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Abstract

We consider a dual relation between minimization (primal) problem and maxi-
mization (dual) problem from a view point of complementarity. An identity

n—1
(CD) Z[(iﬂk—l — )ik + k(e — prt1)] £ (Tt = Tn)pin + Tnfpin = Topn
k=1

is called complementary [20,22]. We present three types of complementary identities,
which take a fundamental role in analyzing respective pairs of primal and dual.
Moreover, we show that a primal and its dual satisfy Fibonacci Complementary
Duality [18,19,21,22].

1 Introduction

A wide class of quadratic optimization problems has been discussed by Bellman and
others [1-12,23]. Dynamic programming has solved its partial class [2,17,18,26]. Further
a dual approach has been treated based upon convex-concavity [14, 16, 25].

Recently some new dual approaches — plus-minus method, extended Lagrangean
method, ineqlualty method and others — have been derived in [18-22]. In this paper, we
propose a complementary duality based upon an identity.

2 Complementary identities

Let x = {xx}f, n = {p}} be any two sequences of real number with xy = ¢. Then an
identity

i
L

(C1) o = [(Tr—1 — @) e + (e — fr41)] + (X1 — ) o + T fin
1

B
Il

holds true. This identity is called complementary [20,22]. Further we assume that p,, = 0.
Then an identity

n—1

(C2) e = Z[(xk—l — Tk + (e — 1)) + (Tno1 — Tn) i



holds true. This is a conditional complementarity.
On the other hand, we assume that x, = 0. Then an identity

n—1

(Cs) e = Z[(fﬁk—l — Tk + (e — )] + (Tt — Tn) i

holds true. This is also a conditional complementarity.

3 Three pairs

We consider three pairs of minimization (primal) problems and maximization (dual) prob-
lems, which are (P1) vs (D), (P2) vs (Dg) and (P3) vs (D3). It is shown that each pair
is dual to each other. It turns out that the duality is based upon the complementary
identity and an elementary inequality with equality

2y < 2°+1y* on R*; z=1y. (1)

Both the primal (P;) and the dual (D;) are unconditional. The primal (Py) is uncondi-
tional, while the dual (Dg) is conditional on p,. The primal (P3) is conditional on z,,
while the dual (Dj3) is unconditional.

3.1 (Pl) VS (Dl)

Let us consider the first pair:

i
L

minimize [(xk_l —xp)* + Ii] + (Tpoy — 20)® + 2
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o

=1
subject to (i) z € R", (ii)) x =c,

n—1
Maximize 2 — S |1+ (e — ps1)?] = 2 = 122
k=1

(Dy) : :
subject to (i) we€ R".

An identity (C;) with the elementary inequality (1) yields an inequality
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ey — Y [+ (e — peir)?] — i — 112
k=1

[y

3

(o1 — z)® + 23] + (@01 — 20)” + 22
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for any feasible pair (x, u). Then it turns out that both are dual to each other. An
equality condition is

Tho1 — T = Mg, Tp = i —ppp1 1 <k<n—1
(ECy)

Tpn—1 — Tn = Un, Tn = HUn.

The equality condition (ECy) is a linear system of 2n-equation on 2n-variable (x, ). Let
(x, j1) be a solution. Then both sides become a common value with five expressions.

Z [(Tho1 — 2)® + 23] + (@1 — 20)® + 22

k=1
= c(c— 1)
n—1
5V = 2em — > [+ (e — pen)’] — i — il

k=1
n

—1
=Y [uh+ (e — )] + gl + 2
k=1

= ClUq.

Let (z, ) be a solution of (EC;). Then the primal (P;) has a minimum value

n—1
m; = Z [(Tpo1 — a)® + 23] + (@1 — ) + 22
k=1
= c(c—m)

at x, while the dual (D7) has a maximum value
n—1
My = 2cim — ) [ui + (e — Mk—i—l)Q] — iy — iy
k=1
= 3| G )] g

at p.

Lemma 1 (EC,) has indeed a unique solution:

T = (xlv Loy ooy Thy --vy Tp-1, xn)
C
== F (FQn—17 F2n—37 ---7F2n—2k+17 veey F37 F1>7 (2>
2n+1
n = (luh M2y vy My oeey Hn—1, /’Ln)
C
= F (F2n7 F2n—27 ---;FQn—2k+27 feey F47 FQ) (3>
2n+1



