Bernoulli and Cauchy numbers with level 2 associated with Stirling numbers with level 2

Takao Komatsu

School of Science, Zhejiang Sci-Tech University

1 Introduction

In the literature, the Stirling numbers with higher level (level s) seem to have been firstly studied by Tweedie [21] in 1918. Namely, those of the first kind $\begin{bmatrix} n \\ k \end{bmatrix}_s$ and the second kind $\{ n \\ k \}_s$ appear as

$$x(x+1^s)(x+2^s)\cdots(x+(n-1)^s) = \sum_{k=0}^n {n \brack k}_s x^k$$

and

$$x^{n} = \sum_{k=0}^{n} \left\{ \binom{n}{k} \right\}_{s} x(x-1^{s})(x-2^{s}) \cdots (x-(k-1)^{s}),$$

respectively. They satisfy the recurrence relations

$$\begin{bmatrix} n \\ k \end{bmatrix}_s = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_s + (n-1)^s \begin{bmatrix} n-1 \\ k \end{bmatrix}_s$$

and

$$\left\{ \left\{ {n \atop k} \right\} \right\}_s = \left\{ \left\{ {n-1 \atop k-1} \right\} \right\}_s + k \left\{ \left\{ {n-1 \atop k} \right\} \right\}_s$$
 (1)

with $\begin{bmatrix} 0 \\ 0 \end{bmatrix}_s = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}_s = 1$ and $\begin{bmatrix} n \\ 0 \end{bmatrix}_s = \left\{ \begin{bmatrix} n \\ 0 \end{bmatrix} \right\}_s = 0$ $(n \ge 1)$. Recently, in [15, 16], the Stirling numbers with higher level have been rediscovered and studied more deeply, in particular, from the aspects of combinatorics. When s = 1, they are the original Stirling numbers of both kinds. When s = 2, they have been often studied as central factorial numbers of both kinds (see, e.g., [1]).

Some typical values of Stirling numbers of the first kind with higher level are given as

$$\begin{bmatrix} n \\ 1 \end{bmatrix}_{s} = ((n-1)!)^{s},$$
$$\begin{bmatrix} n \\ 2 \end{bmatrix}_{s} = ((n-1)!)^{s} H_{n-1}^{(s)},$$

$$\begin{bmatrix} n \\ 3 \end{bmatrix}_s = ((n-1)!)^s \frac{(H_{n-1}^{(s)})^2 - H_{n-1}^{(2s)}}{2},$$

where $H_n^{(k)}$ are the generalized harmonic numbers of order k defined by $H_n^{(k)} = \sum_{j=1}^n \frac{1}{j^k}$ $(n \ge 0)$ and $H_n = H_n^{(1)}$ are the classical harmonic numbers. More generally,

$$\begin{bmatrix} n \\ m \end{bmatrix}_s = \sum_{1 \le i_1 \le \dots \le i_{n-m} \le n-1} (i_1 \cdots i_{n-m})^s.$$

Some typical values of Stirling numbers of the second kind with higher level are given as

$$\left\{ {n \atop 1} \right\}_{s} = 1, \quad \left\{ {n \atop 2} \right\}_{s} = \sum_{k=0}^{n-2} 2^{sk} = \frac{2^{s(n-1)} - 1}{2^{s} - 1}, \\
\left\{ {n \atop 3} \right\}_{s} = \sum_{j=0}^{n-3} 3^{n-j-3} \sum_{k=0}^{j} 2^{sk} = \frac{2^{s} (3^{(n-2)s} - 2^{(n-2)s})}{(2^{s} - 1)(3^{s} - 2^{s})} - \frac{3^{(n-2)s} - 1}{(2^{s} - 1)(3^{s} - 1)} \\
\left\{ {n \atop n-1} \right\}_{s} = \sum_{j=1}^{n-1} j^{s}.$$

2 Stirling numbers with higher level

Given a positive integer s, let $\begin{bmatrix} n \\ k \end{bmatrix}_s$ denote the number of ordered s-tuples $(\sigma_1, \sigma_2, \dots, \sigma_s) \in \mathfrak{S}_{(n,k)} \times \mathfrak{S}_{(n,k)} \times \cdots \times \mathfrak{S}_{(n,k)} = \mathfrak{S}_{(n,k)}^s$, such that

$$\min(\sigma_1) = \min(\sigma_2) = \dots = \min(\sigma_s).$$
 (2)

