FUNDAMENTAL GROUPS AND SPECIALIZATION IN RIGID GEOMETRY
ALEX YOUCIS

1. INTRODUCTION

In most areas adjacent to arithmetic geometry the role of ‘covering space’ has historically been
assumed by the notion of a finite étale covering. This is for good reason, as if one is concerned with
well-behaved (e.g. geometrically unibranch) schemes, then (disjoint unions of) finite étale coverings
account for essentially all notions of ‘covering space’ one is likely to define (see Example 4.4).

That said, there are two notable examples of profitable theories of infinite degree covering spaces
arising from arithmetic geometry:

e de Jong’s theory of covering spaces for rigid spaces over non-archimedean fields,
e Bhatt—Scholze’s theory of geometric coverings for locally topologically Noetherian schemes.

In this expository note I discuss recent work of myself and my coauthors showing that these two
ostensibly disparate notions are intimiately connected via the idea of specialization and how this
points to a more all-encompassing theory of ‘covering spaces’ in rigid geometry.
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cussions. The author also thanks the organizers of the Algebraic Number Theory and Related
Topics 2021 conference at RIMS for allowing him to speak on this topic at their conference. Fi-
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article.

Notation and Conventions. This article is written in an informal manner. I encourage the
reader to consult [1], [3], and [2] for precise statements, references, definitions, and conventions.

2. PRELIMINARY IDEAS

We briefly recall some background material needed for the rest of the article.

2.1. Rigid spaces. As de Jong’s theory of covering spaces concerns rigid geometry, we now briefly
recall the various incarnations of ‘rigid spaces’ and the relationships between them.

Fix (K,|-|) to be a non-archimedean field (so K is complete and non-discrete), @ an element
of K with 0 < |w| < 1, O the valuation ring of K, m the valuation ideal of O, and k the residue
field of O. In this article, a rigid K-space means an adic space locally of finite type over Spa(K).
Denote by Rigy (resp. Rig}, resp. Rig™) the category of rigid K-spaces (resp. quasi-separated
rigid K-spaces, resp. quasi-compact and quasi-separated rigid K-spaces).

The universal separated quotient. The underlying topological space of a rigid K-space X is
valuative in the sense of [12, Chapter 0, Definition 2.3.1]. This means that while the topology of
X is locally spectral, and thus is scheme-theoretic in nature, the generizations of any point of X
form a totally ordered set. In particular, unlike the case of schemes locally of finite type over a
field, rigid K-spaces admit non-trivial continuous maps to separated (i.e. T1) topological spaces.

Definition 2.1 ([12, Chapter 0, §2.3.(c)]). The universal separated quotient of X, denoted [X], is
the quotient topological space X/ ~ where x ~ y if z and y are related by generization/specialization.
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The quotient map X — [X] is denoted by sepy. As the name suggests, the space [X] is separated
and the map sepy is initial amongst maps from X to separated spaces. The association of [X] to
X is functorial. The fibers of the map sepy are Riemann—Zariski-esque spaces.

If X is a so-called taut rigid K-space (see [16, Definition 5.1.2]), then [X] is in fact a locally
compact Hausdorff space and [X] agrees with the underlying topological space of the Berkovich
space X Pk associated to X (cf. [17, §8.3]).!

The map sepy allows us to endow X with a coarser topology. Call an open subset of X over-
convergent if it is of the form sep)_(l(U) for an open subset U C [X]. One might also call these, in
light of the above mentioned relation to Berkovich spaces, Berkovich open subsets. If X = Spa(A)
then a basis for the toplogy of X are the open subsets of the form {z € X :|f(z)| < 1} for f € A.
In contrast, a basis for the overconvergent topology on X are those open subsets of the form

{reX:|fl@)<1}°= [J {reX:|f@)<e}
0<e<1
Example 2.2. Assume that K is algebraically closed and let Bx = Spa(K(T')) be the closed unit
disk over K. The structure of [Bg]| is explained in great detail in [5, Chapter 1]. Recall (see [20,
Example 2.20]) that the points = of Bg are classified into five types, and sep)_(1 (sepx(x)) is {z}
unless z is a point of Type 2, in which case Sep)_{l(sep x(z)) may be identified with P} except when
x is the Gauss point Ngauss Of Bx in which case it may be identified with A,lg.2

Generic fibers of formal schemes. Denote the category of formal schemes locally formally of
finite type (resp. locally of finite type, resp. of finite type, resp. finite type and flat) over O by
FSchgf; (resp. FSchgﬁK, resp. FScth, resp. FSch%(i(m).

Let A be a topologically finite type Og-algebra, so Ax = A[%] is then topologically of finite
type over K. The subring A}, C Ak of powerbounded elements coincides with the integral closure
of (the image of) A in Ax. There exists a unique functor

(—)n: FSchf — RigE™®
such that Spf(A), = Spa(Ag) for every topologically finite type O g-algebra A, and which respects
open immersions and open covers. This functor naturally extends to a functor

(—)n: FSch{ — Rigf,
and for X locally of finite type over Og, the rigid K-space X, is called the rigid generic fiber

of X. Furthermore, (—), sends the class W of admissible blowups (see [12, Chapter II, §1.1]) to
isomorphisms and induces equivalences of categories

FSchi™ (w1 n% FSch{ (W] (1> Rigl®.
-/n

Here (—)[W 1] denotes the localization with respect to W. By a formal model of a rigid K-space
X we shall mean a formal scheme X such that X, ~ X. The notion of the generic fiber of a formal
scheme can be extended to FSchif* by a gluing construction (cf. [12, Chapter I1, §9.6.(a)]).

