LOCAL NEWFORMS FOR THE GENERAL LINEAR GROUPS

SEIDAI YASUDA

1. Introduction

Let us recall the theory of newforms from [1]. For integers $k, N \ge 1$, let $S_k(\Gamma_0(N))$ denote the space of elliptic cusp forms of weight $k \ge 1$ on the congruence subgroup $\Gamma_0(N)$. For integers $N', d \ge 1$ satisfying N'|N and d|(N/N'), let us consider the map

$$\iota_{N',d}^N \colon S_k(\Gamma_0(N')) \to S_k(\Gamma_0(N))$$

which sends $f(\tau) \in S_k(\Gamma_0(N'))$ to $f(d\tau)$. In [1], Atkin and Lehner introduced the subspace $C^+(N)$ of $S_k(\Gamma_0(N))$ as the orthogonal complement of sum

$$\sum_{(N',d)} \operatorname{Image} \iota_{N',d}^{N}$$

where (N', d) runs over the pair of positive integers satisfying N'|N, $N' \neq N$ and d|(N/N'). A newform on $\Gamma_0(N)$ is a function $f \in C^+(N)$ which is not identically zero and is an eigenform with respect to the Hecke operators T_p for any prime number $p \nmid N$.

Let f be an elliptic cusp form of weight $k \geq 1$ on $\Gamma_0(M)$ for some integer $M \geq 1$ such that f is an eigenform with respect to the Hecke operators T_p for any prime number $p \nmid M$. In [1, Lemma 22, Theorem 4], Atkin and Lehner proved the following: there exists an integer $N \mid M$ and a newform g on $\Gamma_0(N)$ such that f and g have the same eigenvalue with respect to T_p for any prime number $p \nmid M$, and an integer N and the one-dimensional vector space $\mathbb{C}g$ are uniquely determined by f.

In [4], Casselman gave an interpretation of the theory of Atkin and Lehner from the viewpoint of the representation theory of $\operatorname{GL}_2(F)$, where F is a non-archimedean local field. Let $\mathfrak{o} \subset F$ denote the ring of integers in F. A local analogue of the congruence subgroup $\Gamma_0(N)$ for $\operatorname{GL}_2(F)$ is the subgroup $\mathbb{K}_0(I)$ of $\operatorname{GL}_2(\mathfrak{o})$ whose (2,1) entry belongs to I, where $I \subset \mathfrak{o}$ is a non-zero ideal. Let π be an infinite dimensional irreducible smooth representation π of $\operatorname{GL}_2(F)$ with central character ω_{π} . For a non-zero ideal $I \subset \mathfrak{o}$, we let V(I) denote the space of vectors v in the representation space of π such that for any $g \in K_0(I)$ we have $gv = \omega_{\pi}(a)v$ where a is the (1,1) entry of g. One can check that $V(I) \neq 0$ for some non-zero ideal $I \subset \mathfrak{o}$. In [4] Casselman showed that, if we denote by $I_0 \subset \mathfrak{o}$ the largest ideal satisfying $V(I_0) \neq 0$, then $V(I_0)$ is one-dimensional. A non-zero

vector in $V(I_0)$ is called a local newform for π . Jacquet, Piatetskii-Shapiro, and Shalika [8] extends the theory of Casselman [4] to the generic representations of $GL_n(F)$.

Up to now, theories of local newforms have been constructed for a lot of classical groups over a non-archimedean local field: Roberts and Schmidt [19], [?], for $PGSp_4(F)$ and the double cover $\widetilde{SL}_2(F)$ of $SL_2(F)$, Lansky and Raghuram[11] for U(1, 1), Miyauchi [14], [15], [16], [17] for U(2, 1), Okazaki [18] to GSp_4 , and (Gross-)Tsai [20] for SO_{2n+1} .

In the theories of local newforms mentioned above, all representations π are assumed to be generic. The aim of this article is to give a survey of the author's joint work [2] with Hiraku Atobe and Satoshi Kondo for $GL_n(F)$, in which the assumption of genericity is removed.

