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Abstract

This article is the write-up of what the fist named author presented on January 25th in 2022 during
the RIMS workshop. We explicitly construct non-tempered cusp forms on the orthogonal group O(1,5)
of signature (14, 5—). Given a definite quaternion algebra B over Q, the orthogonal group is attached
to the indefinite quadratic space of rank 6 with the anisotropic part defined by the reduced norm of
B. As well as the explicit construction we study the cuspidal representations generated by our cusp
forms in detail. We determine all local components of the cuspidal representations and show that our
cusp forms are CAP forms. Our construction can be viewed as a generalization of [8] to the case of
any definite quaternion algebras, for which we note that [8] takes up the case where the discriminant
of B is two. Unlike [8] the method of the construction is to consider the theta lifting from Maass
cusp forms to O(1,5), following the formulation by Borcherds.

1 Preliminaries

Let Ag € M4(Q) be a positive definite symmetric matrix, and put A = —Ap . By G and H we
denote the Q-algebraic groups defined by
5(Q) ={g € GL6(Q) | ‘gAg = A}, H(Q) = {h € GL4(Q) | 'hAoh = Ao}

respectively. Both § and H are referred to as orthogonal groups. We introduce the standard proper
Q-connected parabolic subgroup P of G defined by the Levi decomposition P = NL with

1 tzA %%Agx

N@Q) =< n(x) = 14 T zeQ*y,
1
o
£(Q)={ay = h a€Q”, he H(Q)

a~l

Assume that L is a maximal even integral lattice in Q* with respect to Ag. We put

x
L= Y x,2€ZL, y€ Ly p = Lo ®Z%
z

This is a maximal lattice with respect to A. We let I := {y € §(Q) | vL = L}.
Now let B be any definite quaternion algebra over Q with the reduced trace tr and reduced norm
Nrd and O be any maximal order of B. We regard (O,Nrd) as a quadratic Z module of rank 4. We
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are interested in the case where (Z*, Ag) ~ (O,Nrd). In what follows, we identify these two quadratic
modules.

Let A be the adele ring of Q and Ay be the set of finite adeles in A. We consider the adelizations of
the Q-algebraic groups above, denoted by G(A), H(A), P(A), N(A) and so on. Let L, = L ® Z, and
Lo = Lo ® Zp and we put Ky =[] Ky, and Uy =] U, with

p<oo p<oo ~P

Ky, ={ke€5(Qp) | kL, =Ly}, Up:={uecH(Qp)|uLop=Lop}
for each finite prime p < co. Let K, be the maximal compact subgroup of §(R) given by

1 1
g€SR) g Ag g= Ag

Y
With Ay == ¢ ay = 14 y € RT 3 the Iwasawa decomposition G(R) = N(R)Ax Ko gives

y—l

us the 5-dimensional hyperbolic space Hj as follows.
R* x RT 3 (2,y) = n(z)a, € G(R)/Kqo.

Definition. 1.1. For r € C we denote by M(T',r) the space of smooth functions F on G(R) satisfying
the following conditions:

1
i) Q-F = 3 (r? —4) F, where Q is the Casimir operator defined in [7, (2.3)],

it) for any (v,9,k) € T x §(R) x Ko, we have F(ygk) = F(g),
iii) F is of moderate growth.
As usual we say that F € M(L',r) is a cusp form if it vanishes at all the cusps of I.
From Proposition 2.3 of 7], we see that a cusp form F in M(I",r) has the Fourier expansion
F(n(@)ay) = Y AB)W K47/ Qa, (B)y)e(’ Aox), (1)
BeLy\{0}

with the dual lattice Lj, of Ly. Here, Q 4, is the quadratic form corresponding to Ay.

