lemma 3.3. Set  $\rho(x) = \sum_{i=1}^m y_i \lambda_i(x) + \lambda_0(x)(f(x) + 1)$ , then it is a definable  $\mathcal{C}^r$  function with  $f(x) < \rho(x)$  for any  $x \in \mathbb{R}$ .

**Lemma 3.8.** For any definable  $C^r$  function  $f : \mathbb{R}^n \to \mathbb{R}$ , there exists a positive definable  $C^r$  function  $g : \mathbb{R}^n \to \mathbb{R}$  such that  $\lim_{\|x\| \to \infty} g(x) = 0$  and  $\lim_{\|x\| \to \infty} f(x)g(x) = 0$ .

*Proof.* Consider a definable continuous function  $\phi: \mathbb{R} \to \mathbb{R}$  given by

$$\phi(t) = \begin{cases} \max_{\|x\|^2 = t} |f(x)| & \text{if } t \ge 0, \\ |f(O)| & \text{otherwise,} \end{cases}$$

where O is the origin of  $\mathbb{R}^n$ . There exists a positive definable  $\mathcal{C}^r$  function  $\rho: \mathbb{R} \to \mathbb{R}$  with  $\phi(t) < \rho(t)$  for any  $t \in \mathbb{R}$  by Lemma 3.7. Set  $\kappa(t) = \frac{1}{\rho^2(t) + t^2}$ , then we have  $\lim_{t \to \infty} \kappa(t) = 0$  and  $\lim_{t \to \infty} \phi(t) \kappa(t) = 0$ . Set  $g(x) = \kappa(\|x\|^2)$ , then we have  $\lim_{\|x\| \to \infty} g(x) = 0$  and  $\lim_{\|x\| \to \infty} f(x)g(x) = 0$ .

**Lemma 3.9.** Consider a definable  $C^r$  manifold M. Let  $f: U \to \mathbb{R}$  be a definable  $C^r$  function on a definable open subset U of M. Then, there exists a definable  $C^r$  function g on M such that g is positive on U, zero on the boundary of U and  $\lim_{U\ni x\to x_0} f(x)g(x) = 0$  for any point  $x_0$  in the boundary of U.

Proof. We may assume that M is a definable  $\mathcal{C}^r$  submanifold of  $\mathbb{R}^n$  and closed in  $\mathbb{R}^n$  in the same way as the proof of Proposition 3.6. There exists a definable  $\mathcal{C}^r$  function H on  $\mathbb{R}^n$  such that  $\partial U = \overline{U} \setminus U = H^{-1}(0)$  by [5, Theorem C.11]. The definable  $\mathcal{C}^r$  map  $\iota : \mathbb{R}^n \setminus \partial U \to \mathbb{R}^{n+1}$  is given by  $\iota(x) = \left(x, \frac{1}{H(x)}\right)$ . Consider the function  $f \circ \iota^{-1}$  defined on  $\iota(U)$ . Since  $\iota(U)$  is closed in  $\mathbb{R}^{n+1}$ , we have its definable  $\mathcal{C}^r$  extension F to  $\mathbb{R}^{n+1}$  by Lemma 3.4. We can take a positive definable  $\mathcal{C}^r$  function G on  $\mathbb{R}^{n+1}$  such that  $\lim_{\|x\|\to\infty} G(x) = 0$  and  $\lim_{\|x\|\to\infty} F(x)G(x) = 0$  by Lemma 3.8. Since the restriction of  $G \circ \iota$  to U satisfies the assumption of Proposition 3.6, there exists  $\sigma \in S_{\widetilde{\mathbb{R}}}$  such that  $\sigma \circ G \circ \iota$  has a definable  $\mathcal{C}^r$  extension g to M. It is obvious that g is positive on U and zero on the boundary of U. Let  $x_0$  be a point of the boundary of U. The limit  $\lim_{U\ni x\to x_0} \frac{g(x)}{G\circ\iota(x)} = \lim_{U\ni x\to x_0} \frac{\sigma\circ G\circ\iota(x)}{G\circ\iota(x)}$  exists because  $\sigma$  is an element of  $S_{\widetilde{\mathbb{R}}}$  and  $\lim_{U\ni x\to x_0} G\circ\iota(x) = 0$ . We have  $\lim_{U\ni x\to x_0} f(x)g(x) = \left(\lim_{U\ni x\to x_0} F(\iota(x))G(\iota(x))\right) \cdot \left(\lim_{U\ni x\to x_0} \frac{g(x)}{G\circ\iota(x)}\right) = 0$ .

**Lemma 3.10.** Let  $\{C_i\}_{i=1}^m$  be a definable  $C^r$  cell decomposition of  $\mathbb{R}^n$  given in [4, Theorem 3.2 and Exercise 3.3 of Chapter 7], where r is a nonnegative integer. For

any  $1 \leq i \leq m$ , there exist a definable open neighborhood  $W_i$  of  $C_i$  in  $\mathbb{R}^n$  and a definable  $C^r$  map  $\rho_i : W_i \to C_i$  such that the restriction of  $\rho_i$  to  $C_i$  is the identity map.