For example, $\begin{bmatrix} 3 \\ 2 \end{bmatrix}_3 = 9$, the relevant 3-tuples being

$$((1)(23),(1)(23),(1)(23))),\quad ((1)(23),(1)(23),(13)(2)),\quad ((1)(23),(13)(2),(1)(23)),\\ ((1)(23),(13)(2),(13)(2))),\quad ((12)(3),(12)(3),(12)(3)),\quad ((13)(2),(1)(23),(1)(23)),\\ ((13)(23),(13)(2),(13)(2))),\quad ((12)(3),(12)(3),(12)(3)),\quad ((13)(2),(1)(23),(12)(3)),\\ ((13)(23),(13)(2),(13)(2))),\quad ((12)(33),(12)(3),(12)(3)),\quad ((13)(23),(13)(2),(12)(3)),\\ ((13)(23),(13)(2),(13)(2))),\quad ((13)(23),(13)(2)),\quad ((13)(23),(13)(2)),\\ ((13)(23),(13)(2),(13)(2))),\quad ((13)(23),(13)(2),(13)(2)),\\ ((13)(23),(13)(23),(13)(23),(13)(23),\\ ((13)(23),(13)(23),(13)(23),(13)(23),\\ (($$

$$((1\,3)(2),(1)(2\,3),(1\,3)(2))),\quad ((1\,3)(2),(1\,3)(2),(1)(2\,3)),\quad ((1\,3)(2),(1\,3)(2),(1\,3)(2)).$$

If $n, k \geq 0$, then let $\Pi_{(n,k)}$ denote the set of all partitions of [n] having exactly k nonempty blocks. Given a partition π in Π_n , let $\min(\pi)$ denote the set of the minimal elements in each block of π . Given a positive integer s, let $\{n \}_s$ denote the number of ordered s-tuples $(\pi_1, \pi_2, \dots, \pi_s) \in \Pi_{(n,k)} \times \Pi_{(n,k)} \times \dots \times \Pi_{(n,k)} = \Pi_{(n,k)}^s$, such that

$$\min(\pi_1) = \min(\pi_2) = \dots = \min(\pi_s). \tag{3}$$

This sequence is called *Stirling numbers of the second kind with higher level*. For example, $\left\{ \left\{ {3\atop 2} \right\} \right\}_3 = 9$, the relevant 3-tuples being

$$(1/23, 1/23, 1/23), \qquad (1/23, 1/23, 13/2), \qquad (1/23, 13/2, 1/23),$$

$$(1/23, 13/2, 13/2),$$
 $(12/3, 12/3, 12/3),$ $(13/2, 1/23, 1/23),$ $(13/2, 1/23, 13/2),$ $(13/2, 13/2, 1/23),$ $(13/2, 13/2, 13/2).$

The Stirling numbers of the second kind with higher level can be expressed in terms of iterated summations.

Theorem 1. For $2 \le k \le n$,

$$\left\{ \left\{ {n \atop k} \right\} \right\}_s = k^{s(n-k+1)} \sum_{i_{k-1}=1}^{n-k+1} \left(\frac{k-1}{k} \right)^{si_{k-1}} \sum_{i_{k-2}=1}^{i_{k-1}} \left(\frac{k-2}{k-1} \right)^{si_{k-2}} \cdots \sum_{i_2=1}^{i_3} \left(\frac{2}{3} \right)^{si_2} \sum_{i_1=1}^{i_2} \left(\frac{1}{2} \right)^{si_1}.$$

The (ordinary) generating function of Stirling numbers of the second kind with higher level can be given as follows.

Theorem 2. For $k \geq 1$,

$$\sum_{n=k}^{\infty} \left\{ \left\{ {n \atop k} \right\} \right\}_s x^n = \frac{x^k}{(1-x)(1-2^s x)\cdots(1-k^s x)}.$$

Corollary 1. We have the following rational explicit formula

$$\left\{ \binom{n}{k} \right\}_{s} = \sum_{j=0}^{k} \frac{j^{sn}}{\prod_{i=0, i \neq j}^{k} (j^{s} - i^{s})}.$$

There exist orthogonality relationships of Stirling numbers of both kinds with higher level.

Theorem 3. We have the relations

$$\sum_{k=0}^{\max\{n,m\}} (-1)^{n-k} \begin{bmatrix} n \\ k \end{bmatrix}_s \left\{ \begin{Bmatrix} k \\ m \end{Bmatrix} \right\}_s = \delta_{n,m}, \qquad (4)$$

$$\sum_{k=0}^{\max\{n,m\}} (-1)^{k-m} \left\{ {n \atop k} \right\}_s \begin{bmatrix} k \\ m \end{bmatrix}_s = \delta_{n,m}, \qquad (5)$$

where $\delta_{n,m}$ is the Kronecker delta.

We show identities which combine Stirling numbers with higher level and Bernoulli polynomials. The Bernoulli polynomials $B_n(x)$ can be defined by the exponential generating function

$$\frac{te^{tx}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}.$$

Theorem 4. We have the relation

$$\sum_{\ell=1}^{n-1} \ell(-1)^{\ell} \begin{bmatrix} n \\ n-\ell \end{bmatrix}_{s} \left\{ \begin{Bmatrix} n-1+j-\ell \\ n-1 \end{Bmatrix} \right\}_{s} = \frac{B_{sj+1}(0) - B_{sj+1}(n)}{sj+1}.$$

Corollary 2. For $n \ge k \ge 0$, we have

$$k \begin{bmatrix} n \\ n-k \end{bmatrix}_{s} = \sum_{j=1}^{k} (-1)^{j} \begin{bmatrix} n \\ n-k+j \end{bmatrix}_{s} \frac{B_{sj+1}(0) - B_{sj+1}(n)}{sj+1}.$$

2.1 Stirling numbers with level 2

When s = 2, there is a convenient form to calculate Stirling numbers of the first kind with level 2 from the classical Stirling numbers of the first kind.