2. Notation

We let \mathbb{Z} , \mathbb{R} , \mathbb{C} denote the ring of rational integers, the field of real numbers, and the field of complex numbers, respectively.

Let F be a non-archimedean local field. Let $\mathfrak{o} \subset$ denote its ring of integers, and $\mathfrak{p} \subset \mathfrak{o}$ the maximal ideal of \mathfrak{o} . We fix a non-trivial additive character $\psi \colon F \to \mathbb{C}^{\times}$ of order 0.

For an integer $n \ge 1$, we set $G_n = \operatorname{GL}_n(F)$, and denote by $\operatorname{Irr}(G_n)$ the set of isomorphism classes of irreducible smooth representations π of G_n ,

3. Local L-factors and local ε -factors

For $\pi \in \operatorname{Irr}(G_n)$, one can define the local L-factor $L(s,\pi)$ and the local ε -factor $\varepsilon(s,\pi,\psi)$. The local ε -factor is of the form $\varepsilon(s,\pi,\psi)=cq^{-as}$ for some non-zero constant c and some non-negative integer a. The integer a is called the exponent of the conductor of π . We denote a by $\operatorname{cond}(\pi)$.

We note that, when π corresponds to a Weil-Deligne representation $((\sigma, V), N)$ via the local Langlands correspondence, then $\operatorname{cond}(\pi)$ is equal to the sum of the Artin conductor of (σ, V) and the rank of $N: V^{I_F} \to V^{I_F}(1)$, where I_F denotes the inertia group.

Let us recall the local zeta integral of Godement-Jacquet [5]. For a matrix coefficient f of π , and for a Schwartz-Bruhat function Φ of $M_n(F)$, we set

$$Z(\Phi, s, f) = \int_{G_n} \Phi(g) |\det g|^s f(g) dg.$$

Then we have

$$\gamma(s,\pi,\psi)Z(\Phi,s,f) = Z(\widehat{\Phi},1-s+\frac{n-1}{2},f^{\vee}),$$

where

$$\widehat{\Phi}(x) = \int_{M_n(F)} \Phi(y) \psi(xy) dy$$

and $f^{\vee}(g) = f(g^{-1})$. Then we have

$$\gamma(s,\pi,\psi) = \frac{\varepsilon(s,\pi,\psi)L(1-s,\pi^{\vee})}{L(s,\pi)}.$$

If $\pi \in \operatorname{Irr}(G_n)$ is generic and $a = \operatorname{cond}(\pi)$, then $\pi^{\mathbb{K}_{n,a}}$ is one-dimensional and $\pi^{\mathbb{K}_{n,a'}} = 0$ for any integer a' with $0 \le a' < a$. Here $\mathbb{K}_{n,a}$ denotes the group of matrices $g \in \operatorname{GL}_n(\mathfrak{o})$ whose n-th row is congruent to $(0, \ldots, 0, 1)$ modulo \mathfrak{p}^a .

4. Some open compact subgroups

Let $\mathbb{Z}_{\geq 0}$ denote the set of non-negative integers. For $n \geq 1$ and $\lambda = (\lambda_1, \ldots, \lambda_n) \in (\mathbb{Z}_{\geq 0})^n$, we let $\mathbb{K}_{n,\lambda} \subset G_n$ denote the subset of $g \in GL_n(\mathfrak{o})$ such that for $i = 1, \ldots, n$, the i-th row of $g - 1_n$ is congruent to zero modulo \mathfrak{p}^{λ_i} . Then $\mathbb{K}_{n,\lambda}$ is a compact open subgroup of G_n .

5. The highest derivative

Let us recall the notion of highest derivative of $\pi \in \operatorname{Irr}(G_n)$ from Bernstein and Zelevinsky [3]. For $k = 1, \ldots, n$, we let $N_k \subset G_k$ denote the subgroup of upper triangular unipotent matrices and $\psi_k \colon N_k \to \mathbb{C}^\times$ the character that sends $(n_{i,j}) \in N_k$ to $\psi(n_{1,2} + \cdots + n_{k-1,k})$. We set

$$U_{n,k} = \begin{pmatrix} 1_{n-k} & * \\ 0 & N_k \end{pmatrix}.$$

Let $\theta: U_{n,k} \to \mathbb{C}^{\times}$ denote the character given by the composite of the surjection $U_{n,k} \to N_k$ and ψ_k .

