LOCAL NEWFORMS FOR THE GENERAL LINEAR GROUPS

SEIDAI YASUDA

1. INTRODUCTION

Let us recall the theory of newforms from [1]. For integers k, N > 1, let S (I'o(N))

denote the space of elliptic cusp forms of weight k& > 1 on the congruence subgroup
I'o(N). For integers N',d > 1 satisfying N'|N and d |(N/N"), let us consider the map

t%,,d: S (To(N')) = Si(Ty(N))

which sends f(r) € Sp(T'o(N’)) to f(dt). In [1], Atkin and Lehner introduced the
subspace C T (N) of Si(I'y(N)) as the orthogonal complement of sum

Z Image t%/,d
(N’.d)

where (N’,d) runs over the pair of positive integers satisfying N’'|N, N’ # N and
d|(N/N'). A newform on T'y(N) is a function f € C*(N) which is not identically zero
and is an eigenform with respect to the Hecke operators 7', for any prime number p { N.

Let f be an elliptic cusp form of weight k > 1 on I'g(M) for some integer M > 1
such that f is an eigenform with respect to the Hecke operators 7, for any prime number
p 1 M. In[l, Lemma 22, Theorem 4], Atkin and Lehner proved the following: there exists
an integer N|M and a newform g on I'g(N) such that f and g have the same eigenvalue
with respect to T, for any prime number p 1 M, and an integer N and the one-dimensional
vector space Cg are uniquely determined by f.

In [4], Casselman gave an interpretation of the theory of Atkin and Lehner from the
viewpoint of the representation theory of GL,(F'), where F is a non-archimedean local
field. Let o C F denote the ring of integers in F'. A local analogue of the congruence
subgroup I'g(N) for GL, (F) is the subgroup K (/) of GL,(0) whose (2, 1) entry belongs
to /, where I C oisanon-zero ideal. Let 7 be an infinite dimensional irreducible smooth
representation 7w of GL,(F') with central character w,. For a non-zero ideal I C o, we
let V(1) denote the space of vectors v in the representation space of 7 such that for any
g € Ko(I) we have gv = w,(a)v where a is the (1, 1) entry of g. One can check that
V(1) # 0 for some non-zero ideal / C o. In [4] Casselman showed that, if we denote by
Iy C o the largest ideal satisfying V(1) # 0, then V(1) is one-dimensional. A non-zero
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vector in V() is called a local newform for 7. Jacquet, Piatetskii-Shapiro, and Shalika
[8] extends the theory of Casselman [4] to the generic representations of GL, (F).

Up to now, theories of local newforms have been constructed for a lot of classical groups
over a non-archimedean local field: Roberts and Schmidt [19], [?], for PGSp,(F) and the
double cover §I:2(F ) of SL,(F'), Lansky and Raghuram[11] for U(1, 1), Miyauchi [14],
[15], [16], [17] for U(2, 1), Okazaki [18] to GSp,, and (Gross-)Tsai [20] for SOz, ;.

In the theories of local newforms mentioned above, all representations 7 are assumed
to be generic. The aim of this article is to give a survey of the author’s joint work [2] with
Hiraku Atobe and Satoshi Kondo for GL,(F), in which the assumption of genericity is

removed.

2. NoTATION

We let Z, R, C denote the ring of rational integers, the field of real numbers, and the
field of complex numbers, respectively.

Let F be a non-archimedean local field. Let o C denote its ring of integers, and p C o
the maximal ideal of 0. We fix a non-trivial additive character y: F — C* of order 0.

For an integer n > 1, we set G,, = GL, (F'), and denote by Irr(G,) the set of isomor-

phism classes of irreducible smooth representations  of G,

3. LocAL L-FACTORS AND LOCAL &-FACTORS

For & € Irr(G,), one can define the local L-factor L(s, ) and the local e-factor
e(s,m,¥). The local e-factor is of the form e(s, 7, ) = cqg~** for some non-zero
constant ¢ and some non-negative integer a. The integer a is called the exponent of the
conductor of 7. We denote a by cond(r).

We note that, when 7 corresponds to a Weil-Deligne representation ((o, V'), N) via the
local Langlands correspondence, then cond(sr) is equal to the sum of the Artin conductor
of (0, V) and the rank of N : V¥ — VIF (1), where I denotes the inertia group.