Proof.  From (EC;), we have a pair of linear systems of n-variable on n-equation:

c = 311 — X9 c = 2/ — o
T1 = 3x9 — X3 p1 = 32 — fi3
(EQy) : :
Tn—2 = 3xn—1 — Tn Hn—2 = 3,U/n—l — Hn
Tpo1 = 2wy, Hn—1 ::3Mn-
The left system has a solution z in (2), while the right has a solution p in (3). O
, - . Ion o
The primal (P;) has a minimum value my; = ¢(c — ;) = ¢ at a path
2n+1
T = (jlu i?v R fkv R jn—la in)
c
= Ja (F2n—17 an_g, "'7F21’L—2k+17 sy F37 Fl)
2n+1
. Fon 2
The dual (D;) has a maximum value M; = cuf = ¢ at a path
2n+1
/’L* = (:Ujiv /JJ; ety NZv T /jl:;—lv /ﬁ;)
c
= F (FQTH FQTL—Q? ---7F2n—2k+27 "’7F47 FZ)
2n+1

where {F,} is the Fibonacci sequence [13,15,24,27]. This is defined as the solution to the
second-order linear difference equation

Tpyo — Tpi1 — Ty =0, =1, xg=0. (4)
ni|- -2 -1 01 2 3 4 5 6 7 &8 9 10 11
F,|l--- -1 1 0 1 1 2 3 5 8 13 21 34 55 &9
n |12 13 14 15 16 17 18 19 20
F, | 144 233 377 610 987 1597 2584 4181 6765

Table 1 Fibonacci sequence {F),}
Hence both optimal values are identical:
= Fon 2
Fona
An alternate contexture of both optimal points u*, Z is Fibonacci backward:

m1:M1

* 4 * A * A * A E
(/*Lla T1; Moy T2y wvoy Mgy Tk ooy Hyp_1y Tn—1s [y, xn)
C
- F (FQTH F2n—17 FQ'I’L—27 FQ'I’L—37 "'7F21’L—2k+27 FQn—2k+17 e vy F47 F37 F27 Fl)
2n+1

Thus Fibonacci Complementary Duality (FCD) [18, 19,21, 22] holds between (P;) and
(Dy).



3.2 (Pg) VS (DQ)

Let us consider the second:

n—1
minimize (w1 — 2)® + 23] + (noy — 20)?
(Py) k=1
subject to (i) z € R", (ii) xg=c
n—1
Maximize 2ci — Y [ + (e — fas1)?] — o3
k=1
(D2)

subject to (i) pe R", (ii) u, =0.
An identity (Cy) with the elementary inequality (1) yields an inequality

n—1

2cpy — Z (i + (e — pesr)?] —
k=1

3

—1
< (w1 — 2)® + 23] + (@01 — 20)?
k=1

for any feasible pair (x, p). Then both are dual to each other. An equality condition is
Tho1 — T = Mg, T = i — 1 1 <k<n-—1
(EC,)

Tpno1— T = fn-

The equality condition (EC,) is a linear system of (2n — 1)-equation on 2n-variable
(x, p). Let (EC;) be an augmentation of the system (EC,) with the additional constraint
(ii) ptn =0
Tho1 — T = Hg, Tp = i — ppp1 1 <k<n-—1
(ECy)
Tpn-1—Tp = Un, Hpn = 0.
Then (EC)) is of 2n-equation on 2n-variable.

Let (x, 1) be a solution of (EC)). Then both sides become a common value with five
expressions.

n

Z [(mho1 — zi)® + 23] + (Tt — 20)°

k=1
= c(c—m)
n—1
(5Va) = 2cm — > [+ (e — paein)?] — 1o
k=1
n—1

= [up A+ (e — pes)?] + 2



The primal (P3) has a minimum value

n

my = Z [(Ik—l — Ik)z + xi] —+ (:(:n_l — xn)Q
k=1

= c(c— 1)

at x, while the dual (Ds) has a maximum value

n—1
My = 2cm — ) [ui + (pur — ukﬂ)z] —
k=1
n—1

=Y [uh A+ (e — pes)?] + 12

at p.

Lemma 2 The system (EC;) has indeed a unique solution:

r = (123'1, T2, ooy Ty ooy Tp_1, Zlfn)
&
- F (FQn—?n FQn—5> "'>F2n—2k—l> ) Fl> F—l)> (5)
2n—1
n= (:ulv M2y vvovy ks ooeey Hn—1, :un)
&
= Jai (F2n—27 FQTL—47 "'7F21’L—2k7 ceey F27 FO) (6)
2n—1

Proof. From (EC;), we have a pair of linear systems of n-variable on n-equation:

C:?)I‘l—.’lig CIQILLl—,LLQ

T1 = 3Ty — T3 p1 = 3ji2 — i3

(EQQ) Tp—3 = 3Ty o — Tp 1 Hn—3 = Bpbn—2 — fin-1

Tp—o = 3Tp_1 — Tn Hn—2 = 3,U/n—l — Hn
Tpo1 = Tp Hn =0.
The left system has a solution z in (5), while the right has a solution p in (6). O
. .. A FQn—Q 2
The primal (P3) has a minimum value my = ¢(c — ;) = o at a path
2n—1
T = (*Zi‘lu :%27 R Li‘/m ) i:'n,—la j:n)
c
- (F2n—37 F21’L—57 ---7F2n—2k—17 ceey F17 F—l)-
F2n—1