For $\pi \in \operatorname{Irr}(G_n)$, let us consider the maximal quotient $\pi_{U_{n,k},\theta}$ of the representation space of π on which the group $U_{n,k}$ acts as θ . We regard $\pi_{U_{n,k},\theta}$ as a smooth representation of G_{n-k} . We set $\pi^{(k)} = \pi_{U_{n,k},\theta} \otimes |\det|^{-k/2}$. Let k_1 be the maximal integer satisfying $\pi^{(k_1)} \neq 0$. The smooth representation $\pi^{(k_1)}$ of G_{n-k_1} is called the highest derivative of π .

It is known that the highest derivative $\pi^{(k_1)}$ belongs to $IrrG_{n-k_1}$.

We note that π is generic if and only if $k_1 = n$, and in this case we have $\pi^{(n)}$ is the trivial representation of G_0 .

6. Main results

From now on we assume that F is of characteristic zero. For $\pi \in Irr(G_n)$ and for $i = 0, 1, \ldots$, we introduce non-negative integers $n^{\langle 0 \rangle}, n^{\langle 1 \rangle}, \ldots$ and $\pi^{\langle i \rangle} \in Irr(G_{n^{\langle i \rangle}})$ for $i = 0, 1, \ldots$ as follows. We set $n^{\langle 0 \rangle} = n$ and $\pi^{\langle 0 \rangle} = \pi$. For $i \geq 1$, let $\pi^{\langle i \rangle} \in Irr(G_{n^{\langle i \rangle}})$

denote the highest derivative of $\pi^{\langle i-1 \rangle}$ in the sense of [3]. Then we have $n^{\langle 0 \rangle} \geq n^{\langle 1 \rangle} \geq \cdots \geq 0$ and $n^{\langle i \rangle} > n^{\langle i+1 \rangle}$ if $n^{\langle i \rangle} \neq 0$. We note that π is generic if and only if $n^{\langle 1 \rangle} = 0$.

For $j = 1, \ldots, n$, we set

$$\lambda_{\pi,j} = \begin{cases} \operatorname{cond}(\pi^{\langle i \rangle}) - \operatorname{cond}(\pi^{\langle i+1 \rangle}), & \text{if } j = n^{\langle i \rangle} \text{ for some } i \ge 0, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$\lambda_{\pi} = (\lambda_{\pi,1}, \dots, \lambda_{\pi,n}) \in (\mathbb{Z}_{\geq 0})^n.$$

For $\lambda \in (\mathbb{Z}_{\geq 0})^n$, we let $\vec{\lambda} = (\vec{\lambda}_1, \dots, \vec{\lambda}_n)$ denote the element of $(\mathbb{Z}_{\geq 0})^n$ obtained by permuting the entries of λ so that $\vec{\lambda}_1 \leq \dots \leq \vec{\lambda}_n$.

Theorem 6.1 (Atobe, Kondo, Y. [2]). Let $\pi \in Irr(G_n)$. Then $\pi^{\mathbb{K}_{n,\lambda_{\pi}}}$ is one-dimensional. For any $\lambda \in (\mathbb{Z}_{\geq 0})^n$ satisfying $\vec{\lambda} < \vec{\lambda}_{\pi}$ with respect to the lexicographical ordering, we have $\pi^{\mathbb{K}_{n,\lambda}} = 0$.

Theorem 6.2 (Atobe, Kondo, Y. [2]). For $\lambda = (c_1, \ldots, c_n) \in (\mathbb{Z}_{\geq 0})^n$, we set $|\lambda| = c_1 + \cdots + c_n$. Then for any $\lambda \in (\mathbb{Z}_{\geq 0})^n$ with $|\lambda| < |\lambda_{\pi}| = \operatorname{cond}(\pi)$, we have $\pi^{\mathbb{K}_{n,\lambda}} = 0$.