If X belongs to Rigj®, then the construction of the rigid generic fiber allows one to identify
the locally topologically ringed space (X,0%) as LLH (X, 0x) where X runs over admissible formal
models of X. In particular, for any model X of X one has a map of topological spaces

spyx: [ X| = [X] = [ X4

1This tautness assumption is quite mild, and holds true for any quasi-paracompact and quasi-separated rigid K-
spaces (e.g. affinoids, analytifications of separated locally of finite type K-schemes, etc.) as well as any quasi-separated
rigid K-space of equidimension 1 (see [1, Proposition 3.4.7]).

2This discrepancy between Gauss points and other type 2 points is related to the fact that Bx is not partially
proper over Spa(kK) (see [1, Example 3.4.3]).
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called the specialization map. If X = Spf(A), then for a valuation v: Ax — I' U {0}, spyx(v)
is the open prime ideal {z € A : v(z) < 1} in Spf(A4). The specialization map is continuous,
quasi-compact, closed, and (for X in FSch%dm) surjective.

For an object X of FSchft, and a closed subset Z C |X|, we define the tube open subset of
X, associated to Z, denoted T'(X|Z), to be the open subset spgl(Z)o. Tube open subsets are
overconvergent opens, have the property that a closed cover {Z;} gives an overconvergent open
cover {T'(X|Z;)} of X,), and the natural map BAEZ — X, where -'%Z is the completion of X along Z,
has generic fiber which is an open embedding with image T'(X|Z2).

Example 2.3 (cf. [17, Proposition 1.9.6]). Suppose that X — Spec(0) is a separated and locally
of finite type morphism of schemes. Denote by X the w-adic completion of X. Then there is a
functorial open immersion X, — X3 which is an isomorphism if X — Spec(0) is proper.

Example 2.4. Let X = Spf(O(T)) be the w-adic completion of A} so then X, = Bg. For a point
a € O = Bg(K) one has spy(a) =@ € k = A} (k), where @ is the image of o in k. In particular
spy collapses every point in m C By (K) to the closed point 0 € Al(k). In contrast, if £ is the
generic point of A} then spy'(€) = {Ngauss}. Finally, if Z =0 € AL(k), then

T(x|Z) =Dy = |J {z€Bg:|T(x)| <e} Cspx'(Z) = {w € By : [T(x)] < 1}
0<e<1

where this containment is strict as (for example) the Type 5 point with x = 0 and r = 1, and ? =<
(in the notation of [20, Example 2.20]) is in the right-hand side, but not the left. Observe that here

we can visibly see that the generic fiber of the completion X, = Spf(O[T]) of X along Z agrees
with T(X|Z) = Dp.

Example 2.5. Consider the affinoid
A1 5= Spa (K (T.2)) = {z € By : || < 7] < 1.

This has a model 241 5 given by Spa(O(T, %)) whose special fiber is Spec(k[T’, S]/(T'S)), the (re-
duced) union of the axes in A%}k. One may glue two copies of A; o together along the (rational
open) unit circle

via the automorphism 7'+ T~1 of C. The result is
Apim={r € AP |w| <|z| < |w| '}

This has a model 2,1 ., given by gluing Spf(O(T, %)) to itself along Spf(O(T, T~ 1)) via T — T~ 1.
The special fiber of -1 ., is two copies of Spec(k[T’, S]/(T'S)) glued along the non-vanishing locus
D(S) = Spec(k[T,T~!]) via the automorphism 7' + T~!. In other words, the special fiber of
A1 - looks like P,1C with copies of A,1C glued to each pole. It is then perhaps not surprising that

if X; is the admissible blowup of f’é along the two poles 0 and oo then
Qlw—17w = .%1 — {01, 001}, Aw—l,w = Sp;11<2lw_1»W) Q P}%an’

where 01 and co; are the poles of the exceptional divisor of the blowup not intersecting the original
copy of P(lf). Continuing in this way, either by the blowup or gluing procedure, we obtain spaces

Qlw—n7wn — xn_{on, OOn}, Aw—n7wn - {.1: € A}%an . |W|n < |.1:| < |W|_n} — Sp;i(mw—nﬂwn) g P}%an.

Iterating infinitely is seen, either by the blowup or gluing procedure, to yield (a model of) Gl k-
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2.2. Tame infinite Galois categories. The technical underpinning for the notion of ‘fundamental
group’, in the generality that we will need it, is the notion of a tame infinite Galois category. In
essence, this theory seeks to axiomatize the study of the category G-Set of discrete sets with
a continuous action of a topological group. It is in analogy with the classical theory of Galois
categories, where one studies finite sets with a continuous action of a profinite group.

Definition 2.6 ([7, Definition 7.2.1]). Let € be a category and F': € — Set be a functor. We then
call the pair (C, F') an infinite Galois category if the following properties hold:

(IGC1) The category € is cocomplete and finitely complete.

(IGC2) Each object X of € is a coproduct of categorically connected objects.?

(IGC3) There exists a set S of connected objects of € which generates € under colimits.

(IGC4) The functor F is faithful, conservative, cocontinuous, and finitely continuous.
We say that (C, F') is tame if for every categorically connected object X of € the action of 71 (C, F')
on F(X) is transitive. The fundamental group of (€, F), denoted 71(C, F') is the group Aut(F)
endowed with the compact-open topology.*

For a topological group G, we denote by G- Set the category of discrete sets with a continuous
of G. The upshot of the theory of (tame) infinite Galois categories is the following.