2 Vector valued modular forms and theta lifts

2.1 Vector valued modular forms

Let dp = N be the discriminant of a definite quaternion algebra B over Q. By definition this is a square-
free integer. Let O be any maximal order of B with O ~ (Z*, Ag). Let Qa,, L and A be as in Section 1.
Let O’ and L’ be the dual of O and L respectively with respect to bilinear forms B4, and B4 defined by
Ap and A. We have described the dual O in the previous section. We have

a
L'={la| :a,b€Z,a € 0'}.
b

Define the discriminant form D by D = L’/L. From the description of L’ above, we have D = L' /L =
0’/0O. D inherits the quadratic form @Qp and bilinear form Bp (with values in Q/Z) from those of O’
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considered modulo 1. The level of D is the smallest positive integer n such that nQp(p) = 0 (mod 1)
for all 4 € D. Since Nrd(0') = &Z, we see that the level of D is N.

The group algebra C[D] is a C-vector space generated by the formal basis vectors {e, : p € D} with
product defined by eye,s = €,4,s. The inner product on C[D] (anti-linear in the second argument) is
defined by (ey, ey ) = 9, Hereafter we will often use the notation

e(x) = exp(2mv/—12)

for z € R. We will now define a representation pp of SLa(Z) on C[D] by specifying it on the generators
of SLy(Z) given by T'=['1] and S = [, 7'].

pp(T)en = e(Qp(p))ep,

po(S)es = % 3 el Bl = S e Bo( ey

webD

This action extends to a unitary representation pp of SLa(Z) on C[D] called the Weil representation of
D.

To construct a vector valued modular form for SLo(Z) with values in C[D], one has to start with a
scalar valued modular form of level N. We let S(I'¢(N),r) be the space of Maass cusp form of weight 0
with respect to I'o(IN) with Laplace eigenvalue (r? + 1)/4. According to the Selberg conjecture on the
minimal Laplace eigenvalue for Maass cusp forms, r should be real (cf. [4, Section 11.3 Conjecture]). The
Fourier expansion of f € S(I'¢(IN),r) is given by

flu+iv) = Z c(n)WO7 Vst (4m|n|v)e(nu).
n#0

for h :={u+iv € C:v > 0}. Define Lp(f): h — C[D] by

Lo(fy=" >, fIMpp(M) e, (2)

MEeT(N)\SLz(Z)
where (f|M)(7) = f(M -7) = f((aT +b)/(cT +d)) for M = [2 4] € SLo(R).
Proposition. 2.1. Let f € S(To(N),r). The function Lp(f) is well-defined and satisfies
Lo(f)lv=pp(MLp(f),

for all v € SLa(Z).

2.2 Theta lifts

We construct the theta lift of f € S(I'g(N),r), N square-free, to an automorphic form on 5-dimensional
hyperbolic space as in [1]. Also see [7]. More precisely our theta lifts are from vector valued modular
forms given above. We will follow the construction of the theta lift in Section 3 of [7]. We recall from
Section 1 that if g € G(R), then we can write

1 tzA %ta:Aoz Yy
g = n(z)ayk, where n(z) = 14 x T € R4,ay = 14 YR E e Koo
1 y~ !

where K, is the maximal compact subgroup of G(R) and that

R* x RT 3 (z,y) = n(z)a, € G(R)/ Koo
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gives the 5-dimensional hyperbolic space Hs. Let Vs := (R%, Q) and let D be the Grassmanian of positive
oriented lines in the quadratic space V5. Note that V5 = L®R, where L was the lattice defined in Section
1. We will identify Hs with a connected component of D as follows.

1 _ _ _
H5 > (I,y) = Z/(I,y) = %t(y_Fy lQA[)($)7_y 1$7y 1) € ‘/:5

satisfying Ba(v(z,y),v(z,y)) = 1. It generates the positive, oriented line R - v(z,y), which is an element
in D. In fact, we see that DT := {R-v(z,y) | (x,y) € Hs} is one of the two connected components of D.
We now note that the quadratic space Vs is isometric to R, where R"® denotes the real vector space
RS with the quadratic form

6

1 2 2

Q15(z1, w2, ,76) = A G Zl"j
i=2

We slightly abuse the notation by using v to represent the line generated by v(z,y). Every line v € DT
induces an isometry

WiV = R-v@®(wh Qaylyr) ~RY
A (1 (A), 1, (V)

where

tF(\) = Ba\ vy, 1, (A) =X — () e vt

v

are the components of A\. Let us remark here that, if we fix (z,y) € Hs, then we get a corresponding
isometry of V5 into R® where the one dimensional positive definite subspace is the line generated by
v(z,y).

