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1 Introduction

In the literature, the Stirling numbers with higher level (level s) seem to have been
firstly studied by Tweedie [21] in 1918. Namely, those of the first kind [}]  and the
second kind {{Z}}S appear as
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respectively. They satisfy the recurrence relations
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with [8]8 = {{8}}5 =1 and |[g]|8 = {{g}}s =0 (n > 1). Recently, in [15, 16], the Stirling
numbers with higher level have been rediscovered and studied more deeply, in particular,

and

from the aspects of combinatorics. When s = 1, they are the original Stirling numbers of
both kinds. When s = 2, they have been often studided as central factorial numbers of
both kinds (see, e.g., [1]).

Some typical values of Stirling numbers of the first kind with higher level are given as
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where H® are the generalized harmonic numbers of order k defined by HY = Z?:l jik (n>

0) and H, = H are the classical harmonic numbers. More generally,
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Some typical values of Stirling numbers of the second kind with higher level are given
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as

2 Stirling numbers with higher level

Given a positive integer s, let [Z] , denote the number of ordered s-tuples (01, 03, ..., o) €
G(n,kz) X G(n,kz) X X 6(n7k) = 6?n,k:)’ such that
min(o;) = min(oy) = - -+ = min(oy). (2)

For example, |[‘;]] =9, the relevant 3-tuples being

3

(1)(23), (1)(23),(1)(23))), (1)(23), (1)(23),(13)(2)), ((1)(23),(13)(2), (1)(23)),
(1)(23), (13)(2),(13)(2))), ((12)(3),(12)(3),(12)(3)), ((13)(2),(1)(23), (1)(23)),
((13)(2), (1)(23),(13)(2))), ((13)(2), (13)(2), (1)(23)), ((13)(2),(13)(2), (13)(2))-

If n,k > 0, then let II(, 4y denote the set of all partitions of [n] having exactly & non-
empty blocks. Given a partition 7 in I1,,, let min(7) denote the set of the minimal elements
in each block of w. Given a positive integer s, let {{Z}}S denote the number of ordered
s-tuples (71, o, ..., 7s) € Wi gy X iy X -+ X Uy = 117, 4 such that

min(m ) = min(my) = - - - = min(m). (3)
This sequence is called Stirling numbers of the second kind with higher level. For example,

{ 2’ B , =9, the relevant 3-tuples being
(1/23,1/23,1/23), (1/23,1/23,13/2), (1/23,13/2,1/23),



(1/23,13/2,13/2), (12/3,12/3,12/3), (13/2,1/23,1/23),
(13/2,1/23,13/2), (13/2,13/2,1/23), (13/2,13/2,13/2).

The Stirling numbers of the second kind with higher level can be expressed in terms of

iterated summations.
Theorem 1. For2 <k <n,
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The (ordinary) generating function of Stirling numbers of the second kind with higher

level can be given as follows.

Theorem 2. For k > 1,
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Corollary 1. We have the following rational explicit formula
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There exist orthogonality relationships of Stirling numbers of both kinds with higher
level.

Theorem 3. We have the relations
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where 6y, is the Kronecker delta.
We show identities which combine Stirling numbers with higher level and Bernoulli poly-

nomials. The Bernoulli polynomials B, (z) can be defined by the exponential generating

function




Theorem 4. We have the relation
nz_ié(_l)z n n— 1 +.] - g — B5j+1<0) B B5j+1(n>
— n—{], n—1 . sj+1 '

Corollary 2. Forn >k > 0, we have
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2.1 Stirling numbers with level 2

When s = 2, there is a convenient form to calculate Stirling numbers of the first kind
with level 2 from the classical Stirling numbers of the first kind.

Theorem 5.

e e P P ] P [mizl
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When s = 2, there is a relation I[:le = (=1)"""t(2n, 2m), where t(n, m) are the central

factorial numbers of the first kind, defined by

x(x+%—1)(x+%—2) (:U——+ Ztnm

When s = 2, we have an convenient identity for the Stirlin numbers of the second kind

() =@ ()

J=1

as

This is an analogous identity for the classical Stirling numbers of the second kind:

1k
(=5 )
However, no convenient form has not been found when s > 3.