*Proof.* We fix an integer  $1 \leq i \leq m$ . The maps  $\pi_l : \mathbb{R}^n \to \mathbb{R}^l$  are the projections onto the first l coordinates for all  $1 \leq l \leq n$ . We inductively define a definable open neighborhood  $W_{i,l} \subset \mathbb{R}^l$  of  $\pi_l(C_i)$  and a definable  $\mathcal{C}^r$  map  $\rho_{i,l} : W_{i,l} \to \pi_l(C_i)$  such that the restriction of  $\rho_{i,l}$  to  $\pi_l(C_i)$  is the identity map.

When l=1,  $\pi_1(C_i)$  consists of a single point a or is a connected open interval  $I \subset \mathbb{R}$ . Set  $W_{i,1} = \mathbb{R}$  and  $\rho_{i,1}(x) = a$  in the former case. Set  $W_{i,1} = I$  and  $\rho_{i,1}(x) = x$  in the latter case.

When l > 1, the definable set  $\pi_l(C_i)$  is one of the following forms:

$$\pi_l(C_i) = \{(x, t) \in \pi_{l-1}(C_i) \times \mathbb{R} \mid t = f(x)\} \text{ and }$$
  
 $\pi_l(C_i) = \{(x, t) \in \pi_{l-1}(C_i) \times \mathbb{R} \mid f_1(x) < t < f_2(x)\},$ 

where f,  $f_1$  and  $f_2$  are definable  $\mathcal{C}^r$  functions on  $\pi_{l-1}(C_i)$ . Set  $W_{i,l} = W_{i,l-1} \times \mathbb{R}$  in the former case. The definable  $\mathcal{C}^r$  map  $\rho_{i,l}: W_{i,l} = W_{i,l-1} \times \mathbb{R} \to \pi_l(C_i)$  is given by  $\rho_{i,l}(x,t) = (\rho_{i,l-1}(x), f(\rho_{i,l-1}(x)))$ . Set  $W_{i,l} = \{(x,t) \in W_{i,l-1} \times \mathbb{R} \mid f_1(\rho_{i,l-1}(x)) < t < f_2(\rho_{i,l-1}(x))\}$  in the latter case. The definable  $\mathcal{C}^r$  map  $\rho_{i,l}: W_{i,l} \to \pi_l(C_i)$  is given by  $\rho_{i,l}(x,t) = (\rho_{i,l-1}(x),t)$ .

The definable open set  $W_i = W_{i,n}$  and the definable  $\mathcal{C}^r$  map  $\rho_i = \rho_{i,n}$  satisfy the conditions required in this lemma.

We have finished introducing the preliminary results. We begin to define a sheaf on the o-minimal spectrum.

**Proposition 3.11.** Let M be a definable  $C^r$  manifold. There exists a sheaf  $\mathfrak{D}_M^r$  on  $\widetilde{M}$  such that, for any definable open subset U of M, the equality  $\mathfrak{D}_M^r(\widetilde{U}) = C_{df}^r(U)$  is satisfied.

*Proof.* The proof is the same as the proof of [2, Proposition 7.3.2]. We omit the proof.  $\Box$ 

**Proposition 3.12.** Let M be a definable  $C^r$  manifold. The stalk  $(\mathfrak{D}_M^r)_{\alpha}$  of the sheaf

 $\mathfrak{D}^r_M$  at a point  $\alpha \in \widetilde{M}$  is a local ring, and its maximal ideal is given by

$$\mathfrak{m}_{\alpha} = \{ f \in (\mathfrak{D}_{M}^{r})_{\alpha} \mid F^{-1}(0) \in \alpha \},$$

where  $F \in C^r_{df}(U)$  is a representative of the element  $f \in (\mathfrak{D}^r_M)_{\alpha}$  and U is a definable open subset of M with  $U \in \alpha$ .

Proof. We first show that  $\mathfrak{m}_{\alpha}$  is an ideal. Let  $f \in \mathfrak{m}_{\alpha}$  and  $g \in (\mathfrak{D}_{M}^{r})_{\alpha}$ . The definable  $\mathcal{C}^{r}$  functions  $F \in C^{r}_{\mathrm{df}}(U)$  and  $G \in C^{r}_{\mathrm{df}}(U')$  are their representatives. We may assume that U' = U considering the intersection  $U \cap U'$ . We have  $(GF)^{-1}(0) \supset F^{-1}(0) \in \alpha$ ; hence  $(GF)^{-1}(0) \in \alpha$  and  $gf \in \mathfrak{m}_{\alpha}$ . When  $f_{1}, f_{2} \in \mathfrak{m}_{\alpha}$ , we can take their representatives  $F_{1}, F_{2} \in C^{r}_{\mathrm{df}}(U)$  for some common definable open subset U of M in the same way as the previous case. We get  $(F_{1} + F_{2})^{-1}(0) \supset F_{1}^{-1}(0) \cap F_{2}^{-1}(0) \in \alpha$ ; hence,  $(F_{1} + F_{2})^{-1}(0) \in \alpha$  and  $f_{1} + f_{2} \in \mathfrak{m}_{\alpha}$ . We have shown that  $\mathfrak{m}_{\alpha}$  is an ideal.