Let us recall the local zeta integral of Godement-Jacquet [S]. For a matrix coefficient
f of 7, and for a Schwartz-Bruhat function ® of M, (F), we set

Z(®.s. f) = [ (g)| det gl f(g)ds.

Gn

Then we have
~ n—1
y(s.m, ) Z(D,s, f) = Z(P, 1 —s5 + 5 ).
where

B(x) = / L OOy
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and fV(g) = f(g™'). Then we have
e(s,m,Yy)L(1 —s,7Y)

y(s, m.¥) = LG.0)

If 7 € Irr(G,) is generic and a = cond(x), then 7%« is one-dimensional and
nn.a’ = 0 for any integer a’ with 0 < a’ < a. Here K,, , denotes the group of matrices

g € GL, (o) whose n-th row is congruent to (0, ..., 0, 1) modulo p.

4. SOME OPEN COMPACT SUBGROUPS

Let Zs denote the set of non-negative integers. Forn > 1 and A = (A4,...,4,) €
(Zso)", we let K, 5, C G, denote the subset of g € GL,(0) such that fori = 1,...,n,
the i-th row of g — 1, is congruent to zero modulo p*. Then K, ; is a compact open

subgroup of G,.

5. THE HIGHEST DERIVATIVE

Let us recall the notion of highest derivative of # € Irr(G,) from Bernstein and
Zelevinsky [3]. For k = 1,...,n, we let Ny C Gy denote the subgroup of upper
triangular unipotent matrices and ¥x: Ny — C* the character that sends (n; ;) € Ni to
V(nip+ -+ ng_1x). Weset

1, *
U= """ .
0 Ny

Let0: U, x — C* denote the character given by the composite of the surjection U, x — N
and V.

For 7w € Irr(G,), let us consider the maximal quotient 77y, , ¢ of the representation space
of 7 on which the group U, x acts as 6. We regard ny, , s as a smooth representation
of Gy_i. We set %) = Ty, .0 ® |det |7%/2. Let k; be the maximal integer satisfying
7%*D =£ 0. The smooth representation 7 *1) of G,,_y, is called the highest derivative of
.

It is known that the highest derivative 7 *1) belongs to IrrG,_y, .

We note that 77 is generic if and only if k; = n, and in this case we have 7™ is the

trivial representation of Gy.

6. MAIN RESULTS

From now on we assume that F is of characteristic zero. For & € Irr(G,) and for
i =0,1,..., we introduce non-negative integers n{®, n" .. and 7% € Irr(G,u) for

i =0,1,...as follows. We set n/® = n and 7‘® = n. Fori > 1, let 79 € Irr(G i)
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denote the highest derivative of 7~ in the sense of [3]. Then we have n{® > {1 >
.o.>0and n® > nlF1 if n) £ 0. We note that 7 is generic if and only if n{!) = 0.
Forj =1,...,n, we set
cond(r ) — cond(w ¥ 1), if j = n' for somei > 0,

mj = .
0, otherwise,

and
An = (An,lv ey An,n) (S (Zzo)n.
For A € (Zso)", we let A= (11, cee, 1,,) denote the element of (Zx()" obtained by

permuting the entries of A sothat A <--- < A,,.

Theorem 6.1 (Atobe, Kondo, Y. [2]). Let w € Irr(G,,). Then 2= is one-dimensional.
For any A € (Zxo)" satisfying A< in with respect to the lexicographical ordering, we

have 7%nx = 0,

Theorem 6.2 (Atobe, Kondo, Y. [2]). For A = (c1,...,¢n) € (Zso)", we set |A| =
c1 + -+ + cy. Then for any A € (Zso)" with |A| < |Ax| = cond(x), we have n™n» = 0.

Theorem 6.3 (Kondo, Y. [10], in preparation). Let w € p be a uniformizer. Let m =

i{j | cx,; =0} Fori =0,...,m, we let T; denote the characteristic function of
i-times (n—1i)-times
K - diag(w,...,o,1,..., 1)K - .
n,Ax n,Ax

Then T; is an element of the Hecke algebra H(G,,K, 5 ) in which the characteristic
s/ATT
function of Kn,in is a unit element. Let t; denote the eigenvalue of T; acting on the one

. . K -
dimensional vector space w A=, Then we have

m
L(s.m)™' =Y (=1)'1gQg T+,

i=0

7. ZELEVINSKY CLASSIFICATION

Before moving to explanations of the proof of main theorems, let us recall the classifi-
cation of Irr(G) due to Zelevinsky [21].