Theorem 5.

$$\begin{bmatrix} n \\ m \end{bmatrix}_2 = \begin{bmatrix} n \\ m \end{bmatrix}^2 - 2 \begin{bmatrix} n \\ m-1 \end{bmatrix} \begin{bmatrix} n \\ m+1 \end{bmatrix} + 2 \begin{bmatrix} n \\ m-2 \end{bmatrix} \begin{bmatrix} n \\ m+2 \end{bmatrix} - \dots + 2(-1)^{m-1} \begin{bmatrix} n \\ 1 \end{bmatrix} \begin{bmatrix} n \\ 2m-1 \end{bmatrix}.$$

When s = 2, there is a relation $\begin{bmatrix} n \\ m \end{bmatrix}_2 = (-1)^{n-m}t(2n, 2m)$, where t(n, m) are the central factorial numbers of the first kind, defined by

$$x(x+\frac{n}{2}-1)(x+\frac{n}{2}-2)\cdots(x-\frac{n}{2}+1)=\sum_{m=0}^{n}t(n,m)x^{m}.$$

When s = 2, we have an convenient identity for the Stirlin numbers of the second kind as

$$\left\{ \left\{ {n \atop k} \right\} \right\}_2 = \frac{2}{(2k)!} \sum_{i=1}^k (-1)^{k-j} \binom{2k}{k-j} j^{2n}.$$

This is an analogous identity for the classical Stirling numbers of the second kind:

$${n \brace k} = \frac{1}{k!} \sum_{j=1}^{k} (-1)^{k-j} {k \choose k-j} j^n.$$

However, no convenient form has not been found when $s \geq 3$.

When s = 2, there is a relation $\{ {n \atop m} \}_2 = T(2n, 2m)$, where T(n, m) are the central factorial numbers of the second kind, defined by

$$x^{n} = \sum_{m=0}^{n} T(n,m)x\left(x + \frac{m}{2} - 1\right)\left(x + \frac{m}{2} - 2\right)\cdots\left(x - \frac{m}{2} + 1\right).$$

3 Poly-Cauchy numbers with level 2

Poly-Cauchy numbers $\mathfrak{C}_n^{(k)}$ with level 2 are defined by

$$\operatorname{Lif}_{2,k}(\operatorname{arcsinh} t) = \sum_{n=0}^{\infty} \mathfrak{C}_n^{(k)} \frac{t^n}{n!}, \qquad (6)$$

where $\operatorname{arcsinh} t$ is the inverse hyperbolic sine function and

$$\operatorname{Lif}_{2,k}(z) = \sum_{m=0}^{\infty} \frac{z^{2m}}{(2m)!(2m+1)^k}.$$

This function is an analogue of Polylogarithm factorial or Polyfactorial function $Lif_k(z)$ [7, 8], defined by

$$Lif_k(z) = \sum_{m=0}^{\infty} \frac{z^m}{m!(m+1)^k}.$$

Several initial values of $\mathfrak{C}_n^{(1)}$ are as follows.

$$\{\mathfrak{C}_{2n}^{(1)}\}_{n\geq 0}=1, \frac{1}{3}, -\frac{17}{15}, \frac{367}{21}, -\frac{27859}{45}, \frac{1295803}{33}, -\frac{5329242827}{1365}, \dots$$

Note that the numerators of coefficients for numerical integration ([19]) are given as

 $1, 17, 367, 27859, 1295803, 5329242827, 25198857127, 11959712166949, \dots$

([20, A002197]). From higher-order Bernoulli numbers, the denominators of D numbers $D_{2n}(2n)$ ([17, 18]) are given as

 $1, 3, 15, 21, 45, 33, 1365, 45, 765, 1995, 3465, 1035, 20475, 189, 435, 7161, \dots$

([20, A261274]). Here, the D numbers (or cosecant numbers) $D_{2n}^{(k)}$ may be defined by

$$\left(\frac{t}{\sinh t}\right)^k = \sum_{n=0}^{\infty} D_{2n}^{(k)} \frac{t^{2n}}{(2n)!} \quad (|t| < \pi).$$

By using the polyfactorial function, poly-Cauchy numbers (of the first kind) $c_n^{(k)}$ are defined as

$$\operatorname{Lif}_{k}(\log(1+t)) = \sum_{n=0}^{\infty} c_{n}^{(k)} \frac{t^{n}}{n!}.$$
(7)

When k = 1, by $\text{Lif}_1(z) = (e^z - 1)/z$, $c_n = c_n^{(1)}$ are the original Cauchy numbers defined by

$$\frac{t}{\log(1+t)} = \sum_{n=0}^{\infty} c_n \frac{t^n}{n!}.$$

The generating function of poly-Cauchy numbers $c_n^{(k)}$ in (7) can be written in the form of iterated integrals ([7]):

$$\frac{1}{\log(1+x)} \underbrace{\int_0^x \frac{1}{(1+x)\log(1+x)} \cdots \int_0^x \frac{1}{(1+x)\log(1+x)}}_{k-1} \times x \underbrace{dx \cdots dx}_{k-1} = \sum_{n=0}^{\infty} c_n^{(k)} \frac{x^n}{n!}.$$

We can also write the generating function of the poly-Cauchy numbers with level 2 in (6) in the form of iterated integrals.