FQn—Q

The dual (Dy) has a maximum value My = cuf = ¢* at a path
2n—1
M* = (MT? ,LL;, ey 'ulta ey :u:;—la ,LL:;)
c
- I3 (FQn—Za FQn—4a -"aFZn—Qka "'>F2a FO)
2n—1
Hence both optimal values are identical:
F2n—2 2
Mo — MQ =
F2n—1

An alternate contexture of both optimal points u*, Z is Fibonacci backward:

* Po * Po * Po * A~ * ~
(;ula L1, Moy T2y wvvy Mgy Thooooy My 15 Tn—1y My, xn)
C
- I (FQn—2> F2n—3> F2n—4> F2n—5> "'>F2n—2k> F2n—2k—1> sy FZa F1> F0> F—l)-
2n—1

Thus FCD holds between (P5) and (Ds).

3.3 (Pg) VS (Dg)
Let us consider the third:

i
L

minimize [(xk_l — )+ xﬂ + (T — 2p)?
(Py) k=1
subject to (i) z€ R", (ii) xo=¢, z, =0
n—1
Maximize 2c — Y | [y + (i — pas1)?] — 127
k=1
(Ds)

subject to (i) € R".

An identity (Cs3) with the elementary inequality (1) yields an inequality

n—1

2epy — Z (i + (e — pagr)?] —
k=1

3
—

[(Zho1 — zi)® + 23] + (Tae1 — 2)°
1

IA
=
l

for any feasible pair (z, ©). Then both are dual to each other. An equality condition is

Tho1 — T = Mgy, T = fk — fer 1< k<n—1
(EC3)
Tp-1— Ty = Unp-



The equality condition (ECj) is a linear system of (2n — 1)-equation on 2n-variable
(z, p). Let (EC;) be an augmentation of the system (ECj3) with the additional constraint
(i) z, =0:

/ Tho1 — T = Mgy, T = fgp — 1 1< k<n—1
(EC3)
Tp1— Tn = ln, Tn=0.

Then (EC3) is of 2n-equation on 2n-variable.

Let (x, u) be a solution of (ECj). Then both sides become a common value with five

expressions.

n

Z (w1 — 2)® + 23] + (@01 — 20)?

k=1
= c(c—m)
n—1
(5Vs) = 2¢p1 — Z [Ni + (e — /Lk+1)2} —
k=1
n—1
= [+ (e — puen)?] + 42
k=1
= ClUq.

The primal (P3) has a minimum value

n

ms = Z [(Ik—l — l'k)Q + l’i] + (Zlfn_l — l’n)Q
k=1

= c(c— 1)

at x, while the dual (D3) has a maximum value

n—1
My = 2cpm — ) [ﬂi + (e — Nk—i—l)z] —
k=1
n—1
= [+ (e — pen)?] + 122
k=1
= iy

at p.

Lemma 3 The system (EC}) has indeed a unique solution:

x = (1, Tay ooy Thy oy Tyu_1, Tp)

- FL%(F%_Q, Fonay vy Fonons vy Fa Fy), (7)
po= (p1, p2, -y My s fn—1s fn)

- FL%(FQn_l, Fongy ooy Fonoprny vy Fy ). (8)



Proof. TFrom (ECY), we have a pair of linear systems of n-variable on n-equation:
3 y

c= 31 — T ¢ = 2y — p2

T = 3Ty — T3 p1 = 32 — pi3

(EQs) Tn—3 = 3Tp_o — Tp_1 Hn—3 = 3pn—2 — fin—1

Tpo = 3Tp_1 — Ty Hn—2 = 3,“71—1 — Hn
Ty = Q Hn—1 = 2,un
The left system has a solution z in (7), while the right has a solution p in (8). O
. .. - Fona 2
The primal (P3) has a minimum value m3 = ¢(c — ;) = ¢ at a path
2n
i’ - (i’l, :%2’ ey i’k, ey jn—la ZIAZ'n)
c
- F (FZn—2> F2n—4a "'aFQn—Zk‘a sy F2> FO)
2n
Fy,
The dual (D) has a maximum value Mz = cut = —=—¢? at a path
2n
T P N 1 S A 1)
c
- F (FQn—la FQTL—?}) "->F2n—2k+l> DRI F3a Fl)
2n
Hence both optimal values are identical:
F2n—1 2
= My = ——".
ms 3 F,

An alternate contexture of both optimal points p*, Z is Fibonacci backward:

* A * x4 * A * A
(Mla L1, Moy T2y vny Mpy Thoovos Hp_15 Tn—1s My, xn)
C

= F_(FQn—la FQn—Z; FQTL—?}) FQTL—47 "->F2n—2k+l> F2n—2k‘7 ) F3a F27 Fla FO)
2n

Thus FCD holds between (P3) and (Dj).
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