Let w™ (respectively w~) be the orthogonal complement of the line generated by z,+ (respec-
tively z,-) in ¢ (V5) (vespectively ¢, (V5)). For A € Vi, let A+ and A,- be the projection of A to
wT and w™ respectively. We define the lincar map w : Vs — RY® by w(X) = (Ay+, Ay ), s0 that w is an
isomorphism from w' and w™ to their images and w vanishes on z,+ and 2, . For our special case, w™
is trivial, the image of w is 4-dimensional, and the first coordinate of w()) is 0.

If p is a polynomial on RY5, we say that p has homogeneous degree (m*, m™) if it is homogeneous of
degree m™ in the first variable and homogeneous of degree m ™~ in the last 5 variables. For h™, h~ integers
satisfying 0 < ht <m™ and 0 < h~ < m~ define polynomials p,, p+ - on w(Vs) of homogeneous degree
(m* —hT,m~ —h™) by

N _
plV) = D Ba\z)" Ba(h2,-)" puns - (w(N). 3)

At h—
Let p : RS — R be the polynomial given by p(zi,---,7¢) = —27222. We get a polynomial on Vj

defined by p o, given by the formula
Pli(N) = —272Ba(A\,v)? = =271y Ba(A, 2,4 )*.

By (3), we have
2742 if (Wt h7) = (2,0);
Pw,h+ ,h— = ( . ) ( ) (4)
0 otherwise.

Note that the polynomial p,, 5+ - is a constant in this case.
Let A be the Laplacian on R®. For 7 € b, (z,y) € Hs and p € D = L' /L, define

o rvla)n) = Y (ean(go) ) (o Oeap(ry/T(Qa (e ()7 + @ale, (A7),

NEL+pu
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OL(r,v(z,y),p) = Z euaﬁ(TvV(xay)7p)'

pneD
Proposition. 2.2. For [2 Y] € SLy(Z), we have

ar +b

Oulra

v(z,y),p) = ler +dPpp([¢5])OL(, v(z,y),p).

Let f € S(I'o(N),r), N square-free, be an Atkin-Lehner eigenform with eigenvalues . for all ¢|N.
Let L (f) be the C[D] valued modular form as defined in (2). Let © (7, v(z,y),p) be the theta function
defined in the previous section. Define

dudv

Bo(v(x,y).p. f) = / (&p(F) (B y) vt
SL2(Z)\b

Here, complex conjugation on C[D] is given by €; = e_,. In the product of ©r and Lp(f), we are
taking the inner product in C[D] to get a C-valued function. By Propositions 2.1 and 2.2, we see that
the integrand is indeed invariant under SLy(Z).

Lemma. 2.3. Lety €' ={y € §(Q) : vL = L}. Then

<I)L(’)/V(33,y),p, )= (I)L(V(aj,y),p, f)

We give a formula for the Fourier coefficients of ®1(v(x,y), f) in terms of the Fourier coefficients of
f. To be precise, we provide a formula for A(8) in terms of the Fourier coefficients ¢(n) of f. Let us
define the primitive elements of O’ by

Oim = {8 €0": 6 ¢ O for all positive integers n > 1}.
Proposition. 2.4. Write 3 € O as

8= Hp“"nﬁo, p > 0,m>0,gcd(n, N) =1 and 5o € O},
pIN
Let qp, = qu,, - For p|N, set
5. 10 iplas;
p = .
1 ifptag,.