Theorem 6. For $k \geq 1$ we have

$$\frac{1}{\operatorname{arcsinh}x}\underbrace{\int_0^x \frac{1}{\operatorname{arcsinh}x\sqrt{1+x^2}} \cdots \int_0^x \frac{1}{\operatorname{arcsinh}x\sqrt{1+x^2}}}_{k-1} \times x\underbrace{dx\cdots dx}_{k-1} = \sum_{n=0}^\infty \mathfrak{C}_n^{(k)} \frac{x^n}{n!}.$$

3.1 Cauchy numbers with level 2

When k = 1, Cauchy numbers $\mathfrak{C}_{2n} = \mathfrak{C}_{2n}^{(1)}$ with level 2 have a determinant expression.

Theorem 7. For $n \geq 1$,

$$\mathfrak{C}_{2n} = (-1)^{n-1} (2n)! \begin{vmatrix} \frac{1}{2^{2} \cdot 3} \binom{2}{1} & 1 & 0 \\ \frac{1}{2^{4} \cdot 5} \binom{4}{2} & \frac{1}{2^{2} \cdot 3} \binom{2}{1} & 1 \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \frac{1}{2^{2} \cdot 3} \binom{2}{1} & 1 \\ \frac{1}{2^{2n} (2n+1)} \binom{2n}{n} & \cdots & \cdots & \frac{1}{2^{4} \cdot 5} \binom{4}{2} & \frac{1}{2^{2} \cdot 3} \binom{2}{1} \end{vmatrix}.$$

Remark. A determinant expression of the classical Cauchy numbers may be given as

$$c_n = n! \begin{vmatrix} \frac{1}{2} & 1 & 0 \\ \frac{1}{3} & \frac{1}{2} & 1 \\ \vdots & & \ddots & 0 \\ \vdots & & \frac{1}{2} & 1 \\ \frac{1}{n+1} & \cdots & \cdots & \frac{1}{3} & \frac{1}{2} \end{vmatrix}.$$

([2, p.50]).

By the inversion formula below (see, e.g., [14]¹), we also have the following.

¹The case where $f_n = 0$ for all $n \ge 0$ is considered in [14]

Corollary 3. For $n \geq 1$,

$$\frac{1}{2^{2n}(2n+1)} \binom{2n}{n} = \begin{vmatrix} \frac{\mathfrak{C}_2}{2!} & 1 & 0\\ -\frac{\mathfrak{C}_4}{4!} & \frac{\mathfrak{C}_2}{2!} \\ \vdots & \ddots & 1\\ (-1)^{n-1} \frac{\mathfrak{C}_{2n}}{(2n)!} & \cdots & -\frac{\mathfrak{C}_4}{4!} & \frac{\mathfrak{C}_2}{2!} \end{vmatrix}.$$

Lemma 1 (Inversion formula).

$$\sum_{k=0}^{n} (-1)^{n-k} x_{n-k} z_k = f_n \quad with \quad x_0 = z_0 = 1$$

$$\iff z_n = \begin{vmatrix} x_1 & 1 & & & & 0 \\ x_2 & x_1 & \ddots & & & \\ \vdots & \vdots & \ddots & \ddots & & \\ x_{n-1} & x_{n-2} & \cdots & x_1 & 1 \\ x_n + (-1)^{n-1} f_n & x_{n-1} + (-1)^n f_{n-1} & \cdots & x_2 - f_2 & x_1 + f_1 \end{vmatrix}$$

$$\iff x_n = \begin{vmatrix} z_1 & 1 & & & 0 \\ z_2 & z_1 & \ddots & & & \\ \vdots & \vdots & \ddots & \ddots & & \\ z_{n-1} & z_{n-2} & \cdots & z_1 & 1 \\ z_n - f_n & z_{n-1} - f_{n-1} & \cdots & z_2 - f_2 & z_1 - f_1 \end{vmatrix}$$

Poly-Cauchy numbers have an expression of integrals

$$c_n^{(k)} = n! \underbrace{\int_0^1 \cdots \int_0^1 \binom{x_1 x_2 \cdots x_k}{n} dx_1 dx_2 \dots dx_k}$$

([7]). Poly-Cauchy numbers with level 2 also have a similar expression (or a kind of definition).