We next show that all the elements in  $(\mathfrak{D}_M^r)_{\alpha} \setminus \mathfrak{m}_{\alpha}$  are units. Let  $f \in (\mathfrak{D}_M^r)_{\alpha} \setminus \mathfrak{m}_{\alpha}$  and  $F \in C^r_{\mathrm{df}}(U)$  be a representative of f. Set  $V = U \setminus F^{-1}(0)$ . It is an element of  $\alpha$  because  $f \notin \mathfrak{m}_{\alpha}$ . The restriction  $F|_V$  of F to V is also a representative of f and the function  $1/F|_V \in C^r_{\mathrm{df}}(V)$  is a representative of the multiplicative inverse of f. The element f is a unit in  $(\mathfrak{D}_M^r)_{\alpha}$ .

**Lemma 3.13.** Let r be a nonnegative integer. Let M be a definable  $C^r$  manifold, and  $\alpha \in \widetilde{M}$ . Given any  $f \in (\mathfrak{D}_M^r)_{\alpha}$ , there exist  $g, h \in C^r_{df}(M)$  and  $\sigma \in S_{\widetilde{\mathbb{R}}}$  such that  $g \notin \mathfrak{m}_{\alpha}$  and  $\sigma \circ (gf) = h$  in  $(\mathfrak{D}_M^r)_{\alpha}$ .

Proof. Let  $F \in C^r_{\mathrm{df}}(U)$  be a representative of f, where U is a definable open subset of M with  $\alpha \in \widetilde{U}$ . There exists a definable  $\mathcal{C}^r$  function g on M such that g is positive on U and  $\lim_{U\ni x\to x_0} g(x)F(x)=0$  for all  $x_0\in \overline{U}\setminus U$  by Lemma 3.9. We have  $g\not\in\mathfrak{m}_\alpha$  because g is positive on U and  $U\in\alpha$ . Using Proposition 3.6, we can find  $\sigma\in S_{\widetilde{\mathbb{R}}}$  such that  $\sigma\circ(gf)$  is extendable to M as a definable  $\mathcal{C}^r$  function. Let h be the extension. We have  $\sigma\circ(gf)=h$  in  $(\mathfrak{D}^r_M)_\alpha$ .

Let  $\alpha$  be an arbitrary element of  $\widetilde{M}$ . We want to define an interpretation of  $\mathcal{L}$ -formulae in the residue field  $k(\alpha)$ . For that purpose, we first determine an interpretation in the stalk  $(\mathfrak{D}_M^r)_{\alpha}$ . For any constant symbol c, the interpretation of c in  $(\mathfrak{D}_M^r)_{\alpha}$  is given by  $c^{(\mathfrak{D}_M^r)_{\alpha}} = c^{\widetilde{\mathbb{R}}}$ . The notation  $c^{\widetilde{\mathbb{R}}}$  denotes the interpretation of the constant symbol c in  $\widetilde{\mathbb{R}}$ . Let g be a function symbol in n variables

in  $\mathcal{L}$ . For any  $f_1, \ldots, f_n \in (\mathfrak{D}_M^r)_{\alpha}$ , the interpretation of g in  $(\mathfrak{D}_M^r)_{\alpha}$  is given by  $g^{(\mathfrak{D}_M^r)_{\alpha}}(f_1, \ldots, f_n) = g^{\mathbb{R}}(F_1, \ldots, F_n) \in (\mathfrak{D}_M^r)_{\alpha}$ , where  $F_i : U \to \mathbb{R}$  are definable  $\mathcal{C}^r$  functions which are representatives of  $f_i$  for all  $1 \leq i \leq n$ . We finally consider a relation symbol R in n variables. The interpretation of R in  $(\mathfrak{D}_M^r)_{\alpha}$  is given by

$$R^{(\mathfrak{D}_{M}^{r})_{\alpha}} = \{ (f_{1}, \dots, f_{n}) \in ((\mathfrak{D}_{M}^{r})_{\alpha})^{n} \mid \{ x \in U \mid (F_{1}(x), \dots, F_{n}(x)) \in R^{\widetilde{\mathbb{R}}} \} \in \alpha \}.$$

It is easy to check that the above definitions are independent of the choice of the representatives  $F_1, \ldots, F_n$ . Under the above interpretation, the local ring  $(\mathfrak{D}_M^r)_{\alpha}$  is an  $\mathcal{L}$ -structure. We denote this  $\mathcal{L}$ -structure by  $(\widehat{\mathfrak{D}_M^r})_{\alpha}$ .