For p € Irr(G,) and for x € R, we write p(a) € Irr(G,) for p ® |det( )|*. A
segment is a non-empty finite subset A of [[,., Irr(G,) of the form [p(x), p(y)] =
{p(x),p(x +1),...,p(y)} where p is an irreducible cuspidal representation of G, for

n>1

some n > 1 and x, y are integers satisfying x < y. A finite multiset of segments is called
a multisegment. In [21], Zelevinsky construct a bijection Z from the set of multisegments
to the set [ [, Irr(Gy).
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For a segment A = [p(x), p(y)], letus write £(A) = y—x + 1 and A¢ = [p(¥), p(»)].
For a segment A = [p(x), p(y)] with £(A) > 2, we set A~ = [p(x), p(y — 1)]. For a
multisegmentm = Aj +---+ A;, wesetm® = Af +---+Af,andm™ = Zi A7, where
i runs over the integers satisfying 1 <i <t and £(A;) > 2.

Let w € Irr(G,) for some n > 0 and let m denote the multisegment satisfying 7 =
Z(m). It then follows from [21] that the highest derivative of m is equal to Z(m™). We
also note that 7 is generic if and only if m™ is empty, i.e., any segment A in m is a
singleton.

We also set 7¢ = Z(m¢). Then 7€ is generic, and we have w = 7¢ if and only 7 is

generic.

8. ESSENTIAL VECTORS

In this paragraph, we introduce the notion of essential vector for = € Irr(G,).

It is not hard to deduce Theorem 6.1 for 7 from the existence of an essential vector for
. However, an existence of an essential vector is unknown for general 7 at the present
time, and in the proof of Theorem 6.1 in [2], some extra arguments are used to deduce the
statement to the case where one can prove the existence of an essential vector for . In
spite of this current situation, the author believes that Theorem 6.1 should be proved as a
consequence of the existence of an essential vector for any 7.

Let = € Irr(G,). Let nyy, nqy, . .. and 74 € Irr(G ) be as in Section 6. Let m > 1
be the smallest integer such that 7™ is the trivial representation of Go. Then we have
n=n">npM > .5 M =0 Fori =1,....m, we set k; = nlt) — =1,
Let P C G, denote the standard parabolic subgroup of block upper triangular matrices
corresponding to the partition n = k,, + --- + k; of n. Let U C P denote the unipotent
radical and L C P the Levi subgroup of block diagonal matrices.

Let N C G, denote the group of upper triangular unipotent matrices. Letusregard N as
asubgroupof P. Let0: N — C* denote the character whichsendsn = (n;;)1<i,j<m € N,
where n;; denotes the (i, j)-block of n, to [T/Z, W, (1;)-

Then it follows from Zelevinsky [21] that there exists an injective homomorphism
e Ind%”@ and such a homomorphism is unique up to scalar.  Let sze () denote the
image of the injective homomorphism.

Let us write G = G, and G’ = G,_,,. We regard G’ as a subgroup of G via the
injective homomorphism G,—,, — G, that sends i € G,—, to the matrix g € G,
whose submatrix obtained by removing the n"~D-th, - - -, and 1n‘?-th rows and columns
is equal to A, and the removed entries are equal to the entries in the same places of the
identity matrix. Weset P/ = G'N P, L = G'NL,and U = G'NU. Then P’
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is a parabolic subgroup of G’ and P’ = L'U’ is the Levi decomposition of P’. Let
K’ = GL,_,(0). Then we have G’ = P'K’. Note that we have a canonical isomorphism
L' = Gg,—1 X+ X Gg,—1. For x = (X;,...,X,) € [[le,(C)km+1=i=1 Tet
Wz‘f(gx)) : G’ — C denote the function which sends g’ = {'u’k’ € G', where ¢’ € L',
u e U and k' € K/, to 8},/,2(6’) [T, Wh?™' (x;)(¢;), where §p: denotes the modulus
character of P’ and Wh? ™' (x;) denote the unramified Whittaker function with Satake
parameter x; normalized as Wh?™ (x;)(1) = 1. Here ¢; € Gy,,,,_;,—1 denotes the i-th
diagonal block of .
For W € Wge(n), we set

oW = [ o WL (] deth|*~ % dh & C(lg™),

where ¢ denotes the number of elements of o/p.