Proposition 2.7 ([7, Example 7.2.2 and Theorem 7.2.5]). Let (C, F') be an infinite Galois category
and G a Noohi group®. Then, the following statements are true.
(a) The group 71 (C, F) with its compact-open topology is a Noohi group.
(b) The pair (G-Set, Fg), where Fg: G-Set — Set is the forgetful functor, is a tame infinite
Galois category with a canonical isomorphism G ~ 71 (G-Set, Fg).
(¢) The natural map Hom((C, F'), (G-Set, Fz)) — Homens(G, m1(C, F')) is a bijection.
(d) If (C,F) is tame then F induces an equivalence F: C = 71 (C, F)-Set.

3. THE CATEGORY OF DE JONG COVERING SPACES

In this section we discuss the theory of covering spaces of rigid spaces developed by de Jong in
[8] using more modern language.

Motivation. To properly discuss de Jong’s theory of covering spaces, as well as later examples of
covering spaces, it is useful to first develop some notation. Fix a site (8,7) and a stack D — 8 such
that Dx has all coproducts for all objects X of 8. For a fibered subcategory C of D define

e [L,C to be the T-stackification of € (i.e. (L,;€C)x consists of those elements Y of Dy for
which there exists a 7-cover {U; — X'} such that Yy, belongs to Cy, for all i),

e UC (resp. Ug,C) to be the subfibered category of D such that (UC)x (resp. (UgnC)x)
consists of all (resp. all finite) coproducts of elements of Cx.

One may observe that many categories of ‘covering spaces’ occur by starting with a category of
‘nice morphisms’ (usually ‘isomorphisms’) € and iterating the above operations.

Example 3.1. Let (8, 7) = (Top, op) be the category topological spaces with the usual Grothendieck
topology, and let D be the arrow category of Top. If Isom denotes the fibered subcategory of D con-
sisting of isomorphisms then the stack Cov'®® — Top consisting of covering spaces is Lo, U Isom.

3An object Y is categorically connected if every monomorphism Y’ — Y with Y’ non-initial is an isomorphism.
4More precisely, for each s in S, where S is as in (IGC3), we endow Aut(s) with the compact-open topology. We
then endow Aut(F’) with the subspace topology inherited from the natural map Aut(F) — ], g Aut(s).
5A Noohi group is a HausdorfT topological group which has a neighborhood basis of 1 given by open (not necessarily
normal) subgroups, and which is Raikov complete
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Example 3.2. Let (8,7) = (Sch, ét) be the category Sch of schemes with the big étale topology,
and let D be the arrow category of Sch. Then the stack FEt — Sch of finite étale morphisms is
precisely Lg Ug, Isom.

Definition 3.3 (Berkovich, de Jong). Let X be a rigid K-space. Then, the category of de Jong
covering spaces, denoted Cov'y, consists of all morphisms Y — X of rigid K-spaces such that there
exists an overconvergent open cover {U;} of X such that Yy, belongs to UFEty, for all i.

If oc denotes the Grothendieck topology consisting of overconvergent open covers we see that
Cov®® = Lo UFEt = LocULétUﬁn Isom.

Intuitively we may think of Cov§ as being the synthesis of the notions of topological covering
space of X B and finite étale covering space of XBerk,

The original motivation of de Jong in his paper [8] to work with de Jong covering spaces is that
examples of such covering spaces were abundant in nature

Example 3.4. Let ¢ be an element of K satisfying 0 < [g| < 1. Then, ¢Z acts on G* . by
translation, and this action is properly discontinuous for the overconvergent topology. Thué7 one
gets a quotient space GJ} rc/ ¢% and the mapping Gk = G/ ¢% is a topological Z-covering on
the level of Berkovich spaces and so is a de Jong covering space.

Example 3.5 (see [4, Chapter III, Example 1.2.6]). The logarithm map
o0
log: DK—>A}§’LH, x + log(1l+ x) :Z(—l)

n=1

n
n—12_

n

is a de Jong covering space.

Example 3.6 (Yu, see [8, Proposition 7.2]). The Gross—Hopkins period mapping
mau: Dg, — P&

is a de Jong covering space.

The de Jong fundamental group. While the definition of a de Jong covering space is useful
for capturing the natural examples mentioned above, the notion would not be a true instace of
‘covering space’ if the category Cov could not be studied by fundamental group theoretic means.
The main theorem of [8] addresses this question. Indeed, if we use the notation

Fs: Etx — Set, (Y = X) — Homx(Z,Y).
then the main theorem op. cit. may be interpreted (in modern language) as follows.5

Theorem 3.7 (de Jong). Let X be a connected rigid K-space and T a geometric point of X. Then
the pair (UCovS, Fz) is a tame infinite Galois category.

