A QUICK TOUR TO THE DISTANCE ON TEICHMULLER
SPACE VIA RENORMALIZED VOLUME

HIDETOSHI MASAI

ABSTRACT. We give a quick introduction to a distance on the Teichmiiller
space defined via the notion of renormalized volume. The definitions and
properties are summarised without proofs.

1. INTRODUCTION

The purpose of this note is to give a quick summery of results in [Masa] which is
about a distance and compactification of the Teichmiiller space via the renormalized
volume.

There have been many attempts to relate the hyperbolic volume of 3-manifolds
with quantities which appear in Teichmiiller theory. In this note, we discuss closed
orientable surface S of genus > 2. One way to associate hyperbolic 3-manifolds via
T (S) is to consider quasi-Fuchsian manifolds. By the Bers simultaneous uniformiza-
tion [Ber70], the space of quasi-Fuchsian manifolds is parametrized by the product
T(S) x T(S). Let qf(X,Y) denote the quasi-Fuchsian manifold parametrized by
X,Y € T(S). Although quasi-Fuchsian manifolds are of infinite hyperbolic vol-
umes, there are several natural ways to extract finite “volumes” of them. One
standard and classical object is the volume of convex core, which we call the con-
vex core volume of gf (X,Y") and denote it by Vo (X,Y). Another natural notion is
so-called the renormalized volume which is extensively studied by several authors
[BBB19, BBB2, BBP, BC17, KM18, KS08, Sch13, Sch19]. Let Vz(X,Y) denote the
renormalized volume of gf(X,Y"). In [Masa], we define a distance dg on T(S) via
the renormalized volume, and demonstrate that the distance dg is natural to the
volume of hyperbolic 3-manifolds.

Let us first summarise known results about distances on 7(S) and volume of
hyperbolic 3-manifolds. Brock [Bro03] has shown that the Weil-Petersson distance
dwp(X,Y) on T(S) is coarsely equal to the convex core volume V&(X,Y). By
[BC17], Vo (X,Y) differs from Vg5 (X,Y) by a finite amount, Brock’s work shows
the coarse correspondence between dyp(X,Y) and Vr(X,Y) as well. The error
constants in Brock’s result are not explicit, but by using the work of Krasnov-

Schlenker[KS08], Kojima-McShane [KM18] showed

where x(S) is the Euler characteristics of S. Notice that opposite inequality is
impossible as by any Dehn twist 7, d7(X,7"(X)) — oo whereas Vi(X,7"X) is
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bounded as n — oco. The works of Brock and Kojima-McShane extend to the hy-
perbolic volume of mapping tori M () of pseudo-Anosov mapping class ¢. Namely
by replacing Vr(X,Y) with vol(M(¢)) and distances with translation distances of
1, we get the same estimates.

In [Masa], we introduced a new distance, denoted dg via the renormalized vol-
ume. One important feature of dg is the following.

Theorem 1.1. Let ¢y € MCG(S) be a pseudo-Anosov mapping class and M(¢) =
S x I/(x,1) ~ (¢(x),0) denote the mapping torus of 1. Then the translation
distance of 1 with respect to dg is equal to the hyperbolic volume of M (), that is,
for any X € T(S), we have

T~ dg (X, 0" X) = vol(M(®))

In this note, we give a quick overview of [Masa] about dg. We do not give proofs
and refer [Masa] for the details.

Acknowledgement. The work of the author is partially supported by JSPS KAK-
ENHI Grant Number 19K14525.

2. RENORMALIZED VOLUME, DISTANCE AND COMPACTIFICATION

The idea of the renormalized volume comes from Graham-Witten [GW99] and
it is studied by several authors for hyperbolic 3-manifolds (see e.g. [BBB19, BBB2,
BBP,BC17,KM18,KS08,Sch13,Sch19]).

For X,Y € T(5), let QD(X) denote the space of quadratic differentials on
X, and ¢y (X) € QD(X) denote the mapping defined via Bers embedding with
base point X. We further let QD(S) = Uxeqp(x) denote the space of quadratic
differentials on S which is a bundle over 7(S). Notice the notation gy (X) is not
standard for the Bers embedding. For the discussion in this note, we would like to
regard gy as the function determined by Y. It is known by Nehari’s inequality that
gy (X) is contained in a closed metric ball QD 5(X) with respect to L>°-norm.

In this note, we adopt the following variation formula as the definition of Vj.