Corollary 4. For $n \ge 0$ and $k \ge 1$, we have

$$\mathfrak{C}_{2n}^{(k)} = (-4)^n (n!)^2 \underbrace{\int_0^1 \cdots \int_0^1}_{k} \left(\frac{x_1 x_2 \cdots x_k}{2} \right) \left(-\frac{x_1 x_2 \cdots x_k}{2} \right) dx_1 dx_2 \dots dx_k.$$

4 Poly-Bernoulli numbers with level 2

As poly-Bernoulli numbers [6] and poly-Cauchy numbers are closely connected with each other ([12]), poly-Bernoulli numbers with level 2 can be naturally introduced ([11])

in the connection with poly-Cauchy numbers with level 2. In fact, poly-Bernoulli numbers with level 2 have a good analogy of poly-Bernoulli numbers.

For $k \geq 1$, poly-Bernoulli numbers $\mathfrak{B}_n^{(k)}$ with level 2 are defined by

$$\frac{\text{Li}_{2,k}(2\sin(x/2))}{2\sin(x/2)} = \sum_{n=0}^{\infty} \mathfrak{B}_n^{(k)} \frac{x^n}{n!},$$
(8)

where

$$Li_{2,k}(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)^k}$$

is the polylogarithm function with level 2 ([11]). Such a concept is analogous of that of poly-Bernoulli numbers $\mathbb{B}_n^{(k)}$, defined by

$$\frac{\text{Li}_k(1 - e^{-x})}{1 - e^{-x}} = \sum_{n=0}^{\infty} \mathbb{B}_n^{(k)} \frac{x^n}{n!}$$

with the polylogarithm function

$$\text{Li}_k(z) = \sum_{n=0}^{\infty} \frac{z^{n+1}}{(n+1)^k}$$

([6]). Then, Bernoulli numbers $\mathfrak{B}_n = \mathfrak{B}_n^{(1)}$ with level 2 are given by the generating function

$$\frac{1}{4\sin(x/2)}\log\frac{1+2\sin(x/2)}{1-2\sin(x/2)} = \sum_{n=0}^{\infty} \mathfrak{B}_n \frac{x^n}{n!}.$$
 (9)

First several values of Bernoulli numbers with level 2 are given by

$$\{\mathfrak{B}_{2n}\}_{0\leq n\leq 10}=1, \frac{2}{3}, \frac{62}{15}, \frac{1670}{21}, \frac{47102}{15}, \frac{6936718}{33}, \frac{29167388522}{1365}, \frac{9208191626}{3}, \\ \frac{150996747969694}{255}, \frac{58943788779804242}{399}, \frac{7637588708954836042}{165}$$

The generating function of the poly-Cauchy numbers with level 2 can be written in the form of iterated integrals ([13, Theorem 2.1]):

$$\frac{1}{\operatorname{arcsinh}x} \underbrace{\int_{0}^{x} \frac{1}{\operatorname{arcsinh}x\sqrt{1+x^{2}}} \cdots \int_{0}^{x} \frac{1}{\operatorname{arcsinh}x\sqrt{1+x^{2}}}}_{k-1} \times x \underbrace{dx \cdots dx}_{k-1}$$

$$= \sum_{n=0}^{\infty} \mathfrak{C}_{n}^{(k)} \frac{x^{n}}{n!} \quad (k \geq 1).$$

We can also write the generating function of the poly-Bernoulli numbers with level 2 in the form of iterated integrals.

Theorem 8. For $k \geq 1$, we have

$$\frac{1}{2\sin\frac{x}{2}}\underbrace{\int_{0}^{x} \frac{1}{2\tan\frac{x}{2}} \cdots \int_{0}^{x} \frac{1}{2\tan\frac{x}{2}}}_{k-1} \times \frac{1}{2}\log\frac{1+2\sin\frac{x}{2}}{1-2\sin\frac{x}{2}} \underbrace{dx \cdots dx}_{k-1} = \sum_{n=0}^{\infty} \mathfrak{B}_{n}^{(k)} \frac{x^{n}}{n!}.$$

Poly-Cauchy numbers with level 2 can be expressed explicitly in terms of the Stirling numbers of the second kind with level 2. Poly-Bernoulli numbers with level 2 can be expressed explicitly in terms of the Stirling numbers of the second kind with level 2.

Theorem 9. For $n \geq 0$,

$$\mathfrak{C}_{2n}^{(k)} = \sum_{m=0}^{n} {n \brack m}_2 \frac{(-4)^{n-m}}{(2m+1)^k},$$

$$\mathfrak{B}_{2n}^{(k)} = \sum_{m=0}^{n} {n \brack m}_2 \frac{(-1)^{n-m}(2m)!}{(2m+1)^k}.$$

4.1 Relations with poly-Cauchy numbers with level 2

Poly-Cauchy numbers with level 2 can be expressed in terms of poly-Bernoulli numbers with level 2.