Before we sketch the proof of this result, let us first make some notational preparations. For
simplicity we assume that X is tame and write 2 := XP°X, For an open subset % of 2" we write
U for the overconvergent open subset sep;{l(% ). Finally, for two geometric points Z and 7 and a

subcategory € of Ety, denote by Isome(Fy, Fy) the set of isomorphisms (Fi)|e — (Fy)e-

6As the theorem suggests, the notion of a de Jong covering space is not closed under disjoint unions and so cannot
be a tame infinite Galois category. For an example of this type of phenomenon see [2, Remark 3.4]. Intuitively the
issue is that unlike the case of complex manifolds, rigid K-spaces are not locally contractible for the étale topology
(e.g. the closed unit disk has non-trivial finite étale covers). One can similarly create examples to show that the
composition of two de Jong covering spaces needn’t be a de Jong covering space.
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Idea of proof. The only difficult condition to verify is tameness. It suffices to show that for any
two geometric points T and y that Isomcovge (Fz, Fy) is non-empty (cf. [1, Proof of Proposition
5.4.9]). To prove this we use the fact (see [6, Theorem 3.2.1 and Corollary 4.3.3]) that 2" is arc
connected, i.e. any two points ¢ and b are the endpoints of a subspace £ C 2 homeomorphic to
[0,1]. Let £ be such an arc with endpoints z and y. For any ‘nice, linearly ordered’ finite open cover
U =A{%,..., %} of £ (see [8, Proof of Theorem 2.9]) we have the category Covy of morphisms
Y — X such that Yy, is in UFEtUi for all i. As ¢ is compact,

Covy = lim Cowvy, Isomgovse (F, Fy) = lim Isomcov, (Fz, ).
u

For each U let Ky be the image of the composition map
IsomUFEtUl (Fj, Ffl) X oo X IsomUFEtUn (an—l’ Fg) — ISOHICOVu (Fj, Fg)

Here each T; is a geometric point anchored in %; N %;+1, and note this image Ky may be shown
to be independent of such choices. Each set Isomypg, (F%,_,, Fz,) is a pseudo-torsor under the

i—19
profinite group WTlg<Ui,fi) and, as FEtUi is a Galois category, is in fact a torsor (cf. [24, Tag
0BN5]). This endows each Ky with the structure of a compact Hausdorff space. The transition
maps Ky — Ky are continuous, and thus lim Ky is a projective limit of non-empty compact spaces
and so non-empty. As %iLnKu admits a map to I'&HIsomco\,u (Fz, Fy) we're done. O

Denote by 77 (X, Z) the Noohi group 71 (UCovS, Fx) and call it the de Jong fundamental group.
As this group does not depend on the chosen base point we shall often omit it from the notation.
It is important to note that the de Jong fundamental group can be quite complex even in
relatively simple situations. In particular, the following example shows that even for a space as
simple as Péin the de Jong fundamental group need not be pro-discrete (i.e. is not, in the category

of topological groups, an inverse limit of discrete groups).”

Example 3.8 (de Jong, [8, Propsition 7.4]). The Gross—Hopkins period map mgp gives rise to a

1,an

continuous surjection W?J(Pcp ) = SLa(Qy)-

4. THE CATEGORY OF GEOMETRIC COVERINGS OF SCHEMES

In this section we talk about the category of geometric coverings of schemes discussed by Bhatt—
Scholze in [7].

Motivation. Given the situation with de Jong covering spaces, it’s natural to ask what happens
for schemes. For instance, why does the category L¢ U L¢i Ugnlsom not show up in the classical
study of covering spaces of schemes? As it turns out, the reason is (at least partially) because one
doesn’t obtain anything new if the scheme is reasonablly well-behaved.

Proposition 4.1. Let X be a topologically Noetherian geometrically unibranch scheme. Then,
Lipqc UFEtx = UFEty.

We delay proving this proposition until later, as it will fall out of more general machinery. Until
then, we note that this proposition patently fails for even relatively benign varieties which are not
geometrically unibranch.

Example 4.2. Let k be a field and let
X =V(y?z — 23 — 2%2) C P}

"There is a minor error in [8] where it is claimed that 7§”(X) is always pro-discrete, see [7, Remark 7.4.11].
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be the projective nodal cubic curve. Note X is the result of pinching (see [11]) together 0 and co
on P,lc. Let d be a non-negative integer and set Y] = leeZ/dz X, where each X, is a copy of
P/,lC and let Yy be the result of pinching together each oo in X,,, with 0 in X,,,+1. The tautological
map Y, — P,1C gives rise to a map Yy — X via the universal property of pinching. Away from the
pinched points the map Y; — X is a disjoint union of isomorphisms, and a pinched point y of Y
maps to the pinched point x of X. As the induced map 0) Xz — 6y,y is an isomorphism (see [15,
Example V.6.3]), the maps Y; — X are étale. One checks that Yj is connected, Aut(Yy/X) = Z/dZ,
and Yy xx Yy = I_lmeZ/dZ Yy as Yp-schemes. In particular, Yy belongs to Lg; UFEtx but not to

UFEty ®
This example, and others like it, are handled by the following definition of Bhatt—Scholze.

Definition 4.3 ([7, 7.3.1(3)]). Let X be a locally topologically Noetherian scheme. A morphism
of schemes Y — X is a geometric covering if it is étale and partially proper.? We denote by Covy
the category of geometric coverings of X.

We now give some further examples of geometric coverings.

Example 4.4 (See [7, Lemma 7.4.10] and its proof). Let X be a locally topologically Noetherian
scheme. If X is geometrically unibranch, then Covyxy = UFEtx.

It is worth noting that geometric coverings is strictly larger than Lg UFEtx in some cases.

Example 4.5 (]2, Remark 3.9]). Let k be an algebraically closed field, and let X be the curve
obtained by pinching two copies, call them X and X, of G, ;. together at a closed point x. For
n >0, let Y, — X* be the connected cyclic covering of degree equal to the n-th prime number
invertible in k. Let Y+ =], Y, and Y~ =], Y, , and let Y — X be the geometric covering
of X with Y|y+ ~ Y* obtained by identifying the fibers of Y+ at x as in the picture below.