Then
2up+0p

=VQu,® Y D e Hi;“;@)l’[(—sp)t,,-l, (5)

pIN tp=0 d|n pIN

We can also verify the following:

Proposition. 2.5. For each representative ¢ of the I'-cusps, ©r(cv(z,y),p, f) has no constant term.
Namely, our lifts ®r(v(z,y),p, f) are cuspidal.

As a result of this we have an enough knowledge of the Foureir expansion of our theta lifts. From
Lemma 2.3 and the above Fourier expansion (compare to (1)), we get

Theorem. 2.6. @ (v(z,y), f) is a cusp form belonging to M(T,/—1r).
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3 Hecke Theory

3.1 Adelization of automorphic forms

To study the action of the Hecke operators on our cusp forms constructed by the lift, we need the adelic
as well as non-adelic treatment of automorphic forms.

For h € H(A), we have the decomposition h = au™! with (a,u) € GL4(Q) x (Ily<ooSL4(Zp) X SL4(R)).
Let Oy = (Iy<oohpZy x RY) NQ* for h = (hy)y<oo € H(A). Then, we have O, = a0 (c.f. [7, Section
3.3]). The dual lattice 0}, is then equal to a~10’.

To obtain an adelic Fourier expansion, let f € S(Io(N),r) be a Maass cusp form with the Fourier
expansion f(z) =3_, c(n)WQ v=1- (4|nly)e(z). Let A be the standard additive character of A/Q. We

2
introduce the following Fourier series

Fr(n(z)a,kg) = Z Fya(n(z)aykg) Y(z,y,k,g) € A* x RY x Koo x G(Ay) (6)
AeQ*\{0}

with
Fra(n(z)aykg) = Ax(9)y* K /=, (47| A ay) A(AAx),

where A (g) is defined by the following conditions:

2up+9,

-Q A _
! _VERN Y Y Sl (-5t (eop)
Ax h = pIN =0 dln  ix pIN
1 0 (A €Q!\0})
S 1
Ay h = ||8||12§A||5H;])\ h
s71 1

An(n(2)gh) = ACAAD)AN(g)  V(z.9.k) € A% x G(A) x K.
Here
1. up, 8, and n are as defined in Proposition 2.4 for 8 = h™!\.
2. (s;h) € Af x H(Ay) and [|s||a denotes the idele norm of s.

For r € C, let M(S(A),r) denote the space of smooth functions F on G(A) satisfying the following
conditions:

1. Q-F = 1(r? —4)F, where Q is the Casimir operator defined in [7].

1
8
2. For any (v,9,k) = §(Q) x §(A) x K, we have F(vygk) = F(g).
3. F is of moderate growth.
Note that F' € M(G(A),r) has the Fourier expansion
Flo) = Y. B@. Bl = [ FngA( Mo
AEQ* At/Q*

where dz is the invariant measure normalized so that the volume of A*/Q* is one. The adelic function F
is called a cusp form if Fy = 0 in the Fourier expansion. By the argument similar to [7, Theorem 3.3] we
deduce the following proposition from the Fourier expansion discussed in Section 2.2.

Proposition. 3.1. The adelic function Fy is a cusp form belonging to M(S(A), v/—1r)
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3.2 Sugano Theory

We will show that if f is a Hecke eigenform then F is an Hecke eigenform by using the non-archimedean

local theory of Sugano [16, Section 7]. For a prime p, let F' = Q,, with the ring of integers Z,. Let ng < 4

and let So € M,,(F) be an anisotropic even symmetric matrix of degree ng. For the m x m matrix
1

Im = , let G,,, denote the group of F-valued points of the orthogonal group of degree 2m + ny,
1

defined by the matrix Q = (
Q@ and let K, be the maximal compact open subgroup of G, defined by the lattice

m

Im
So > Denote by L,, = Zim"'"“ the maximal lattice with respect to

Ky ={9€Gn|gLlm=Ln} (7)

Let H,, be Hecke algebra for (G, K;,) and define C’g) € H,, to be the double cosets chﬁ,? K,
where
c%) = diag(p,...,p,1,...1L,p~  ....p7 1) € Gy

1

which is a diagonal matrix whose first 7 and last r entries are p and p~' respectively. By [16, Section 7],

{Cﬁp | 1 <r < m} forms generators of the Hecke algebra 3(,,.