When s = 2, there is a relation {{' [}, = T(2n,2m), where T(n,m) are the central
factorial numbers of the second kind, defined by

x”:ZT(n,m)x(m%—?—1)(:5%—5—2)‘..(:3—54—1).



3 Poly-Cauchy numbers with level 2

Poly-Cauchy numbers ¢ with level 2 are defined by
Lifs i (arcsinht) Z Q(k : (6)

where arcsinht is the inverse hyperbolic sine function and

e 2m

z
Lif
iz §: 2m)l(2m + 1)k

m=0

This function is an analogue of Polylogarithm factorial or Polyfactorial function Lify(2)
7, 8], defined by

oo Zm

Several initial values of QS) are as follows.
{Qlé”}n>o _ 7}) _H’ 367’ _278597 1295803’ _53292428277 o
nan= 37 15" 21 45 33 1365

Note that the numerators of coefficients for numerical integration ([19]) are given as

1,17,367, 27859, 1295803, 5329242827, 25198857127, 11959712166949, . . .

([20, A002197]). From higher-order Bernoulli numbers, the denominators of D numbers
Dy, (2n) ([17, 18]) are given as

1,3,15, 21,45, 33,1365, 45, 765, 1995, 3465, 1035, 20475, 189, 435, 7161, . ..

20, A261274]). Here, the D numbers (or cosecant numbers D may be defined by
2n

(smht) ZDQ” n)! (It < ).

By using the polyfactorial function, poly-Cauchy numbers (of the first kind) P are
defined as

o)

tn
; — (k) Z_
mu@ga+0)_g;%7ﬂ. (7)
When k =1, by Lifi(2) = (¢* = 1)/z, ¢, = V) are the original Cauchy numbers defined
by

o0

10g1+t Z

=0

n



The generating function of poly-Cauchy numbers M in (7) can be written in the form

of iterated integrals ([7]):

1 e | e 1
d cdr = (k)L
log(l—kx)\/o (1+2)log(l + 2) /0 (1+2)log(l+2) =T ZC

k—1

We can also write the generating function of the poly-Cauchy numbers with level 2 in (6)
in the form of iterated integrals.

Theorem 6. For k> 1 we have

1 v 1 1
: e X T d$ ~dx = E ¢
arcsinhz \/0 arcsinhzy/1 + 22 o arcsinhzv1+ 12 n'
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3.1 Cauchy numbers with level 2
When k =1, Cauchy numbers €, = ngl) with level 2 have a determinant expression.

Theorem 7. Forn > 1,
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e ) o wsl) 7=3()

Remark. A determinant expression of the classical Cauchy numbers may be given as

1
5 1
1 1
3 5 |
¢, =n! 0
1
5 1
_1 11
n+1 3 2

(2, p.50]).
By the inversion formula below (see, e.g., [14]'), we also have the following.

IThe case where f, = 0 for all n > 0 is considered in [14]



Corollary 3. Forn > 1,
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Lemma 1 (Inversion formula).
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Poly-Cauchy numbers have an expression of integrals

1 1
xx --.x
cg“):n!/ / ( 12 k)d]}ldl’gdﬂik
0 0 n
—_—
k

([7]). Poly-Cauchy numbers with level 2 also have a similar expression (or a kind of
definition).

Corollary 4. Forn >0 and k > 1, we have

xll’Q---l’k l’le.--l’k

1 1 .
QQ’Z) :(_4)n(n!)2/ / ( 2 )( 2 )d$ld$2---dl'k-
0 0 n n
k

4 Poly-Bernoulli numbers with level 2

As poly-Bernoulli numbers [6] and poly-Cauchy numbers are closely connected with
each other ([12]), poly-Bernoulli numbers with level 2 can be naturally introduced ([11])
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in the connection with poly-Cauchy numbers with level 2. In fact, poly-Bernoulli numbers
with level 2 have a good analogy of poly-Bernoulli numbers.
For k > 1, poly-Bernoulli numbers B with level 2 are defined by