Y, Yy Yy Y,
° ° L] L] [ ] [ ] [ ] [ ] [ ] ° L] L] [ ] [ ] [ ] [ ] [ ] °
N—— SN——

Then ¥ — X is a geometric covering but is not the disjoint union of finite étale coverings in any
étale neighborhood of =x.

The pro-étale fundamental group. Again, for the category of geometric coverings to be useful,
it is highly desirable that there is an associated theory of fundamental groups. To prove this it is
useful to first recall the context that Bhatt and Scholze first considered geometric coverings in.

Definition 4.6. The pro-étale site of X, denoted Xpo¢t, has objects consisting of weakly étale
morphisms Y — X (see [24, Tag 094N]) and whose covering families consist of fpqc covers. We
denote by Loc(X,r0¢) the category of locally constant sheaves of sets on Xros-

Using the pro-étale topology, Bhatt—Scholze are able to give an alternative description of Covy.
Proposition 4.7 (cf. [7, Lemma 7.3.9]). For a locally topologically Noetherian scheme X,
Covx = Lipqc Isom = Loc(Xprost)-
Using this, one can show that Covx is a tame infinite Galois category.

8In fact, one can see that Yy — X belongs to L¢UlIsom. Such morphisms, called SGA3 covering spaces, were
already considered in [9] where they are used to classify tori over non-normal bases.
9A morphism is called partially proper if it is quasi-separated, locally of finite type, and satisfies the valuative
criterion for properness (see [24, Tag 03IX]).
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Theorem 4.8 ([7, Lemma 7.4.1]). Let X be a connected locally topologically Noetherian scheme
and T a geometric point of X. Then, the pair (Covx, Fg) is a tame infinite Galois category.

Idea of proof. By Proposition 4.7 it suffices to show that Loc(Xp0s) with the stalk functor is a
tame infinite Galois category. As in the proof of Theorem 3.7 it suffices to show that for any two
geometric points T and g that the set Isomp,g Xproét)(Ff, Fy) is non-empty. As X is topologically
Noetherian one may connect the underlying points of T and ¥ by finitely many specialization and
generization relations. Thus, one may assume without loss of generality that the underlying point
of T generizes that of 5. So there exists (cf. [24, Tag 02JQ)]) a valuation R with separably closed
fraction field and a morphism Spec(R) — X such that T and 7 lift to Spec(R). As we have a map

IsomLoc(SpeC(R)pruét) (FE’ Fg) - IsomLoc(Xproét) (Ff7 Fy)

it suffices to show that Isomy,ge(spec( R)pmét)(Ff’ Fy) is non-empty. But, by Example 4.4 and [24,
Tag 09Z9] this is trivial to do. O

We call the Noohi group 71 (Covx, Fz) the pro-étale fundamental group of the pair (X, ) and
denote it 7} % (X,Z). As this group is independent of the choice of T we shall often supress it from
the notation.

One may notice the similarities between the proof of Theorem 4.8 and that of Theorem 3.7, with
the role of 7y in the latter being replaced by Spec(R) in the former. We return to this point later
on. We also note that by combining Proposition 4.7 and Example 4.4 we immediately obtain a
proof of Proposition 4.1.

We end this section by giving some examples of the pro-étale fundamental group.

Example 4.9. Let X be the projective nodal cubic curve from Example 4.2. then, the map Yy — X

is a Galois geometric covering and realizes 7°*(X) as the discrete group Z.
Example 4.10 (Deligne, [7, Example 7.4.9]). Let X be a curve of genus at least 1 over an alge-
braically closed field k. Let Y be the result of pinching two distinct points of X together. Then,

there exists a representation ﬂll)rOét(Y) — GL2(Qp) with non-(pro-discrete) image.

proét

Example 4.11. Let X and Y be as in Example 4.5. The Noohi group =7  (X) is not pro-
discrete. Indeed, if it were then by [7, Lemma 7.4.6] (and its proof) one would have that ¥ — X
is in L¢ Isom, but this is false.

5. THE SPECIALIZATION MORPHISM

In this section we discuss the result of [3] showing the existence of a specialization map between
the de Jong fundamental group and the pro-étale fundamental group.

Motivation. The idea of specialization (for fundamental groups) finds its conceptual roots (as do
many things in arithmetic geometry) in complex geometry. Let A denote the open unit disk in C.

Theorem 5.1 ([19, Proposition C.11]). Let X — A be a flat proper morphism of complex analytic
spaces with X connected. Then, there exists an open subdisk 0 € A’ C A such that the inclusion
Xo = Xar is a homotopy equivalence.

For simplicity let us assume that A’ = A. From this we deduce the existence of specialization
homomorphisms
sp: ﬂioP(XA*) — WJ{OP(XO), sp: ﬂioP(Xt) — WEOP(XO)
where A* = A—{0} and ¢ is any point of A. Indeed, this second map is obtained as the composition
of the morphism W}Op(Xt) — WEOP(XA) with the inverse of the isomorphism W;OP(XO) = ﬂioP(XA),
and similarly for the first.
8



Proposition 5.2. If X is normal, then the specialization homomorphim sp: WEOP(XA*) — W}OP(XU)
18 surjective.