Theorem 6.3 (Kondo, Y. [10], in preparation). Let $\varpi \in \mathfrak{p}$ be a uniformizer. Let $m = \sharp \{j \mid c_{\pi,j} = 0\}$. For i = 0, ..., m, we let T_i denote the characteristic function of

$$\mathbb{K}_{n,\vec{\lambda}_{\pi}} \operatorname{diag}(\overline{\varpi,\ldots,\varpi}, \overbrace{1,\ldots,1}^{(n-i)\text{-times}}) \mathbb{K}_{n,\vec{\lambda}_{\pi}}.$$

Then T_i is an element of the Hecke algebra $\mathcal{H}(G_n, \mathbb{K}_{n,\vec{\lambda}_{\pi}})$ in which the characteristic function of $\mathbb{K}_{n,\vec{\lambda}_{\pi}}$ is a unit element. Let t_i denote the eigenvalue of T_i acting on the one dimensional vector space $\pi^{\mathbb{K}_{n},\vec{\lambda}_{\pi}}$. Then we have

$$L(s,\pi)^{-1} = \sum_{i=0}^{m} (-1)^{i} t_{i} q^{\binom{i}{2}} q^{-i(\frac{n-1}{2}+s)}.$$

7. Zelevinsky classification

Before moving to explanations of the proof of main theorems, let us recall the classification of $Irr(G_n)$ due to Zelevinsky [21].

For $\rho \in \operatorname{Irr}(G_n)$ and for $x \in \mathbb{R}$, we write $\rho(a) \in \operatorname{Irr}(G_n)$ for $\rho \otimes |\det(\cdot)|^x$. A segment is a non-empty finite subset Δ of $\coprod_{n\geq 1}\operatorname{Irr}(G_n)$ of the form $[\rho(x),\rho(y)]=\{\rho(x),\rho(x+1),\ldots,\rho(y)\}$ where ρ is an irreducible cuspidal representation of G_n for some $n\geq 1$ and x,y are integers satisfying $x\leq y$. A finite multiset of segments is called a multisegment. In [21], Zelevinsky construct a bijection Z from the set of multisegments to the set $\coprod_{n\geq 0}\operatorname{Irr}(G_n)$.

For a segment $\Delta = [\rho(x), \rho(y)]$, let us write $\ell(\Delta) = y - x + 1$ and $\Delta^e = [\rho(y), \rho(y)]$. For a segment $\Delta = [\rho(x), \rho(y)]$ with $\ell(\Delta) \geq 2$, we set $\Delta^- = [\rho(x), \rho(y-1)]$. For a multisegment $\mathfrak{m} = \Delta_1 + \cdots + \Delta_t$, we set $\mathfrak{m}^e = \Delta_1^e + \cdots + \Delta_t^e$, and $\mathfrak{m}^- = \sum_i \Delta_i^-$, where i runs over the integers satisfying $1 \leq i \leq t$ and $\ell(\Delta_i) \geq 2$.

Let $\pi \in \operatorname{Irr}(G_n)$ for some $n \geq 0$ and let \mathfrak{m} denote the multisegment satisfying $\pi = Z(\mathfrak{m})$. It then follows from [21] that the highest derivative of π is equal to $Z(\mathfrak{m}^-)$. We also note that π is generic if and only if \mathfrak{m}^- is empty, i.e., any segment Δ in \mathfrak{m} is a singleton.

We also set $\pi^e = Z(\mathfrak{m}^e)$. Then π^e is generic, and we have $\pi = \pi^e$ if and only π is generic.

8. Essential vectors

In this paragraph, we introduce the notion of essential vector for $\pi \in Irr(G_n)$.

It is not hard to deduce Theorem 6.1 for π from the existence of an essential vector for π . However, an existence of an essential vector is unknown for general π at the present time, and in the proof of Theorem 6.1 in [2], some extra arguments are used to deduce the statement to the case where one can prove the existence of an essential vector for π . In spite of this current situation, the author believes that Theorem 6.1 should be proved as a consequence of the existence of an essential vector for any π .