**Proposition 3.14.** Consider a definable  $C^r$  manifold M, where r is a nonnegative integer. Let  $\alpha \in \widetilde{M}$  be a  $D_M$ -ultrafilter,  $\phi(\overline{x})$  be an  $\mathcal{L}$ -formula with n free variables and  $\overline{f} = (f_1, \ldots, f_n) \in ((\mathfrak{D}_M^r)_{\alpha})^n$ . The  $\mathcal{L}$ -structure  $(\mathfrak{D}_M^r)_{\alpha}$  satisfies  $\phi(\overline{f})$  if and only if the set

$$\{x \in U \mid \widetilde{\mathbb{R}} \models \phi(F_1(x), \dots, F_n(x))\}$$

belongs to the  $D_M$ -ultrafilter  $\alpha$ , where  $F_i: U \to \mathbb{R}$  are definable  $C^r$  functions which are representatives of  $f_i$  for all  $1 \le i \le n$ .

Proof. We prove the proposition by induction on the complexity of the formula  $\phi(\overline{x})$ . The proposition is obviously true when  $\phi(\overline{x})$  is an atomic formula. It is easy to show the proposition when  $\phi = \phi_1 \wedge \phi_2$  or  $\phi = \neg \psi$  for some  $\mathcal{L}$  formulae  $\phi_1$ ,  $\phi_2$  and  $\psi$ . The remaining case is the case in which  $\phi(\overline{x}) = \exists y \ \psi(\overline{x}, y)$ . We may assume that the formula  $\psi(\overline{x}, y)$  satisfies the statement of the proposition by the induction hypothesis.

We first consider the case in which the definable set

$$X = \{ x \in U \mid \widetilde{\mathbb{R}} \models \phi(F_1(x), \dots, F_n(x)) \}$$

is an element of  $\alpha$ . Consider the definable set Y given by

$$Y = \{(x, y) \in X \times \mathbb{R} \mid \widetilde{\mathbb{R}} \models \psi(F_1(x), \dots, F_n(x), y)\}.$$

Let  $\pi: Y \to X$  be the projection, then the definable map  $\pi$  is onto by the definition of X.

We may assume that M is a definable  $\mathcal{C}^r$  submanifold of a Euclidean space  $\mathbb{R}^m$ . Apply the definable  $\mathcal{C}^r$  cell decomposition theorem [4, Theorem 3.2 and Exercise 3.3 of Chapter 7]. We get a definable  $C^r$  cell decomposition of  $\mathbb{R}^{m+1}$  partitioning Y. One of cells in  $\mathbb{R}^m$ , say C, is contained in X and belongs to  $\alpha$ . There exists a definable  $C^r$  function  $h:C\to\mathbb{R}$  such that the definable set  $\{(x,h(x))\mid x\in C\}$  is contained in Y. In fact, a cell D with  $\pi(D)=C$  is contained in Y because  $\pi$  is onto. Set h=u if the cell D is of the from  $\{(x,y)\in C\times\mathbb{R}\mid y=u(x)\}$  for some definable  $C^r$  function u on C. Set  $h=\frac{u_1+u_2}{2}$  if the cell D is of the from  $\{(x,y)\in C\times\mathbb{R}\mid u_1(x)< y< u_2(x)\}$  for some definable  $C^r$  functions  $u_1$  and  $u_2$  on C. There exists a definable open subset W of M and a definable  $C^r$  map  $\rho:W\to C$  with  $C\subset W$  and  $\rho|_C=$  id by Lemma 3.10. We have  $W\in\alpha$  because  $C\subset W$  and  $C\in\alpha$ . Set  $G=h\circ\rho$ , and let g be the image of G in  $(\mathfrak{D}_M^r)_{\alpha}$ . The definable set

$$Z = \{x \in U \cap W \mid \widetilde{\mathbb{R}} \models \psi(F_1(x), \dots, F_n(x), G(x))\}\$$

contains C, hence; we have  $Z \in \alpha$ . We get  $(\mathfrak{D}_M^r)_{\alpha} \models \psi(\overline{f}, g)$  by the induction hypothesis. We obtain  $(\mathfrak{D}_M^r)_{\alpha} \models \phi(\overline{f})$ .