We embed G; for i < m in G, as a subgroup by the middle (2i 4 ng) x (2i + ng) block. We regard
K; as subgroup of K, similarly. The invariant measure of G,, is normalized so that the volume of K is
one for each 7 < m.

For a prime p { N, we have ng = 0 and m = 3. In this case, the lattice L3 is self-dual. For a
non-negative integer k, let

g = P IO ez (o ®

a special case of [16, 7.11] for ng = 6 = 0. For positive integers k,r, set R](:) = K/ (K}, ﬂc](:)Kk(cg))_l),
and let |R,(:)| denote the cardinality of R,(CT). We have

m, _ JWio ey A <r<k)
R, = {lj (r=0). 9)

Following the methods in Section 4 of [7], we get the following theorem (essentially Theorem 4.11 of [7]
for n =1/2).

Theorem. 3.2. Suppose that f is a Hecke eigenform and let A, be the Hecke eigenvalue of f at p < oo
with pt N. Then the following holds.

i) Fy is a Hecke eigenform.
i1) Let p; be the Hecke eigenvalue with respect to the Hecke operator Céi) for 1 <i<3. We have

g1 =p*(A\) —2) +pfor =P’ (A +p+p )

i—1

i— P -1 .
Mi = IRé 1)| (,Ul - pi——lfs’l> (i=2,3).
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3.3 Thecasep|N

When p | N, we have m = 1 and no = 4. Hence, the Hecke algebra 3 is generated by C{l) which

is the double coset chgl)Kl as defined in (3.2). Let n(z) € G;1 be as defined in Section 1 and let
(t,g) = diag(t,g,t™") € Gy for t € QF and g € Gy.

Lemma. 3.3.

eV = || . 1)n@K U | ] (L 1)n()E U LK
TEX, TEX3

where

={zxep'0/0}, X3={z e (0'-0)/0}.

We can now describe the action of Cl(l) with the invariant measure dr of G normalized so that the
volume | , dr = 1. Define

(Cil) - ®)(g) ::/ Charch(nK1 (z)®(gz)dx
Gy !

for ® € M(S(A),r).
The following proposition derives the action of C{l) on Fourier coefficients of ®.

Proposition. 3.4. Let & € M(S(A),/—1r) be a lift. Then

(V- ®)(n(z)ay) = > AOYK 1,47/ Qa, M)A (A o(@)),

A€O\{0}
where
PPApA(1) — Ax(1) + p?Ax(1) + p? A, (1) if A € pO’\ {0};
A1) = < PP A (1) — Ax(1) + p?Ax(1) if A€ 0\ p0;
P Apa(1) — Ax(1) if A€ 0\ 0.

To write the action of the Hecke operator in terms of Fourier coefficients given in Proposition 2.4,
we write Ay(1) = A(S) where 8 = [] p*?nfy as in the proposition. Note, for A € O’ and § € O’ the
p|N
conditions for A} (1) on A from Proposition 3.4 above translate to conditions on 3 as follows:
A€ p0'\ {0} <= u, > 1;
A€eO\pO = u,=0,,=1;
AeEO'\O < u,=0.6,=0.

Then, as
Apn(1) = A(pB);  Ap-1a(1) = A(p™'5)

we can rewrite the A’ (1) in terms of § as

P*ApB) + (1* — 1)A(B) +p*Alp~'B) if up > 1;
A1) = S p*ApB) + (P* — 1)A(B) if u, = 0,0, = 1; (10)
p?A(pB) — A(B) if up, = 0,9, =0.