Theorem 2.1 ([KM18, Lemma 2.4], [Sch19, Corollary 3.13]). For any Y € T(S),
Vr(-,Y) is differentiable on T(S). If o : [-1,1] = T(S) is a differentiable path,
d

o Vr(o(t),Y) = —Re(gy (c(0)),5(0)).

t=0

Now we define the space LQ(S) which is the space of sections of a bundle over

T(S).
Definition 2.2. Let C := 34/7(g — 1). Then we define
LQ(S) == [ {[-Cdup(b,X),Cdyp(b, X)] x QDp(X)},
XeT(S)

(LQ stands for Lipschitz and Quadratic differential). Furthermore by the notation
(£,9) € LQ(S), we mean a point given by £ : T(S) — R and g : T(S) — QD(S),
where £(X) € [—dwp (D, X). dwp(b, X)] and ¢(X) € QDp(X). We equip LQ(S) with

the topology of point-wise convergence, or equivalently the product topology.

It turns out that LQ(S) is a “nice” space.
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Proposition 2.3 ([Masa, Proposition 5.4]). The space LQ(S) is a compact, Haus-
dorff, and second countable (hence metrizable) space.

In [Masal, we constructed a compactification of 7(.5) by embedding it in LQ(.S).

2.1. Lipschitz property of the renormarized volume. In [Sch19] and [KM1§],
Schlenker and Kojima-McShane proved that there are explicit upper bounds of the
renormalized volume Vg in terms of the WP metric and the Teichmiiller distance.

Theorem 2.4 ([Sch19, Theorem 5.4],[KM18]). Let X,Y € T(S). Then we have

(1) Vr(X,Y) <3y/7m(g — D)dwp(X,Y), and
(2) Vr(X,Y) < 3n|x(9)|dr(X,Y).

The proof of Theorem 2.4 is reduced to the following.
Lemma 2.5 ([Sch13, Proof of Theorem 1.2], [KM18, Proof of Theorem 1.4]). Let
Y eT(S) and o :[0,T] — T(S) be a differentiable path.

(1) If o is a geodesic with respect to the Teichmiiller metric, then

iva(t),Y)\ < 37x(S)

dt
(2) If o is a geodesic with respect to the WP metric, then
d

EVR(U(t),Y)’ <3y/7(g—1).

Theorem 2.4 is obtained by integrating quantities in Lemma 2.5 along corre-
sponding geodesic segments.

Imitating horofunctions defined with distances, we define a function on 7(S) via
the renormalized volume as follows. Let us fix a base point b € T(S).

Definition 2.6. Let Z € T(5). We define vz : T(S) — R by
Vz(X) = VR(X, Z) — VR(b, Z)
for X € T(S). We call vz a volume horofunction.

The variation formula of Vi (Theorem 2.1) gives the following integral expression
of vy:

Proposition 2.7 ([Masa, Proposition 6.4]). Let X,Z € T(S) and let o : [0,T] —
T(S) be a piccewise differentiable path connecting X and b. Then

T
vz(X) = / —Re{gz(o(t)),o(t))dt.
0
By Proposition 2.7, we see that the function vz is a Lipschitz map:

Proposition 2.8 ([Masa, Proposition 6.5]). The function vz : T(S) — R is a
Lipschitz map with respect to both the Teichmiiller metric and the WP metric, i.e.

(1) |vz(X) —vz(Y)| <3y/m(g — 1)dwp(X,Y), and
(2) |vz(X) —vz(YV)] < 37[x(9)|dr (X, Y).

Thus we see that vz is a Lipchitz function and vanishes at the base point b. From
now on we consider the WP metric on 7 (S) and Lipchitz functions with respect to
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the WP metrlc Let Lip 7(S) denote the space of C-Lipchitz functions on 7(.S)
for C = 34/m(g — 1) which vanishes at b. We have a map

V' T(S) — Lipy T(S)
defined by V'(Z) :=vy.
Proposition 2.9 ([Masa, Proposition 6.6]). The map V' : T(S) — Lipf T(S) is
injective and continuous.
Recall that for C = 34/7(g — 1),
Lipy T(S) €[] [-C - dup(b, X),C - dup (b, X)),
z€T(S)
and ¢x(Y) € QDg(Y) (Bers embedding). We are ready to define a function which
gives our compactification.
Definition 2.10. We define a map
V:T(S)— LQ(S)
by V(Z) = (v2(X),4z(X)) xeT(s)-
The map V is an embedding;:

Proposition 2.11 ([Masa, Proposition 6.9]). The map V : T(S) — LQ(S) is a
homeomorphism onto its image.

By Proposition 2.11 and 2.3, the closure V(T (S)) is compact.

Definition 2.12. We denote the closure by 7(5) g V(T (S)) (volume and horo)
and the boundary by 9,7 (S) := V(T (S)) \ V(T (5)).