Proof. As these groups are discrete it suffices to show that if Y — X is a connected covering
space, then Ya+ is connected (cf. [18, Proposition 2.37.(2)]). Observe that ¥ may be given the
unique structure of a complex analytic space so that Y — X is holomorphic. As Y — X is a local
biholomorphism, the fact that X is normal implies that Y is normal. So, Y is locally irreducible
(see [13, Chapter 6, §4.2]) and as Y is connected it is thus irreducible. Therefore, as Y — A is
surjective, we know that Yj is a proper closed analytic subset of Y and so thin by [13, Chapter 9,
§1.2, Theorem]. Thus, YA+ is connected by [13, Chapter 7, §4.2, Criterion of Connectedness]. [

Therefore, we see that if X — A is proper and flat, and X is normal, one has a sort of semi-
continuity result which says that the fundamental group shrinks under specialization from a ‘general
point of A’ (repsented by A*) to a specific point.

Example 5.3. Let

X =V(y*z + 2% + 222 — t2°) C P3,
where z, v, z are the parameters of P? and t the parameter of A, and so X is normal. In this case
Xp is the nodal cubic curve and the generic fiber Xy is an elliptic curve. One can intuitively imagine
that X; is diffeomorphic to S* x S but where the second copy of S* has radius ¢ which shrinks to
0. One may then intuitively see the specialization map

7% = 1P (Xy) D 1P (Xo) 2 Z

as the surjective map collapsing this second copy of S! to 0.

Grothendieck specialization. In [14] one finds an algebraic analogue of specialization in complex
geometry. For our purposes we restrict to a special case more directly related to that of the complex
situation. Namely, let us fix a non-archimedean field K. Here Spec(O) acts as a ‘contractible object
of dimension 1’ much like the disk A.

Fix X — Spec(O) to be a flat proper map of schemes and write i: X — X to be the inclusion.

Theorem 5.4 (Grothendieck). The pullback morphism i*: FEty — FEth is an equivalence.

Proof. Let X be the w-adic completion of X. Observe that the inclusion X} — X factorizes as X —
X — X. Now, X; — X is a universal homeomorphism of formal schemes, so by the topological
invariance of the étale site (see [2, Proposition 3.5]) it induces an equivalence of categories Ety —
Eth, and FEty — FEth. On the other hand, as X — Spec(0) is proper we know by formal
GAGA (see [12, Chapter I, Theorem 10.1.2]) that the completion functor FEty — FEty is an
equivalence. We are done as our functor is the composition of these equivalences. O

I emphasize the role of properness in the above proof. At first look it appears as though it is the
algebraizability of the unique lift §) — X of a finite étale map Y, — X} for which formal GAGA,
and thus properness of X — Spec(0), is being used. That said, algebraizability of this unique lift
happens in much more general situations than the case when X — Spec(0) is proper.

For instance, if X = Spec(A) is the spectrum of a finite type flat O-algebra, then any finite
étale cover Y, — X} can be lifted to an algebraic map ¥ — X. Indeed, choose a presentation
Y = Spec(Ak[z1,...,xm]/(f1,.-., fm)). Then, if 9 = Spf(A{z1,...,2m)(f1,..., fm)), one has
that Q) is the completion of Y = Spec(A[z1,...,2m]/(g1,...,9m)) where g; in Alz1,..., x| are
such that g; = fi mod w® for N > 0 (cf. [10, Théoréme 7]). But, as X — Spec(0O) is not proper
the map Y — X need not be étale. Intuitively the issue is contained in the observation made in

Example 2.3, that if X — Spec(0O) is not proper, then X, is often strictly larger than X,,.
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Example 5.5. Let X = Aj = Spec(O[T]) and consider the finite étale Artin—Schreier cover
Y), = Spec(k[S,T]/(S — TP — T — 1)). The unique finite étale lift of Y} to a finite étale morphism
2 — X is given by 9 = Spf(0(S,T)/(S — TP — T — 1)). This is the completion of the finite
X-scheme Spec(O[S,T]/(S —TP —T — 1)), but Y — X fails to be étale. Essentially the reason
is that Y;, — X, is not etale at any point of X, corresponding to a pP-root of —p~!. This point
belongs to X, but not to X,.

Returning to the case of proper O-schemes, from Theorem 5.4 one is able to create a functor
Sp* : FEth — FEtXn
sending a finite étale morphism Y}, — X}, to the finite étale morphism Y;, — X, where Y — X is the
unique finite étale deformation of Y, — X to X. From Proposition 2.7 this gives us a continuous
specialization homomorphism
sp: TE(Xy) - 7K.
As in the complex setting, one gets a semi-continuity statement for the étale fundamental group if
one assumes that X is normal.
Proposition 5.6 (cf. [24, Tag 0BQM]). Let X — Spec(O) be a flat proper morphism with X
normal. Then, the specialization homomorphism sp: 7{'(X,)) — 7"(X},) is surjective.
The proof of this result is similar to the proof of Proposition 5.2, but largely simpler in this
algebraic situation. The only added difficulty, and the main part of the proof, is to show that the
normality of X is inherited by finite étale covers of X.

Example 5.7. Let K = C,, and let X be the curve

X =V(yPz— 23— 2?2 — p2?) C P2,
Let us then note that X}, is the projective nodal cubic curve from Example 4.2 and X, is an elliptic
curve over K with split multiplicative reduction. From Example 4.9 we know that the covers
Y; — X for d > 1 are cofinal in the category of finite étale covers of X, and so 7T(1ét<Xk) = 7Z.
On the other hand we know that 7{'(Xx) = Z2. As X is regular, we get from the above theory a
surjective specialization homomorphism 7$'(X i) — 75*(X},). We may describe this more concretely

using Tate’s uniformization theorem (e.g. see [23, Chapter V, §3]). Namely, choosing ¢ in K with
0 < |g| < 1 such that X% is isomorphic to Gi’;K/qZ we have that sp*(Y;) — X is the morphism

whose analytification coincides with the natural quotient map Gi’; %/ ¢z - Gfé‘, 5/ q2.