Let $\pi \in \operatorname{Irr}(G_n)$. Let $n_{\langle 0 \rangle}, n_{\langle 1 \rangle}, \ldots$ and $\pi^{\langle i \rangle} \in \operatorname{Irr}(G_{n^{\langle i \rangle}})$ be as in Section 6. Let $m \geq 1$ be the smallest integer such that $\pi^{(m)}$ is the trivial representation of G_0 . Then we have $n = n^{\langle 0 \rangle} > n^{\langle 1 \rangle} > \cdots > n^{(m)} = 0$. For $i = 1, \ldots, m$, we set $k_i = n^{\langle i \rangle} - n^{\langle i - 1 \rangle}$. Let $P \subset G_n$ denote the standard parabolic subgroup of block upper triangular matrices corresponding to the partition $n = k_m + \cdots + k_1$ of n. Let $U \subset P$ denote the unipotent radical and $L \subset P$ the Levi subgroup of block diagonal matrices.

Let $N \subset G_n$ denote the group of upper triangular unipotent matrices. Let us regard N as a subgroup of P. Let $\theta: N \to \mathbb{C}^{\times}$ denote the character which sends $n = (n_{ij})_{1 \le i,j \le m} \in N$, where n_{ij} denotes the (i,j)-block of n, to $\prod_{i=1}^m \psi_{k_i}(n_i)$.

Then it follows from Zelevinsky [21] that there exists an injective homomorphism $\pi \in \operatorname{Ind}_N^{G_n} \theta$ and such a homomorphism is unique up to scalar. Let $\mathcal{W}_{\operatorname{Ze}}^{\psi}(\pi)$ denote the image of the injective homomorphism.

Let us write $G = G_n$ and $G' = G_{n-m}$. We regard G' as a subgroup of G via the injective homomorphism $G_{n-m} \hookrightarrow G_n$ that sends $h \in G_{n-m}$ to the matrix $g \in G_n$ whose submatrix obtained by removing the $n^{(m-1)}$ -th, \cdots , and $n^{(0)}$ -th rows and columns is equal to h, and the removed entries are equal to the entries in the same places of the identity matrix. We set $P' = G' \cap P$, $L' = G' \cap L$, and $U' = G' \cap U$. Then P'

is a parabolic subgroup of G' and P' = L'U' is the Levi decomposition of P'. Let $K' = \operatorname{GL}_{n-m}(\mathfrak{o})$. Then we have G' = P'K'. Note that we have a canonical isomorphism $L' \cong G_{k_m-1} \times \cdots \times G_{k_1-1}$. For $\underline{x} = (\underline{x}_1, \ldots, \underline{x}_m) \in \prod_{i=1}^m (\mathbb{C}^\times)^{k_{m+1-i}-1}$, let $W^\psi_{\operatorname{Ze}}(\underline{(x)}): G' \to \mathbb{C}$ denote the function which sends $g' = \ell' u' k' \in G'$, where $\ell' \in L'$, $u' \in U'$ and $k' \in K'$, to $\delta^{1/2}_{P'}(\ell') \prod_{i=1}^m \operatorname{Wh}^{\psi^{-1}}(\underline{x}_i)(\ell_i)$, where $\delta_{P'}$ denotes the modulus character of P' and $\operatorname{Wh}^{\psi^{-1}}(\underline{x}_i)$ denote the unramified Whittaker function with Satake parameter \underline{x}_i normalized as $\operatorname{Wh}^{\psi^{-1}}(\underline{x}_i)(1) = 1$. Here $\ell_i \in G_{k_{m+1-i}-1}$ denotes the i-th diagonal block of ℓ .

For $W \in \mathcal{W}^{\psi}_{7e}(\pi)$, we set

$$I(s, W, \underline{x}) = \int_{N' \setminus G'} W(h) W_{Ze}^{\psi}(\underline{x})(h) |\det h|^{s - \frac{m}{2}} dh \in \mathbb{C}((q^{-s})),$$

where q denotes the number of elements of $\mathfrak{o}/\mathfrak{p}$.