Let f € S(T'g(N),r) be a new form with Hecke eigenvalue A, for the operator defined by the action of
the double coset Io(N)[* » |To(IN) at prime p. Assuming it is an Atkin Lehner eigenform with eigenvalue
€p, it can be shown that

Ap = —€p. (11)
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Using the single coset decomposition ([6, Lemma 9.14])

FO(N)[I }FON) UPO { }

we have .
—
z+b
f( )= Xf(2)
b=0 p
In terms of Fourier coefficients, using (11), we get

)\pcm :;%cm m
clpm) = “Le(m) = —Le(m) Y € 2.

The discussion above and the explicit formula for Fourier coefficients of Fy provide us with enough
ingredients to show the following:

Theorem. 3.5. Let f € S(To(N),r) be a new form and eigenfunction of the Atkin Lehner involution
with eigenvalue €, at each p|N. Let Fy be the lift of f defined in (6). Then Fy is a Hecke eigenform with

cM - Fp =@+ p*+p— 1)Fy.

4 Non-vanishing of the lift

In this section, we will obtain the non-vanishing of the map f — Fy constructed in Section 2.2. Let us
start by observing that the proof of Lemma 4.5 of [8] can be used to conclude that there exists M > 0
such that the Fourier coefficient ¢(—M) of f is non-zero. If f is a Hecke eigenform, then this implies that
¢(—1) # 0. Using the explicit formula (5) for the Fourier coefficients for F, we can see that in this case
we get A(1) # 0. Hence, the map f — F} is injective when restricted to Hecke eigenforms f. We will
now prove the injectivity for all f.

Consider a basis of Hecke eigenforms {fi, - - fk} of S(To(N),r). Since this is a finite set, we can
find a prime p { N such that the Hecke eigenvalues )\p of fl for i = 1,-- -k satisfy |)\1(,i)| + |)\§,j )| for all
t # j. This follows from Corollary 4.1.3 of [12]. Let Fy,--- , Fj be the hfts of f1,---, fx. By Theorem

1

3.2, we know that F; are Hecke eigenforms with eigenvalues ji,1,; = p? (()\,(f))Q +p+p- ) Because of

the choice of p, we again see that p,1; # pip,1,; for all ¢ # j. We then verify the non-vanishing of our
theta lifts by an elementary argument of the linear algebra though there is the well known approach of
the inner product formula initiated by Rallis [11].

Theorem. 4.1. The map f — Fy is an injective linear map on S(To(N),r).

5 CAP representation associated to the lift

Assume that f € S(To(N), r) is a newform, and let Fy € M(G(A), v/—1r) be the corresponding lift defined
n (6). Let mr be the representation of G(A) generated by F'.

5.1 Local components of the representation

5.1.1 The archimedean component

Let
Noo ={n(z) |z € R4}, A ={ay |y € R*}
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for n(x) and a, as defined in Section 1. Let ds : Asx — C* be a quasi-character given by ds(y) = y*
for a parameter s € C. We can trivially extend Js to the parabolic subgroup P, with Langlands

decomposition P = NgoAoo My for Mo, = {(1 m ) ‘m c J{(R)}. We define the normalized parabolic
induction induced from 5 by Igj (05). Proposition 5.5 of [7] for N = 4 gives us the following:

Proposition. 5.1. The archimedean component of mp is isomorphic to Ig;" (8,=1,) as admissible G
module, and irreducible. If r is real, namely, f satisfies the Selberg conjecture on the minimal eigenvalue
of the hyperbolic Laplacian, mp is tempered at the archimedean place.

Using Theorem 3.1 of [9] and Proposition 3.1, we see that 7 is irreducible. Since FY is a cusp form,
we can conclude that 7 is an irreducible, cuspidal representation of G(A). Hence, we can decompose
Tp = ®)m,, where 7, is an irreducible, admissible representation of §(Q,). We have obtained the
description of 7o, above. Next we will describe m, for finite primes p.