Specialization for the de Jong fundamental group. As in Example 5.7, even very well-
behaved (e.g. smooth) proper schemes X over K can have models X over O whose special fiber
X is not geometrically unibranch. Thus, it is a natural question to ask whether or not one has a
specialization morphism for the pro-etale fundamental group which would allow one to import the
richer family of geometric coverings of X to interesting covering spaces of Xy .

Question 5.8. Let X — Spec(0) be a flat proper morphism. Does there exist a continuous spe-
cialization morphism sp: Wll)roet(X K) — Wll)roet(X k) making the diagram

7_‘_{)roét (XK) sp> 7_(_{)roét (Xk)

J l

T (X i) —5— 71" (Xn)

commute?
10



The answer to this question is a resounding no, even for purely group theoretic reasons.

Example 5.9. Let X — Spec(O) be as in Example 5.7. On the one hand, from Example 4.4
we know that ﬂ{)rOét(XK) = 7¢(Xg) = Z2 On the other hand, from Example 4.9 we know that
WII)FOét(Xk) = Z and 7{"(Xy) = Z. Thus, we'd be be looking for an arrow making the following
diagram commute

72 N/
||
72— 7

But, this is clearly impossible as one of the compositions is surjective and the other cannot be.

Inspecting the proof of Theorem 5.4, Et X, is still equivalent to Ety and so any geometric covering
Y — X must deform uniquely to an étale morphism ) — X. The issue is that one can no longer
apply formal GAGA to obtain algebraization as the covering ) — X is infinite degree. In fact, this
precisely underlies the issue highlighted in Example 5.9.

Example 5.10. Let X — Spec(O) be as in Example 5.7, and let Yy — X} to be the Z-cover from

Example 4.2. Then, one may uniquely deform this geometric covering to an étale morphism ) — X.

In fact, Yy, — Xy is precisely the non-algebraizable Tate uniformization map G} — X %n.lo

Following the hint provided by Example 5.10 we may instead turn our focus away from finding
a specialization functor Covy, Covy, , which cannot exist, to considering the functor Covy, —
Et xan obtained by sending Y — X, to the rigid generic fiber of its unique étale formal deformation
2 — X. But, as Et xan is not a tame infinite Galois category this cannot be used as a target to
get a specialization homomorphism of fundamental groups. Thus, we need to place the image of
this functor in a smaller tame infinite Galois subcategory of Et Xan. The surprising fact is that one
may take the category Covgf?(n.

More generally, let us fix X to be an admissible quasi-paracompact formal scheme over O (e.g.

the w-adic completion of a flat finite type O-scheme). Then we have the following.
Theorem 5.11 ([2, Corollary 3.8]). Let ) — X be an étale map. Then, the following are equivalent:
(a) Vi — Xk is a geometric covering,
(b) YD, = X, is a de Jong covering space.
In particular, there exists a continuous specialization homomorphism of Noohi groups
sp: T (%) — Wll)mét(fk).
making the diagram

7 (X)) —— 7O (%)

L

T (%) —55— 71 (Xk)

commute. Note that if X is the w-adic completion of a proper morphism X — Spec(O) then the
finite étale covers of X, = X7 agree with those of X by rigid analytic GAGA (e.g. see [6, Corollary

10Ag this is plausible from Example 2.5, which shows that G} x has a formal model with special fiber Yo, this
claim is not exactly clear. One way to confirm its veracity is to use Example 5.12 to show that 2, — X, is a
topological Z-cover, all of which are isomorphic to the Tate uniformization morphism.
11



3.4.13]) and so m4(X,) = 7 (X ) thus yielding a commutative diagram of Noohi groups

ad (X30) — 7% (X

l l

T (Xp) —5— 71" (X)
thus fully addresing the situation suggested by Question 5.8.

Outline of the proof of Theorem 5.11. The reason Theorem 5.11 should be surprising is that
while Example 4.5 shows that a geometric covering 9 — Xi need not split into a disjoint union of
finite étale covers even étale locally on X}, we see that %), — X, must split into a disjoint union of
finite étale covers not just étale locally on X, not just admissibe locally on X,,, but overconvergent
open locally on X,.

The reason that this result is not entirely implausible is that the topology on X, is much more
flexible than that of X, allowing one to replace X by an admissible blowup. This motivates the
proof which, in some sense, shows that one can split a geometric covering 9 — X into a disjoint
union of finite étale covers in a particularly simple way using admissible blowups of X.

We now outline the major steps to the proof of Theorem 5.11. We focus on the most difficult
part, showing that if 9, — X is a geometric covering, then ), — X,, is a de Jong covering space
when X is quasi-compact.

Outline of proof of Theorem 5.11.

Step 1: Assume that for each irreducible component Z of X that ) xx Z is in UFEt;. Now,
D xxZ=(D Xx.%z) X%, Z e UFEtz.

As the morphism Z — x 7 18 a universal homeomorphism, we know by the topological equivalence
of the étale site that Y xx Xz is in UFEtaAeZ. Thus we see that ), is a disjoint union of finite

étale coverings over each (.’%Z)n = T(X|Z). As the tubes T'(X|Z) as Z varies over the irreducible
components of Xj form an overconvergent open cover of X, we are done.