Theorem 10. For integers n and k with $n \geq 1$,

$$\mathfrak{C}_{2n}^{(k)} = \sum_{m=1}^{n} \sum_{l=1}^{m} \frac{(-4)^{n-m}}{(2m)!} \begin{bmatrix} n \\ m \end{bmatrix}_{2} \begin{bmatrix} m \\ l \end{bmatrix}_{2} \mathfrak{B}_{2l}^{(k)}.$$

Remark. Poly-Cauchy numbers can be expressed in terms of poly-Bernoulli numbers ([12, Theorem 2.2]):

$$c_n^{(k)} = \sum_{m=1}^n \sum_{l=1}^m \frac{(-1)^{n-m}}{m!} \begin{bmatrix} n \\ m \end{bmatrix} \begin{bmatrix} m \\ l \end{bmatrix} B_l^{(k)}.$$

On the contrary, poly-Bernoulli numbers can be expressed in terms of poly-Cauchy numbers:

$$B_n^{(k)} = \sum_{m=1}^n \sum_{l=1}^m (-1)^{n-m} m! \begin{Bmatrix} n \\ m \end{Bmatrix} \begin{Bmatrix} m \\ l \end{Bmatrix} c_l^{(k)}.$$

Similarly, poly-Bernoulli numbers with level 2 can be expressed in terms of poly-Cauchy numbers with level 2.

Theorem 11. For integers n and k with $n \ge 1$,

$$\mathfrak{B}_{2n}^{(k)} = \sum_{m=1}^{n} \sum_{l=1}^{m} (-1)^{n-m} 4^{m-l} (2m)! \left\{ \left\{ {n \atop m} \right\} \right\}_{2} \left\{ \left\{ {m \atop l} \right\} \right\}_{2} \mathfrak{C}_{2l}^{(k)}.$$

Other relations with Stirling numbers with level 2 are given as follows.

Theorem 12. For $n \geq 1$,

$$\frac{1}{(2n)!} \sum_{m=0}^{n} {n \brack m}_2 \mathfrak{B}_{2m}^{(k)} = \frac{1}{(2n+1)^k}, \tag{10}$$

$$\sum_{m=0}^{n} \left\{ \binom{n}{m} \right\}_{2} 4^{n-m} \mathfrak{C}_{2m}^{(k)} = \frac{1}{(2n+1)^{k}}. \tag{11}$$

Remark. For poly-Bernoulli and poly-Cauchy numbers ([7, Theorem 3]), we have

$$\frac{1}{n!} \sum_{m=0}^{n} {n \brack m} B_m^{(k)} = \frac{1}{(n+1)^k},$$
$$\sum_{m=0}^{n} {n \brack m} c_m^{(k)} = \frac{1}{(n+1)^k}.$$

Since the Stirling numbers with level 2 have an explicit expression ([1, Proposition 2.4 (xiii)],[11, (7)]):

$$\left\{ \binom{n}{k} \right\}_{2} = \frac{2}{(2k)!} \sum_{j=0}^{k} (-1)^{k-j} \binom{2k}{k-j} j^{2n}, \qquad (12)$$

, we have an explicit expression of poly-Bernoulli numbers with level 2.

Proposition 1. For $n \ge 1$,

$$\mathfrak{B}_{2n}^{(k)} = \sum_{m=0}^{n} \sum_{j=0}^{m} \frac{2(-1)^{n-j} j^{2n}}{(2m+1)^k} \binom{2m}{m-j}.$$

In particular, Bernoulli numbers with level 2 can be expressed explicitly as

$$\mathfrak{B}_{2n} = \sum_{m=0}^{n} \sum_{j=0}^{m} \frac{2(-1)^{n-j} j^{2n}}{2m+1} {2m \choose m-j}.$$

Remark. Note that poly-Bernoulli numbers \mathbb{B}_n can be expressed as

$$\mathbb{B}_{n}^{(k)} = \sum_{m=0}^{n} \sum_{j=0}^{m} \frac{(-1)^{n-j} j^{n}}{(m+1)^{k}} {m \choose m-j}$$

and the classical Bernoulli numbers B_n with $B_1 = -1/2$ can be expressed as

$$B_n = \sum_{m=0}^{n} \sum_{j=0}^{m} \frac{(-1)^j j^n}{(m+1)^k} {m \choose m-j}.$$

5 Bernoulli numbers with level 2

Bernoulli numbers $\mathfrak{B}_n = \mathfrak{B}_n^{(1)}$ with level 2 are given by the generating function

$$\frac{1}{4\sin(x/2)}\log\frac{1+2\sin(x/2)}{1-2\sin(x/2)} = \sum_{n=0}^{\infty} \mathfrak{B}_n \frac{x^n}{n!}.$$
 (13)

First several values of Bernoulli numbers with level 2 are given by

$$\{\mathfrak{B}_{2n}\}_{0\leq n\leq 10}=1, \frac{2}{3}, \frac{62}{15}, \frac{1670}{21}, \frac{47102}{15}, \frac{6936718}{33}, \frac{29167388522}{1365}, \frac{9208191626}{3}, \\ \frac{150996747969694}{255}, \frac{58943788779804242}{399}, \frac{7637588708954836042}{165}$$

Though this definition may be strange, we shall show some meaningful relations with some classical numbers.