We next consider the case in which the relation  $(\mathfrak{D}_M^r)_{\alpha} \models \phi(\overline{f})$  is satisfied. There exists  $g \in (\mathfrak{D}_M^r)_{\alpha}$  with  $(\mathfrak{D}_M^r)_{\alpha} \models \psi(\overline{f},g)$ . Let  $G: U \to \mathbb{R}$  be a representative of g. We may assume that  $F_1, \ldots, F_n$  and G have the common domain U by shrinking U if necessary. Set  $A = \{x \in U \mid \widetilde{\mathbb{R}} \models \psi(F_1(x), \ldots, F_n(x), G(x))\}$ . It belongs to  $\alpha$  by the induction hypothesis. For any  $x \in A$ , the formula  $\exists y \ \psi(F_1(x), \ldots, F_n(x), y)$  holds true by taking y = G(x). It means that the set

$$X = \{ x \in U \mid \widetilde{\mathbb{R}} \models \phi(F_1(x), \dots, F_n(x)) \}$$

contains A; therefore, the set X belongs to  $\alpha$ .

**Proposition 3.15.** Consider a definable  $C^r$  manifold M, where r is a nonnegative integer. Let  $\alpha \in \widetilde{M}$  be a  $D_M$ -ultrafilter. Let  $\phi(\overline{x})$  be an  $\mathcal{L}$ -formula with n free variables. Let  $\overline{f} = (f_1, \ldots, f_n)$ ,  $\overline{g} = (g_1, \ldots, g_n) \in ((\mathfrak{D}_M^r)_\alpha)^n$  with  $f_i - g_i \in \mathfrak{m}_\alpha$  for all  $1 \leq i \leq n$ . Here,  $\mathfrak{m}_\alpha$  is the maximal ideal of the local ring  $(\mathfrak{D}_M^r)_\alpha$ . The  $\mathcal{L}$ -structure  $(\mathfrak{D}_M^r)_\alpha$  satisfies  $\phi(\overline{f})$  if and only if  $\phi(\overline{g})$  is true in  $(\mathfrak{D}_M^r)_\alpha$ .

Proof. By symmetry, we have only to show that  $(\mathfrak{D}_M^r)_{\alpha} \models \phi(\overline{g})$  if  $(\mathfrak{D}_M^r)_{\alpha} \models \phi(\overline{f})$ . Let  $F_i$  and  $G_i$  be representatives of  $f_i$  and  $g_i$  for all  $1 \leq i \leq n$ , respectively. We may assume that the domains of  $F_i$  and  $G_i$  are common without loss of generality. Let U be the common domain. It is an element of  $\alpha$ . Set  $Z_i = \{x \in U \mid F_i(x) = G_i(x)\}$  for all  $1 \le i \le n$ , then it belongs to  $\alpha$  by the definition of the maximal ideal  $\mathfrak{m}_{\alpha}$ . The intersection  $Z = \bigcap_{i=1}^{n} Z_i$  is also an element of  $\alpha$ .

Set  $X = \{x \in U \mid \widetilde{\mathbb{R}} \models \phi(F_1(x), \dots, F_n(x))\}$  and  $Y = \{x \in U \mid \widetilde{\mathbb{R}} \models \phi(G_1(x), \dots, G_n(x))\}$ . We have  $X \in \alpha$  by the assumption and Proposition 3.14. We get  $Y \cap Z \in \alpha$  because  $Y \cap Z = X \cap Z$  and  $X, Z \in \alpha$ . We obtain  $Y \in \alpha$  because  $Y \cap Z \subset Y$ . We finally have  $(\widetilde{\mathfrak{D}_M^r})_{\alpha} \models \phi(\overline{g})$  by Proposition 3.14.

Let M be a definable  $\mathcal{C}^r$  manifold. The residue field  $k(\alpha)$  of the stalk of the sheaf  $\mathfrak{D}_M^r$  at a point  $\alpha \in \widetilde{M}$  can be considered an  $\mathcal{L}$ -structure under the following interpretation: For any  $\mathcal{L}$ -formula  $\phi(\overline{x})$  with n free variables and  $\overline{a} = (a_1, \ldots, a_n) \in (k(\alpha))^n$ , the sentence  $\phi(\overline{a})$  is true if  $(\mathfrak{D}_M^r)_{\alpha} \models \phi(f_1, \ldots, f_n)$ , where  $f_i \in (\mathfrak{D}_M^r)_{\alpha}$  is a representative of  $a_i$  for each  $1 \leq i \leq n$ . The above definition is independent of the choice of the representatives  $f_1, \ldots, f_n$  by Proposition 3.15. This  $\mathcal{L}$ -structure is denoted by  $\widetilde{k(\alpha)}$ . We are finally ready to demonstrate Theorem 1.2.

**Theorem 3.16.** The  $\mathcal{L}$ -structure  $\widetilde{k(\alpha)}$  is an elementary extension of  $\widetilde{\mathbb{R}}$ .