Definition 8.1. We say that W** € Wg@ () is an essential vector for v if it is K'-invariant

and for any x = (x;,...,X,,) € ]_[TZI(CX)"”IH—"_I, we have

m kmt1—i—1

Is.we.x) =] [ LG+s,;—i+1&" )

i=1  j=1
where s; ; is the complex number satisfying x; = (q7%1, ..., g “Fm+1-i=1),

Theorem 8.2 (Atobe, Kondo, Y. [2]). An essential vector for w exists and is unique when

7 is the Speh representations w = Sp(p, m), with p tempered.

In the proof of Theorem 8.2, we heavily use the Shalika model and the argument of
Lapid and Mao [12]. When L(s, p) # 1, we also use Theorem 6.1 for p in the proof of
Theorem 8.2 in [2]. For the proof of Theorem 6.1 in [2], we only need Theorem 8.2 in the

case where p is a cuspidal ramified representation.

9. A SKETCH OF THE PROOF OF THEOREM 6.1 IN [2]

By using the Mackey decomposition, we are reduced to the case where one of the

following conditions is satisfied:

(1) L(s,m) =1,
(2) There exists an unramified character y of F* such that m = Z(Ay 4+ -+ + A;),
where for i = 1,...,t, the segment A; is of the form A; = [x]| |*, x| |??] for

some Xx;, y; € Z satisfying x; < y;.

We say that 7 is of type y if & satisfied the condition (2) above.
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When the condition (1) is satisfied, we are reduced, by using the Mackey decomposition,
to the case where t = 1, i.e., 1 = Z(A) for some segment A. In this case the assertion
follows from Theorem 8.2.

When the (2), by using the Mackey decomposition and the result of Knight and Zelevin-
sky [9], we are reduced to the case where x; > --- > x; and y; > --- > y;. According
to Lapid and Minguez [12], we refer to the latter case as the case where 7 is a ladder
representation of type y.

When y is a ladder representation of type y, we have the following Tadi¢ determinant
formula obtained by Lapid and Minguez [12]: in the Grothendieck group of smooth

representations of G,, we have

=Y sgn(@) Z([x| D, x| 1D x5 Z(x 10, 1] 11D

where o runs over the permutations of {1,...,¢} such that the inequality x,;) < i
holds fori = 1,...,¢, and 7r; X --- X m; denotes the normalized parabolic induction. of
X Ko,

We note that

max(y;+1—x; +2,0)

t—1
- ——
dr = (0.....0, 1.1 ).
i=1

Let n’ € Irr(G,) and suppose that 7’ of type y. We have in mind the case where
s’ appears in the right hand side of Tadi¢ determinant formula for . Let us write
7' =Zw)andm' = A}l +---+ A},. Thenfori =1,...,1, the segment A is of the
form A} = [x| %, x| |7] with x/,y/ € Z, x} < yl. Let V' = (X, ..., ) € (Zso)"
and set M, = EBI"/:l 0/p*i. Then the Mackey decomposition shows the following: the

dimension of K, ;/-invariant part of 7’ is equal to the number of increasing filtrations
O=FCF, C---CFy=My

of M, by o-submodules such that for i = 1,...,t’, the graded quotient F;/F;_; is
generated, as an o-module, by at most £(A}) elements.
By using this formula, we are reduced to showing a formula on an alternating sum of

the numbers of some filtrations on M} .

10. Proors oF THEOREM 6.2 AND THEOREM 6.3

The proof of Theorem 6.2 is relatively easy, and follows from the functional equation
of local zeta integrals in Godement and Jacquet [5].
We will give a very rough sketch of proof of Theorem 6.3. We are reduced to the case

where 7 is a ladder representation of type y for some unramified character y of F*. Letus
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write 71 = Z(A; + - -+ A;) so that the inequalities x; > --- > x; and y; > --- > y, are
satisfied. Then 7 is a unique irreducible quotient of the normalized parabolic induction
Z(Apy)x---x Z(Ay). Then akey point is an explicit construction of the non-trivial linear

form
(Z(A1) %+ X Z(Am)) 47 — C

that factor through the surjective homomorphism

(Z(A1) X -+ X Z(Ap))Snrn gk
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