For Bernoulli numbers, the von Staudt-Clausen theorem holds. That is, for every n > 0,

$$B_{2n} + \sum_{(p-1)|2n} \frac{1}{p}$$

is an integer. The sum extends over all primes p for which p-1 divides 2n. For Bernoulli numbers with level 2, a similar formula holds ([11, Theorem 14]): for every n > 0,

$$\mathfrak{B}_{2n} + \sum_{(p-1)|2n} \frac{(-1)^{n-\frac{p-1}{2}}}{p}$$

is an integer. The sum extends over all odd primes p for which p-1 divides 2n.

5.1 Glaisher's R numbers

In 1898, Glaisher introduced and studied several numbers related to Bernoulli numbers. In order to get several relations about Bernoulli numbers with level 2, first we use the numbers R_n , studied in [3, §132–138] and [4, p.51]. The generating functions ([3, p.71]) of R numbers are given by

$$\frac{\cosh x}{2\cosh 2x - 1} = \frac{1 + \cosh 2x}{2\cosh 3x} = \sum_{n=0}^{\infty} (-1)^n R_n \frac{x^{2n}}{(2n)!}.$$
 (14)

The first several values of numbers R_n are given by

 ${R_n}_{n\geq 0} = 1, 7, 305, 33367, 6815585, 2237423527, 1077270776465,$

 $715153093789687, 626055764653322945, 698774745485355051847, \dots$

([20, A002437, A000364]). In [3, p.71], it is shown that

$$R_n = \frac{3^{2n+1} + 1}{4} (-1)^n E_{2n} , \qquad (15)$$

where Euler numbers E_n are defined by

$$\frac{1}{\cosh x} = \sum_{n=0}^{\infty} E_n \frac{x^n}{n!} \,.$$

Theorem 13. For $n \geq 0$, we have

$$\sum_{k=0}^{n} {2n+1 \choose 2k} (-4)^k \mathfrak{B}_{2k} = (-1)^n R_n.$$

From Theorem 13, we have a determinant expression of Bernoulli numbers with level 2.

Theorem 14. For $n \geq 1$, we have

$$\mathfrak{B}_{2n} = \frac{(2n)!}{4^n} \begin{vmatrix} \frac{1}{3!} & 1 & 0 \\ \frac{1}{5!} & \frac{1}{3!} & \ddots \\ \vdots & \vdots & \ddots & \ddots \\ \frac{1}{(2n-1)!} & \frac{1}{(2n-3)!} & \cdots & \frac{1}{3!} & 1 \\ \frac{1+(-1)^{n-1}R_n}{(2n+1)!} & \frac{1+(-1)^nR_{n-1}}{(2n-1)!} & \cdots & \frac{1-R_2}{5!} & \frac{1+R_1}{3!} \end{vmatrix},$$

where R_n are Glaisher's R numbers, given in (15).

Remark. Euler numbers of the second kind \widehat{E}_n , defined by

$$\frac{x}{\sinh x} = \sum_{n=0}^{\infty} \widehat{E}_n \frac{x^n}{n!} \,,$$

have a similar determinant expression ([9, Corollary 2.2],[10, (1.7)]).

$$\widehat{E}_{2n} = (-1)^n (2n)! \begin{vmatrix} \frac{1}{3!} & 1 & & 0 \\ \frac{1}{5!} & \frac{1}{3!} & \ddots & & \\ \vdots & \vdots & \ddots & \ddots & \\ \frac{1}{(2n-1)!} & \frac{1}{(2n-3)!} & \cdots & \frac{1}{3!} & 1 \\ \frac{1}{(2n+1)!} & \frac{1}{(2n-1)!} & \cdots & \frac{1}{5!} & \frac{1}{3!} \end{vmatrix}.$$

By using the inversion formula, we have the determinant expression of 1/(2n+1)! in terms of \mathfrak{B}_n .

Corollary 5. For $n \geq 1$, we have

$$\frac{1}{(2n+1)!} = \begin{vmatrix}
\frac{4\mathfrak{B}_2}{2!} & 1 & 0 \\
\frac{4^2\mathfrak{B}_4}{4!} & \frac{4\mathfrak{B}_2}{2!} & 1 \\
\vdots & \vdots & \ddots & \ddots \\
\frac{4^{n-1}\mathfrak{B}_{2n-2}}{(2n-2)!} & \frac{4^{n-2}\mathfrak{B}_{2n-4}}{(2n-4)!} & \cdots & \frac{4\mathfrak{B}_2}{2!} & 1 \\
\frac{4^n\mathfrak{B}_{2n}}{(2n)!} - \frac{R_n}{(2n+1)!} & \frac{4^{n-1}\mathfrak{B}_{2n-2}}{(2n-2)!} - \frac{R_{n-1}}{(2n-1)!} & \cdots & \frac{4^2\mathfrak{B}_4}{4!} - \frac{R_2}{5!} & \frac{4\mathfrak{B}_2}{2!} - \frac{R_1}{3!}
\end{vmatrix}$$