Let K be an elementary extension of  $\widetilde{\mathbb{R}}$  whose underlying set K contains the ring  $C_{df}^r(M)/\operatorname{supp}(\alpha)$ . Assume further that, for any  $\mathcal{L}$ -formula  $\phi(\overline{x})$  and  $\overline{F} = (F_1, \dots, F_n) \in (C_{df}^r(M))^n$ , the following two conditions are equivalent:

- $\mathcal{K} \models \phi(\overline{F})$ , and
- the ultrafilter  $\alpha$  contains the definable set  $\{x \in M \mid \widetilde{\mathbb{R}} \models \phi(F_1(x), \dots, F_n(x))\}.$

Then, there exists a unique elementary embedding  $\widetilde{k(\alpha)} \prec \mathcal{K}$ .

Proof. We first demonstrate that  $\widetilde{k(\alpha)}$  is an elementary extension of  $\widetilde{\mathbb{R}}$ . Consider an  $\mathcal{L}$ -formula  $\phi(\overline{x},y)$ . Let  $\overline{a}=(a_1,\ldots,a_n)$  be a sequence of real numbers and  $f\in k(\alpha)$  with  $\widetilde{k(\alpha)}\models\phi(\overline{a},f)$ . We have only to show that  $\widetilde{\mathbb{R}}\models\phi(\overline{a},b)$  for some  $b\in\mathbb{R}$  by [11, Proposition 2.3.5]. The set  $C=\{x\in U\mid \widetilde{\mathbb{R}}\models\phi(a_1,\ldots,a_n,F(x))\}$  is contained in  $\alpha$  by Proposition 3.14, where  $F\in C^r_{\mathrm{df}}(U)$  is a representative of f. In particular, C is not an empty set. Take  $c\in C$  and set b=F(c). It is obvious that  $\widetilde{\mathbb{R}}\models\phi(\overline{a},b)$ . We have shown that  $\widetilde{k(\alpha)}$  is an elementary extension of  $\widetilde{\mathbb{R}}$ .

Let  $\mathcal{K}$  be an elementary extension of  $\mathbb{R}$  satisfying the conditions in the theorem. We construct a map  $\iota: k(\alpha) \to K$ . Consider an arbitrary element  $a \in k(\alpha)$ . Let  $f \in (\mathfrak{D}_M^r)_{\alpha}$  be a representative of a. There exist  $g, h \in C^r_{\mathrm{df}}(M)$  and  $\sigma \in S_{\mathbb{R}}$  such that

 $g \notin \operatorname{supp}(\alpha)$  and  $\sigma \circ (gf) = h$  in  $(\mathfrak{D}_M^r)_{\alpha}$  by Lemma 3.13. Since  $\mathcal{K}$  is an elementary extension of  $\widetilde{\mathbb{R}}$ , there exists a unique definable  $\mathcal{C}^r$  bijective extension  $\sigma_K : K \to K$  of  $\sigma$  to K. We define

$$\iota(a) = \sigma_K^{-1}(h)/g. \tag{1}$$

We demonstrate that the map  $\iota$  is an elementary embedding. Assume that M is a definable  $\mathcal{C}^r$  submanifold of  $\mathbb{R}^m$ . The notation  $X_i$  denotes the restriction of the i-th coordinate function on  $\mathbb{R}^m$  to M or the its image in  $k(\alpha)$  for each  $1 \leq i \leq m$ . Let  $\overline{a} = (a_1, \ldots, a_n) \in (k(\alpha))^n$ . Let  $F_i : U \to \mathbb{R}$  be a definable  $\mathcal{C}^r$  function which is a representative of  $a_i$ . We have  $U \in \alpha$ . The notation  $\Phi(x_1, \ldots, x_m)$  denotes the formula representing the definable set U, that is,  $U = \{\overline{x} \in \mathbb{R}^m \mid \widetilde{\mathbb{R}} \models \Phi(\overline{x})\}$ . We have

$$\mathcal{K} \models \Phi(X_1, \dots, X_m) \tag{2}$$

by the assumption on K because  $X_1, \ldots X_m$  are definable  $C^r$  functions on M.

The formula  $\Psi_i(x_1,\ldots,x_m,y)$  represents the relation  $y=F_i(x_1,\ldots,x_m)$ . It means that  $y=F_i(x_1,\ldots,x_m)$  if and only if  $\widetilde{\mathbb{R}} \models \Psi_i(x_1,\ldots,x_m,y)$  for any  $(x_1,\ldots,x_m) \in \mathbb{R}^m$  and  $y \in \mathbb{R}$ . We first show the following claim:

**Claim.** For any  $1 \leq i \leq n$ , the unique element  $y \in K$  satisfying the formula  $\Psi_i(X_1, \ldots, X_m, y)$  in  $\mathcal{K}$  is  $\iota(a_i)$ .