The construction of T(S)Vh is compatible with the action of the mapping class
group MCG(S) on T(S5).
Proposition 2.13 ([Masa, Proposition 6.11]). The action of MCG(S) on T(S)
extends to a continuous action by homeomorphisms on '7'(5’)V by
(2.1) V-v(X) =v( X)) — v b) for each X € T(S)

Y-qi=1"q

and TP(VM]) = (7/) 'Vaw Q)
2.2. Volume of mapping tori. A mapping class ¥ € MCG(S) is called pseudo-
Anosov if 1 has exactly two fixed points F(¢), F_ () € PMF(S) which we

may characterize as lim, o ¥™(X) = F4(¢) and lim, o ¢"(X) = F_(¢) for
any X € T7(S) in the Thurston compactification. Thurston has shown that the

mapping torus

M(3p) := 8 x [0,1}/((¢(x),0) ~ (,1))
admits a complete hyperbolic metric of finite volume. Let vol(M(¢)) denote the
hyperbolic volume of M (). The following proposition follows from [BB16, KM18,
Sch13].

Proposition 2.14 (c.f. [Masa, Proposition 6.18]). Let v € MCG(S) be pseudo-
Anosov. Then

Jim - Va(by ") = vol (M ()
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3. A DISTANCE ON 7 (S) VIA RENORMALIZED VOLUME

3.1. Renormalized volume function Vy is not a distance. The renormalized
volume of quasi-Fuchsian manifolds defines a function
with the properties:
e Vp(X,Y)>0and Vg(X,Y) =0if and only if X =Y ([BBB19,BBP]), and
o VR(X,Y) =Vg(Y, X) (by definition of quasi-Fuchsian manifolds).
Therefore it is natural to ask if Vi defines a distance on T(S) (see e.g. [DHMI5,
Problem 5.7(Agol)]).

In [Masa], we showed that the triangle inequality is not valid.

Theorem 3.1 ([Masa, Theorem 7.2]). The function Vg : T(S) x T(S) = R does
NOT satisfy the triangle inequality.

3.2. A distance via the renormalized volume. We now define a distance on
T(S).
Definition 3.2. Given X,Y € T(95) , let
dr(X,Y) = sup v(X) — u(Y),
(v,q)
where the supremum is taken over (v, q) € T(S)Vh

——vh
Remark 3.3. We remark that as '7'(5’)V is compact the supremum is actually

——vh
attained by some (v,q) € T(S) . Hence for any piecewise differentiable path
0 :10,T] = T(S) connecting X and Y, we have

T
(3.1) dr(X.Y) = [ —Rela(o(t). 50

for some (v, q) € T(S )Vh. Note also that if one takes the supremum over 7(S) (not

m\’h), one still gets the same distance as T(S) C th is open dense.

It is also worth mentioning that if one considers the horofunctions with respect
to a distance, say d, then the distance defined similarly to the one in Definition 3.2
recovers the original distance d by the triangle inequality. Due to the lack of the
triangle inequality for Vi, the function dr differs from Vjg.

The following properties of dr is easy consequences of above discussions, see
[Masa] for details.

Theorem 3.4 ([Masa, Theorem 7.5]). We have the following estimates of dr in
terms of dwyp, d7, and Vg.

(1) dr(X,Y) < 3y/m(g — 1)dwp(X,Y),

(2) dr(X,Y) < 37|x(9)|dr(X,Y),

(3) ‘/R(X’ Y) < dR(X7 Y)
Theorem 3.5 ([Masa, Theorem 7.6]). The function dg : T(S) x T(S) = R gives
a (possibly asymmetric) distance, that is: for any X,Y,Z € T(S), we have

(1) dp(X,Y) >0 and dp(X,Y) =0 < X =Y.
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As an immediate corollary of the work of Brock [Bro03], we have:

Theorem 3.6 ([Masa, Theorem 7.9]). The distance dg is quasi isometric to the
WP distance dwp. More precisely, there exists constants L > 1 and K > 0 which
depends only on S such that

1
Edwp(X,Y) — K <dp(X,Y) <3y/7(9 — D)dwp(X,Y).
Let us re-state the main theorem.

Theorem 3.7. Let ¢p € MCG(S) be a pseudo-Anosov mapping class and M () the

mapping torus of ¥. Then the translation length 7,(¢) of ¥ with respect to dg is

equal to the hyperbolic volume of the mapping torus M (), i.e. for any X € T(S5),
dr(X, k(X

To(¥) == klim dr(X, v7(X)) ’;: (X))

— 00

= vol(M(s)).

In the proof, we utilize some ergodic theory, which is inspired by Karlsson-
Ledrappier [KL06, Proof of Theorem 1.1], see [Masa, Theorem 7.10] for the proofs.
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