5.1.2 Non-archimedean component: pt N case

Let p be a prime with p{ N. Let X1, x2, x3 be unramified characters of Q. We get a character x of the
split torus of G(Q,) via

diag(a1, a2, a3, a3 " a3, a7t) = x1(a1)x2(az)x2(as).

Extend this to a character of the minimal parabolic subgroup of §(Q,) by setting it to be trivial on
the unipotent radical. By unramified principal series representation of §(Q,) we mean the normalized
parabolic induction I(x) of §(Q,) induced from Y, the character of the minimal parabolic group.

The argument of the proof of [7, Theorem 5.6] works also for our setting. From Theorem 3.2 we thus
deduce the following;:

Proposition. 5.2. For primes p { N, the local component m, of wp is the spherical constituent of the
unramified principal series representation I(x) of §(Qp) where the character x corresponds to the three
unramified characters x1, X2, X3 given by

A,,+\/@

5 s X2(w@p) = p, x3(w@p) = 1.

X1 (wp) =

Here, wy, is an uniformizer in Qp. Hence, mp is non-tempered for every pt N.

5.1.3 Non-archimedean component: p|N case

Let p be a prime with p|N. For an unramified character y of Q,', we get a character of the torus of §(Q,)
via

diag(y,1,1,1, 1,y ") = x(y).

We can extend this to a character of the maximal parabolic subgroup P by setting it to be trivial on the
unipotent radical. The modulus character is given by

dp(ayn(z)) = ly|*.

Define the normalized unramified principal series I(x) consisting of all smooth functions f : §(Q,) — C
satisfying
flayn(z)g) = ly*x()f(g) forally € Q) € Qy,g € G(Qp).
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If f1 is an unramified vector in I(x), then the Hecke operator Cfl) acts on f; by a constant. To obtain
the constant, using Lemma 3.3, we see that

(Cfl)fl) (1) L(Q : chary. o () f1(z)dz

Y Alapn(@) + Y filn(x)) + fila,-1)

r€X, r€X
=p*IpPx() A1)+ (P> =D AQ) + [ Pxp ) (1)
= (P’x(p) +p* — 1+ p*x(p™ ") f1(1). (12)

From this we can deduce the following:

Proposition. 5.3. Let p|N. The local representation m, is the spherical constituent of the unramified
principal series I(x) with x(w,) = p™t. The representation m, is non-tempered.

5.2 Cuspidal representation generated by F; and its CAP property

Following the description of the local components, we can now state the result for the explicit determi-
nation of the cuspidal representation generated by Fj.

Theorem. 5.4. Let f be a new form in S(To(N),r) and let g be the cuspidal representation generated
by Fy. Then,

/

i) mr is irreducible and decomposes into the restricted tensor product Tp = @,

admissible representations m, of (Q,).

my of irreducible

it) For v =p < oo, if p{ N then m, is the spherical constituent of the unramified principal series

representation of G, with the Satake parameters
/N2 _
) Ap /A —4

A2z~ .
- 59 7p:1717p ) 2

di
iag 5

iii) For v =p < oo, if p | N then m, is the spherical constituent of the parabolic induction I(x) of

S(Qyp) defined by
x(p) = p-

) For every finite prime p, m, is non-tempered. Suppose that the Selberg conjecture holds for f, namely
r is a real number for the Laplace eigenvalue for f. Then my, is tempered.

Proof. This follows from Proposition 5.1, Proposition 5.2, Proposition 5.3 and Theorem 3.1 of [9]. O
We now review the definition of a CAP representation from [8, Definition 6.6].