We begin to prove the claim. We get

$$\widetilde{\mathbb{R}} \models \forall x_1 \cdots \forall x_m \exists ! y \ (\Phi(x_1, \dots, x_m) \to \Psi_i(x_1, \dots, x_m, y))$$
 (3)

for all  $1 \leq i \leq n$ . Since  $\widetilde{\mathbb{R}} \prec \mathcal{K}$ , the same sentence holds true in  $\mathcal{K}$ , that is;

$$\mathcal{K} \models \forall x_1 \cdots \forall x_m \exists ! y \ (\Phi(x_1, \dots, x_m) \rightarrow \Psi_i(x_1, \dots, x_m, y)).$$

Using the relation (2), we get

$$\mathcal{K} \models \exists! y \ \Psi_i(X_1, \dots, X_m, y).$$

It means that only one element  $y \in K$  can satisfy the formula  $\Psi_i(X_1, \ldots, X_m, y)$  in  $\mathcal{K}$ . The remaining task to complete the proof of the claim is to demonstrate that  $\mathcal{K} \models \Psi_i(X_1, \ldots, X_m, \iota(a_i))$ .

There exist definable  $C^r$  functions  $g_i, h_i$  on M and  $\sigma_i \in S_{\widetilde{\mathbb{R}}}$  with  $g_i \notin \text{supp}(\alpha)$  and  $\sigma_i \circ (g_i F_i) = h_i$  in  $(\mathfrak{D}_M^r)_{\alpha}$  by Lemma 3.13. It implies that the definable set

$$\{x \in M \mid \widetilde{\mathbb{R}} \models \forall y \ (\sigma_i(g_i(x)y) = h_i(x) \to \neg \Phi(x) \lor \Psi_i(x,y))\}$$

belongs to  $\alpha$  by shrinking U if necessary. We obtain

$$\mathcal{K} \models \forall y \ (\sigma_i(g_i y) = h_i \rightarrow \neg \Phi(X_1, \dots, X_m) \lor \Psi_i(X_1, \dots, X_m, y))$$

by the assumption on  $\mathcal{K}$ . By the definition of  $\iota(a_i)$  given in the equality (1), the equality  $\sigma_i(g_i\iota(a_i)) = h_i$  is satisfied in  $\mathcal{K}$ . Hence, we have  $\mathcal{K} \models \Psi_i(X_1, \ldots, X_m, \iota(a_i))$ . We have demonstrated the claim.

The map  $\iota$  is well-defined because the solution of the relation  $\mathcal{K} \models \Psi_i(X_1, \ldots, X_m, y)$  is unique and we can show that, if we take another  $\sigma_i$ ,  $g_i$  and  $h_i$ , the element  $y = \sigma_i^{-1}(h_i)/g_i$  satisfies the relation  $\mathcal{K} \models \Psi_i(X_1, \ldots, X_m, y)$  in the same way as above.

We begin to prove that the map  $\iota$  is an elementary extension. Consider an  $\mathcal{L}$ formula  $\phi(\overline{x})$  with n free variables. We first show that the condition that  $\widetilde{k(\alpha)} \models \phi(\overline{a})$ implies the condition that  $\mathcal{K} \models \phi(\iota(\overline{a}))$ , where  $\iota(\overline{a}) := (\iota(a_1), \ldots, \iota(a_n)) \in K^n$ . Let  $\overline{y} = (y_1, \ldots, y_n)$  be free variables. Set

$$\psi(\overline{x},\overline{y}) = \bigwedge_{i=1}^{n} (\Phi(x_1,\ldots,x_m) \to \Psi_i(x_1,\ldots,x_m,y_i)) \wedge \phi(\overline{y}).$$

We have

$$\widetilde{k(\alpha)} \models \psi(X_1, \dots, X_m, \overline{a})$$

because we assume that  $\widetilde{k(\alpha)} \models \phi(\overline{a})$ . The definable set  $V = \{x \in M \mid \widetilde{\mathbb{R}} \models \psi(x, F_1(x), \dots, F_n(x))\}$  is contained in  $\alpha$  by Proposition 3.14. Set  $\psi'(\overline{x}) = \exists \overline{y} \ \psi(\overline{x}, \overline{y})$  and  $W = \{x \in M \mid \widetilde{\mathbb{R}} \models \psi'(x)\}$ . The definable set W contains the definable set V; and we get  $W \in \alpha$ . Since  $X_1, \dots, X_m$  are definable  $\mathcal{C}^r$  functions on M, we get  $\mathcal{K} \models \psi'(X_1, \dots, X_m)$  by the assumption on  $\mathcal{K}$ . It means the following:

$$\mathcal{K} \models \exists \overline{y} \ \psi(X_1, \dots, X_m, \overline{y}).$$

However, by the relation (2) and the above claim, the only  $\iota(\overline{a}) \in K^n$  satisfies the first condition  $\bigwedge_{i=1}^n (\Phi(X_1, \ldots, X_m) \to \Psi_i(X_1, \ldots, X_m, y_i))$  of  $\psi(X_1, \ldots, X_m, \overline{y})$ . Hence, we have  $\mathcal{K} \models \psi(X_1, \ldots, X_m, \iota(\overline{a}))$ ; therefore,  $\mathcal{K} \models \phi(\iota(\overline{a}))$ .