Lisy k(QSIIl x/2
2sin(z/2) Z% ®)

where
S 2n+1

Lig’k(Z') = HZ:O m

is the polylogarithm function with level 2 ([11]). Such a concept is analogous of that of
poly-Bernoulli numbers IB%,(f), defined by

l—e® — n!
with the polylogarithm function
0 ontl
L) = 2 g

([6]). Then, Bernoulli numbers*B,, = B with level 2 are given by the generating function

o0

1 1+ 2sin(x/2) "
1 = —.
4sin(x/2) BT 2sin(z/2) Z%nn ©)

n=

First several values of Bernoulli numbers with level 2 are given by

2 62 1670 47102 6936718 29167388522 9208191626
{Bantocn<i0=1,5, = ’

37157 21 15 7 33 7 1365 ’ 3 ’
150996747969694 58943788779804242 T637588708954836042
255 ’ 399 ’ 165 ’

The generating function of the poly-Cauchy numbers with level 2 can be written in the
form of iterated integrals ([13, Theorem 2.1]):

1 x 1 z 1
: xxdr-- dzr
arcsthS\/O arcsinhzv/1 + 22 o arcsinhzv1+ 12 k1
k-1
o "
=) ¢ (k>1).
nz:% no (k>1)

We can also write the generating function of the poly-Bernoulli numbers with level 2 in

the form of iterated integrals.



Theorem 8. For k > 1, we have

1 o1 o1 1 14 2sin% n
: x—log—.de---deE:%ﬁf)x—.
2sing J, 2tan o 2tang 2 1 —2sin § ~—— n!
(& v k—1 n=0

k—1

Poly-Cauchy numbers with level 2 can be expressed explicitly in terms of the Stirling
numbers of the second kind with level 2. Poly-Bernoulli numbers with level 2 can be
expressed explicitly in terms of the Stirling numbers of the second kind with level 2.

Theorem 9. Forn > 0,

n

o = g::o [[m]]Q (2m+ 1)k’

L

m=0

4.1 Relations with poly-Cauchy numbers with level 2

Poly-Cauchy numbers with level 2 can be expressed in terms of poly-Bernoulli numbers
with level 2.

Theorem 10. For integers n and k with n > 1,

n m

=35 o L [T, =

Remark. Poly-Cauchy numbers can be expressed in terms of poly-Bernoulli numbers ([12,

Theorem 2.2|): .
O IR

m=1

On the contrary, poly-Bernoulli numbers can be expressed in terms of poly-Cauchy

s S5 ({7}

m=1 [=1

numbers:

Similarly, poly-Bernoulli numbers with level 2 can be expressed in terms of poly-Cauchy
numbers with level 2.



Theorem 11. For integers n and k with n > 1,

=SSm0 (7], e

m=1 [=1

Other relations with Stirling numbers with level 2 are given as follows.

Theorem 12. Forn > 1,

2n)t == Lm (2n+1)
- n n—m ok 1
(e @n+1) (11)

Remark. For poly-Bernoulli and poly-Cauchy numbers ([7, Theorem 3]), we have

1 < [n 1
il Bk —
n!mz::()[m] ™ (n+ 1)k
SRR
mJ ™ (n+ 1)k

m=0

Since the Stirling numbers with level 2 have an explicit expression ([1, Proposition 2.4

(xiii)],[11, (7)]): K
i =l .

, we have an explicit expression of poly-Bernoulli numbers with level 2.

Proposition 1. Forn > 1,

(k) n]J 2m
By = ZZ (2m + 1)* ( —j>‘

m=0 j=0

In particular, Bernoulli numbers with level 2 can be expressed explicitly as
= ()
2m+1 -7
Remark. Note that poly-Bernoulli numbers B,, can be expressed as

I S

m=0 5=0
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and the classical Bernoulli numbers B,, with B; = —1/2 can be expressed as

Fn _ZZ m+1 (m J)

mO]O

5 Bernoulli numbers with level 2

Bernoulli numbers *B,, = B with level 2 are given by the generating function

(o)

1 1+ 2sin(x/2)
o 1
4sin(x/2) gl—Qsm (x/2) Z% (13)

First several values of Bernoulli numbers with level 2 are given by

2 62 1670 47102 6936718 29167388522 9208191626
{%Qn}OSnSIO = 17 5 1 ;

37157 21 15 7 33 7 1365 ’ 3 ’
150996747969694 58943788779804242 7637588708954836042
255 ’ 399 ’ 165 '

Though this definition may be strange, we shall show some meaningful relations with
some classical numbers.