Definition. 5.5. Let G1 and Gy be two reductive algebraic groups over a number field F such that
G1,v >~ Ga, for almost all places v, where G,;, = G;(F,) (i = 1,2) is the group of F,-points of G;
for the local field F,, at v. Let Py be a parabolic subgroup of Go with Levi decomposition Py = MsNs.
An irreducible cuspidal automorphic representation m = @ m, of G1(A) is called cuspidal associated to
parabolic (CAP) Ps, if there exists an irreducible cuspidal automorphic representation o of Ma such that

my > 7, for almost all places v, where 7' = Q! 7l is an irreducible constituent of Indg;((ﬁ))(a).
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For our case G1 = § = O(1,5) and G2 = O(3,3). Wehave G1 , = G2 forall p{ N. Let o be a cuspidal
representation of GLo generated by a Maass cusp form f with the trivial central character. Assume that
fis a new form. We want to regard the representation |det |g1/20 x | det |11%/20 of GLa(A) x GLa(A) (cf.[8,
Section 6.2]) as the representation of A* xO(2,2)(A), which is isomorphic to a Levi subgroup of a maximal
parabolic subgroup P(A) of O(3,3)(A). Recall that our previous work [§] introduced the parabolic

induction from the representation | det |g1/ 0% | det |11< %o of GLy(A) x GLa(A) to discuss the CAP property
of our lifting for the case of dg = 2 in the setting of GLs over B. In the present setting we consider
the parabolic induction from the aforementioned representation of A* x O(2,2)(A) instead and can show
that 7 is a CAP representation attached to this parabolic induction.

To see this we start with recalling the following two isomorphisms

GLy x GLy/{(z,2) | z € GL1} ~ GSO(2,2), GO(2,2) = GSO(2,2) x (t).

We now note that the representation | det |g1/20 x | det |11&/20 of GL2(A) X GL3(A) can be regarded as the
representation of GSO(2,2)(A) since o has the trivial central character. We construct a representation
of GO(2,2)(A) by considering its induced representation from GSO(2,2)(A) to GO(2,2)(A). Further-
more consider the pull-back of the representation of GO(2,2)(A) to A* x O(2,2)(A) via the surjection
AX x 0(2,2)(A) — GO(2,2)(A). We denote the resulting representation simply by o and introduce

the normalized parabolic induction Indggz’)?’)(A)a, where P is the maximal parabolic subgroup with Levi

subgroup isomorphic to GL(1) x O(2,2) and the abelian unipotent radical. Then we have the following:

Proposition. 5.6. Let mp be as above and recall that we have assumed that the Maass cusp form f is a
do(3’3)(A)O'.

new form. The cuspidal representation wp is CAP to the parabolic induction In P(s)

5.3 Global standard L-function for F}

We define the standard L-function of the orthogonal group G, following Sugano [16, Section 7, (7,6)]. The
local factors for places p { dp are well known. We find them in [16, Section 7, (7,6)]. For places p|dg, the
case of (ng,d) = (4,2) in |16, Section 7 (7.6)] is valid. We define the standard L-function by the Euler
product over all finite primes. Putting the local datum of Theorem 5.4 (ii) and (iii) together, we have
the following result with the help of Y. Jo [5, Theorem 5.7] and Gelbert-Jacquet [3]:

Proposition. 5.7. Suppose that a Maass cusp form f is a new form in S(I'g(N),r) and recall that o

denotes the cuspidal representation of GLa(A) generated by f. Let Tl = Indgj;gg (] det |;1/2a x| det |11%/20),
with the parabolic subgroup Ps o of GLy with Levi part GLyxGLy. By L(Fy,std, s) (respectively L(IL, A, s))

we denote the standard L-function for the lift Fy (respectively exterior square L-function of I1). We have
L(Fy,std, 5) = L(IL, A, s) = L(sym®(f), s)¢(s — 1)¢(s)¢ (s + 1),
where the Riemann zeta function ((s) is defined by the Euler product over all finite primes.

Remark. 5.8. The above coincidence of the two L-functions is expected in the framework of the Lang-
lands L-functions (for instance see [2, Section 4]). We remark that our example is given for non-generic
representations while the case of generic representations is known to be proved by Shahidi’s theory [15,
Theorem 3.5] (see [2, Lemma 3.5]).
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