We show the opposite implication, that is; we demonstrate that the condition that  $\mathcal{K} \models \phi(\iota(\overline{a}))$  implies the condition that  $\widetilde{k(\alpha)} \models \phi(\overline{a})$ . We have  $\mathcal{K} \models \bigwedge_{i=1}^n \Psi_i(X_1, \ldots, X_m, \iota(a_i)) \wedge \phi(\iota(\overline{a}))$  by the above claim and the assumption. We get  $\mathcal{K} \models \exists \overline{y} \bigwedge_{i=1}^n \Psi_i(X_1, \ldots, X_m, y_i) \wedge \phi(\overline{y})$ . Using the assumption on  $\mathcal{K}$ , the definable set  $\{x \in M \mid \exists \overline{y} \bigwedge_{i=1}^n \Psi_i(x, y_i) \wedge \phi(\overline{y})\}$  is an element of  $\alpha$ . We get

$$\widetilde{k(\alpha)} \models \exists \overline{y} \bigwedge_{i=1}^{n} \Psi_i(X_1, \dots, X_m, y_i) \land \phi(\overline{y})$$
 (4)

by Proposition 3.14. On the other hand, the relation (3) implies the relation that

$$\widetilde{k(\alpha)} \models \forall x_1 \cdots \forall x_m \exists ! y \ (\Phi(x_1, \dots, x_m) \rightarrow \Psi_i(x_1, \dots, x_m, y))$$

because  $\widetilde{\mathbb{R}} \prec \widetilde{k(\alpha)}$  as we have demonstrated. The relation  $\widetilde{k(\alpha)} \models \Phi(X_1, \ldots, X_m)$  is obviously satisfied by the definition of U and Proposition 3.14. We get

$$\widetilde{k(\alpha)} \models \exists! y \ \Psi_i(X_1, \dots, X_m, y)$$
 (5)

from the above relations. The relation

$$\widetilde{k(\alpha)} \models \Psi_i(X_1, \dots, X_m, a_i)$$
 (6)

is obvious by the definition of  $F_i$  and Proposition 3.14. Using the relations (4), (5) and (6), we get  $k(\alpha) \models \phi(\overline{a})$ . We have demonstrated that the map  $\iota$  is an elementary embedding.

The remaining task is to show that the map  $\iota$  is the unique elementary embedding. Let  $\iota': \widehat{k(\alpha)} \prec \mathcal{K}$  be an elementary embedding. Let v be an arbitrary element of  $k(\alpha)$ . We have only to show that  $\iota(v) = \iota'(v)$ . There exist  $g, h \in C^r_{\mathrm{df}}(M)$  and  $\sigma \in S_{\mathbb{R}}$  such that  $g \neq 0$  in  $k(\alpha)$  and  $\sigma \circ (gv) = h$  in  $k(\alpha)$  in the same way as above. We have  $\sigma_K(g \cdot \iota'(v)) = h$  in  $\mathcal{K}$  because  $\iota'$  is an elementary embedding. Since  $\sigma_K$  is a bijection, we get  $\iota(v) = \iota'(v)$  by the equality (1).

#### 参考文献

[1] J. L. Bell and A. B. Slomson, Models and ultraproducts: An introduction. North-Holland, Amsterdam, 1969.

- [2] J. Bochnak, M. Coste and M. -F. Roy, Real algebraic geometry. Ergeb. Math. Grenzgeb.(3), Vol. 36. Springer-Verlag: Berlin, 1998.
- [3] M. Coste, An introduction to o-minimal geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Mathematica, Instituti Editoriali e Poligrafici Internazionali, Pisa, 2000.
- [4] L. van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, Vol. 248. Cambridge University Press, Cambridge, 1998.
- [5] L. van den Dries and C. Miller, Geometric categories and o-minimal structures,
   Duke Math. J. 84 (1996), 497-540.
- [6] M. J. Edmundo, G. O. Jones and N. J. Peatfield, *Sheaf cohomology in o-minimal structures*, J. of Math. Logic, **6** (2006), 163-179.
- [7] J. Escribano, Approximation theorems in o-minimal structures, Illinois J. Math. 46 (2002), 111-128.
- [8] A. Fisher, Smooth functions in o-minimal structures, Advances in Math. 218 (2008), 496-514.
- [9] M. Fujita, Real spectrum of ring of definable functions, Proc. Japan Acad. Ser.
   A, 80 (2004), 116-121.
- [10] T. Kawakami, Every definable  $C^r$  manifold is affine, Bull. Korean Math. Soc. **42** (2005), 165-167.
- [11] D. Marker, Model theory: an introduction. Graduate texts in mathematics, Vol. 217. Springer: New York, 2002.
- [12] A. Pillay, Sheaves of continuous definable functions, J. Symb. Logic, **53**(4) (1988), 1165-1169.