Step 2: Suppose that there is an admissible blowup X’ — X such that for each irreducible compo-
nent Z’ in X) with image Z in X, the map Z' — Z factorizes through the normalization Z — Z.
Set 9’ =9 xx X’ and observe that as

VD xyp 2 = xxZ) x5 2

we have that 9, is in UFEt, by Example 4.4. By Step 1 we know that Y, — X}, is a de Jong
covering space. As X’ — X is an admissible blowup, %;7 — X, is an isomorphism, so we’re done.

Step 3: It remains to show that there is an admissible blowup X’ — X as in Step 2. To show this
one first observes by Raynaud—-Gruson that as the normalization Zi — Zj is proper and birational
it may in fact be dominated by the special fiber of an admissible blowup X’ — X. Of course, one
must be careful as the admissible blowup X’ — X may have more irreducible components than those
obtained as the strict transform of the Z;. Thus, one must iterate this procedure and perform a
delicate analysis to show that it terminates in finite time. O

The above is illustrated quite well in the situation of Example 5.10.

Example 5.12. Let X’ — X be the admissible blowup of X at the nodal point of X(k). Then,
. = Y2 (in the notation of Example 4.2) and in particular we see that X’ — X has the desired

property from Step 2 of the above proof outline. Let us write the irreducible components of X} as
12



Z} and Zj, both of which are isomorphic to P}. As n¢®(P}) is trivial we see that Yy pulled back
to each Z! is a disjoint union of isomorphisms. Thus, from the above proof outline we see that X
has an admissible open cover X = spg,l(Z{) U Sp;,l(Zé) over which 2),, becomes a disjoint union of
isomorphisms. In particular, ), — X, is a topological covering (compare with Footnote 10).

6. GEOMETRIC COVERINGS OF RIGID SPACES AND FUTURE WORK

Theorem 5.11 indicates an intimate connection between geometric coverings of schemes and de
Jong coverings of rigid K-spaces. But, to say that a fibered subcategory C of the stack Et — Rigj
is the ‘correct’ analogue of the stack of geometric coverings, one would like:

e for all connected X, (Cx, Fz) is a tame infinite Galois category

o L4C = C,

eif Z—>YisinCyandY — X isin Cx then Z — Y — X is in Cx,

e for any X there exists a suitable ‘pro-étale like site’ X» such that Cx = Loc(X?).

The fibered category UCov®® of de Jong covering spaces satisfies only this first property. Most
seriously is the fact that being a de Jong covering space is not admissible open local on the target.

Example 6.1 ([3, §2.1]). If K is of equal characteristic p > 0, then there exists an example of a
morphism Y — X which is not a de Jong covering space, but which is so admissibly locally on X.
In short, X is the annulus A1  from Example 2.5 covered by the two annuli

U ={z€A1 4| <|z|<1} and Ut ={z €A 1,:1<|z|<|w| '},
intersecting along the unit circle
UrNU =C={z€Ap1,:|z|=1}.

The restriction of Y — X to U® is a disjoint union of well-chosen Artin-Schreier coverings Y,
(n € Z) which are split over C, and [[,, Y, and [[, Y,;" are identified suitably over C.

Given the definition of geometric coverings, it’s natural to guess that for Cx one can take the
category of étale and partially proper morphisms Y — X. Unfortunately such a definition is useless.

Example 6.2. For any rigid K-space X the inclusion U — X of any overconvergent open subset
is étale and partially proper. As a concrete example of this, the inclusion D — By of the open
unit disk into the closed unit disk is étale and partially proper.

Ultimately the reason for such examples is that valuative rigid K-spaces have large universal
separated quotients [X] in stark contrast to locally topologically Noetherian schemes. Specifically
the notion of partially proper is only concerned with liftings specializations in the Riemann—Zariski-
esque spaces sep)_(1 (sepx(x)), and completely ignores specializations that happen in [X]. Thus, it
intuitively makes sense that to fix this one should add a sort of ‘valuative criterion for [X]’.

Definition 6.3 ([1, Definition 5.2.2]). A morphism of rigid K-spaces Y — X is called a geometric
covering if it is étale, partially proper, and satisfies the following valuative criterion: for all smooth
and separated rigid L-curves C, where L is a non-archimedean extension of K, and all morphisms
C — X1, any embedding i: [0, 1] — [C] and lift of [0,1) — [Y¢] along [fc] can uniquely be extended
to a lift of i.'" We denote by Covy the category of geometric coverings of X.

The role of arcs in this definition is perhaps not too surprising considering their large role in
the proof of Theorem 3.7. This analogy can be made even stronger by studying an alternative
characterization of geometric coverings in terms of the ability to ‘uniquely lift geometric arcs’ (see
[1] for details).

HFor the reason to introduce the curves C' see [1, Remark 5.4.10]
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The main results of [1] can be combined to show that the fibered category Cov satisfies the first
three desirable conditions listed above. It is then a question of considerable interest as to whether
the final desirable condition has an affirmative answer for Cov x.

Question 6.4. Does there exist a ‘pro-étale like topology” X7 on X such that Covy = Loc(X7)?

One reasonable guess for such a topology is the pro-étale topology defined in [21]. But, let us
define the fibered subcategory Cov® of Ety as L¢ UFEtyx. Then, we have the following.

Theorem 6.5 ([3, Theorem 4.4.1]). For any X there is a natural equivalence of categories between
Loc(Xprosr) and Cov¥.

We suspect examples like Example 6.1 may be adapted to show that Cov‘;— is strictly smaller

than Covy in many cases, and thus Theorem 6.5 indicates that the pro-étale topology from [21] is
not sufficient. In fact, I suspect a more likely option is that one may take for X7 a modification of
the v-topology on the diamond X° as in [22].
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