For Bernoulli numbers, the von Staudt-Clausen theorem holds. That is, for every n > 0,
But 3 o
(p— 1)\2n

is an integer. The sum extends over all primes p for which p— 1 divides 2n. For Bernoulli
numbers with level 2, a similar formula holds ([11, Theorem 14]): for every n > 0,

Bay, + Z

(p—1)[2n

n,L—l

is an integer. The sum extends over all odd primes p for which p — 1 divides 2n.

5.1 Glaisher’s R numbers

In 1898, Glaisher introduced and studied several numbers related to Bernoulli numbers.
In order to get several relations about Bernoulli numbers with level 2, first we use the
numbers R, studied in [3, §132-138] and [4, p.51].The generating functions ([3, p.71]) of
R numbers are given by

cosh 1+cosh2r — %"
= = -1)"R, . 14
2cosh2x — 1 2 cosh 3z ;::0( 'R (2n)! (14)
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The first several values of numbers R,, are given by

{R,}n>0 =1,7,305,33367, 6815585, 2237423527, 1077270776465,
715153093789687, 626055764653322945, 698774745485355051847, . ..

([20, A002437,A000364]). In [3, p.71], it is shown that

32n+1 + 1
(-1 Bu,

R, = (15)

where Euler numbers E,, are defined by

1
:ZEn%

coshz

Theorem 13. Forn > 0, we have

Z () 0B = (1R,

From Theorem 13, we have a determinant expression of Bernoulli numbers with level 2.

Theorem 14. Forn > 1, we have

> 1 0
1 L .
om)! 5! 3!
4n
1 e L |
(2n—1)! (2n—3)! 3!
I+(=D"" 'Ry 14+(=D"Rn—1 . 1=Rs 14+R;
(2n+1)! (2n—1)! 5! 3!

where R, are Glaisher’s R numbers, given in (15).

Remark. Fuler numbers of the second kind En, defined by

o0
T ~ "
> B
n!
=0

sinhz “
have a similar determinant expression ([9, Corollary 2.2],[10, (1.7)]).
% 1 0
1 1
51 31
Eo = (=1)"(2n)| :
1 1 1
2n—-1)! (2n-3)! 3!
_r 1 1 1
@ntD) (o) 5 3

By using the inversion formula, we have the determinant expression of 1/(2n + 1)! in

terms of B,,.
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Corollary 5. Forn > 1, we have

489
2 1 0
42‘34 485 1
] ]
1 4! 2
(277, + 1) 418, AV=2B0, 4 o 4985 1
(2n—2)! (2n—4)! 2!
4"%Byy, Ry 4" 'Bon 5 Rno1 . 4284 Ry 4By _ Ry
(2n)! (2n+1)! (2n—2)! (2n—-1)! 4! 5! 2! 3!

6 Glaisher’s H' numbers

Glaisher’s H' numbers H,, ([5, §34])? are defined by

2n

1 = x
- =1 2H,, —— 16
2cosz — 1 +; 7 (2n)! (16)

and given by
2n [G-1)/2]

Ho=2.2 2 (f) (Z)(—l)”—jzk-fo—zw (n>1). (17)

k
k=1 j=0 =0

(Cf.[20, A002114]). The first several values of H,, are

{H,}ns1 = 1,11,301, 15371, 1261501, 151846331,
25201039501, 5515342166891, 1538993024478301, . . . .

Notice that the value for n = 0 may be recognized as Hy = 1/2. In the next section,
we shall see a nice relation with poly-Bernoulli numbers with level 2 for index 0, yielding
a simper expression than the known identity (17). In fact, Glaisher’s H' numbers are
closely related to poly-Bernoulli numbers with level 2 with index 0.

By Proposition 1, when the index is 0, we can find a simpler relation about Glaisher’s
H’ numbers.

Theorem 15. Forn > 1,

-y Y (),

m=0 j=0

2Here we use the notation H,, to avoid confusion with differentiation. In fact, H, = H, /3, where H, are Glaisher’s H
numbers ([5, §25],[20, A002114]).
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