6 Glaisher's H' numbers

Glaisher's H' numbers \mathcal{H}_n ([5, §34])² are defined by

$$\frac{1}{2\cos x - 1} = 1 + \sum_{n=1}^{\infty} 2\mathcal{H}_n \frac{x^{2n}}{(2n)!}$$
 (16)

and given by

$$\mathcal{H}_n = \sum_{k=1}^{2n} \sum_{j=0}^{k} \sum_{i=0}^{\lfloor (j-1)/2 \rfloor} {k \choose j} {j \choose i} (-1)^{n-j} 2^{k-j} (j-2i)^{2n} \quad (n \ge 1).$$
 (17)

(Cf. [20, A002114]). The first several values of \mathcal{H}_n are

$$\{\mathcal{H}_n\}_{n\geq 1} = 1, 11, 301, 15371, 1261501, 151846331,$$

$$25201039501, 5515342166891, 1538993024478301, \dots$$

Notice that the value for n = 0 may be recognized as $H_0 = 1/2$. In the next section, we shall see a nice relation with poly-Bernoulli numbers with level 2 for index 0, yielding a simper expression than the known identity (17). In fact, Glaisher's H' numbers are closely related to poly-Bernoulli numbers with level 2 with index 0.

By Proposition 1, when the index is 0, we can find a simpler relation about Glaisher's H' numbers.

Theorem 15. For $n \geq 1$,

$$\mathcal{H}_n = \frac{1}{2} \mathfrak{B}_{2n}^{(0)}$$

$$= \sum_{m=0}^n \sum_{j=0}^m (-1)^{n-j} j^{2n} \binom{2m}{m-j}.$$

²Here we use the notation \mathcal{H}_n to avoid confusion with differentiation. In fact, $\mathcal{H}_n = H_n/3$, where H_n are Glaisher's H_n numbers ([5, §25],[20, A002114]).

Acknowledgement

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central factorial numbers; their main properties and some applications, Numer. Funct. Anal. Optimiz. 10 (1989), 419–488.
- [2] J. W. L. Glaisher, Expressions for Laplace's coefficients, Bernoullian and Eulerian numbers etc. as determinants, Messenger (2) 6 (1875), 49–63.
- [3] J. W. L. Glaisher, On the Bernoullian function, Quart. J. 29 (1898), 1–168.
- [4] J. W. L. Glaisher, Classes of recurring formulae involving Bernoullian numbers, Messenger (2) 28 (1898), 36–79.
- [5] J. W. L. Glaisher, On a set of coefficients analogous to the Eulerian numbers, Proc. London Math. Soc. **31** (1899), 216–235.
- [6] M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1997), 199–206.
- [7] T. Komatsu, *Poly-Cauchy numbers*, Kyushu J. Math. **67** (2013), 143–153.
- [8] T. Komatsu, *Poly-Cauchy numbers with a q parameter*, Ramanujan J. **31** (2013), 353–371.
- [9] T. Komatsu, Complementary Euler numbers, Period. Math. Hung. 75 (2017), 302–314.
- [10] T. Komatsu, On poly-Euler numbers of the second kind, RIMS Kokyuroku Bessatsu B77 (2020), 143–158.
- [11] T. Komatsu, Stirling numbers with level 2 and poly-Bernoulli numbers with level 2, Publ. Math. Debrecen **100** (2022), 241–261.. arXiv:2104.09726 (2021)
- [12] T. Komatsu and F. Luca, Some relationships between poly-Cauchy numbers and poly-Bernoulli numbers, Ann. Math. Inform. 41 (2013), 99–105.
- [13] T. Komatsu and C. Pita-Ruiz, *Poly-Cauchy numbers with level* 2, Integral Transforms Spec. Func. **31** (2020), 570–585.

- [14] T. Komatsu and J. L. Ramirez, Some determinants involving incomplete Fubini numbers, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. **26** (2018), no.3, 143–170.
- [15] T. Komatsu, J. L. Ramírez, and D. Villamizar, A combinatorial approach to the Stirling numbers of the first kind with higher level, Stud. Sci. Math. Hung. 58 (2021), 293–307.
- [16] T. Komatsu, J. L. Ramírez, and D. Villamizar, A combinatorial approach to the generalized central factorial numbers, Mediterr. J. Math. 18 (2021), Article:192, 14 pages.
- [17] G. Liu, A recurrence formula for D Numbers $D_{2n}(2n-1)$, Discrete Dynamics in Nature and Society **2009** (2009), Article ID 605313, 6 pages.
- [18] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer 1924, p. 462.
- [19] H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag. **36** (1945), 216–218.
- [20] N. J. A. Sloane, The on-line encyclopedia of integer sequences, available at oeis.org. (2022).
- [21] C. Tweedie, *The Stirling numbers and polynomials*. Proc. Edinburgh Math. Soc. **37** (1918), 2–25.

Department of Mathematical Sciences, School of Science Zhejiang Sci-Tech University Hangzhou 310018

CHINA

E-mail address: komatsu@zstu.edu.cn