Definition 8.1. We say that $W^{\text{ess}} \in \mathcal{W}^{\psi}_{\text{Ze}}(\pi)$ is an essential vector for π if it is \mathbb{K}' -invariant and for any $\underline{x} = (\underline{x}_1, \dots, \underline{x}_m) \in \prod_{i=1}^m (\mathbb{C}^{\times})^{k_{m+1-i}-1}$, we have

$$I(s, W^{\text{ess}}, \underline{x}) = \prod_{i=1}^{m} \prod_{j=1}^{k_{m+1-i}-1} L(s + s_{i,j} - i + 1, (\pi^{(m-i)})^e)$$

where $s_{i,j}$ is the complex number satisfying $\underline{x}_i = (q^{-s_{i,1}}, \dots, q^{-s_{i,k_{m+1-i}-1}})$.

Theorem 8.2 (Atobe, Kondo, Y. [2]). An essential vector for π exists and is unique when π is the Speh representations $\pi = \operatorname{Sp}(\rho, m)$, with ρ tempered.

In the proof of Theorem 8.2, we heavily use the Shalika model and the argument of Lapid and Mao [12]. When $L(s, \rho) \neq 1$, we also use Theorem 6.1 for ρ in the proof of Theorem 8.2 in [2]. For the proof of Theorem 6.1 in [2], we only need Theorem 8.2 in the case where ρ is a cuspidal ramified representation.

9. A sketch of the proof of Theorem 6.1 in [2]

By using the Mackey decomposition, we are reduced to the case where one of the following conditions is satisfied:

- (1) $L(s,\pi) = 1$,
- (2) There exists an unramified character χ of F^{\times} such that $\pi = Z(\Delta_1 + \cdots + \Delta_t)$, where for $i = 1, \ldots, t$, the segment Δ_i is of the form $\Delta_i = [\chi | |^{x_i}, \chi | |^{y_i}]$ for some $x_i, y_i \in \mathbb{Z}$ satisfying $x_i \leq y_i$.

We say that π is of type γ if π satisfied the condition (2) above.

When the condition (1) is satisfied, we are reduced, by using the Mackey decomposition, to the case where t=1, i.e., $\pi=Z(\Delta)$ for some segment Δ . In this case the assertion follows from Theorem 8.2.

When the (2), by using the Mackey decomposition and the result of Knight and Zelevinsky [9], we are reduced to the case where $x_1 > \cdots > x_t$ and $y_1 > \cdots > y_t$. According to Lapid and Mínguez [12], we refer to the latter case as the case where π is a ladder representation of type χ .

When χ is a ladder representation of type χ , we have the following Tadić determinant formula obtained by Lapid and Mínguez [12]: in the Grothendieck group of smooth representations of G_n , we have

$$\pi = \sum_{\sigma} \operatorname{sgn}(\sigma) Z([\chi|\mid^{x_{\sigma(1)}}, \chi|\mid^{y_1}]) \times \cdots \times Z([\chi|\mid^{x_{\sigma(1)}}, \chi|\mid^{y_1}])$$

where σ runs over the permutations of $\{1,\ldots,t\}$ such that the inequality $x_{\sigma(i)} \leq y_i$ holds for $i=1,\ldots,t$, and $\pi_1 \times \cdots \times \pi_t$ denotes the normalized parabolic induction. of $\pi_1 \boxtimes \cdots \boxtimes \pi_t$.

We note that

$$\vec{\lambda}_{\pi} = \sum_{i=1}^{t-1} (0, \dots, 0, \underbrace{1, \dots, 1}^{\max(y_{i+1} - x_i + 2, 0)}).$$

Let $\pi' \in \operatorname{Irr}(G_n)$ and suppose that π' of type χ . We have in mind the case where π' appears in the right hand side of Tadić determinant formula for π . Let us write $\pi' = Z(\mathfrak{m}')$ and $\mathfrak{m}' = \Delta'_1 + \cdots + \Delta'_{t'}$. Then for $i = 1, \ldots, t'$, the segment Δ'_i is of the form $\Delta'_i = [\chi | |x'_i, \chi| | |y'_i|]$ with $x'_i, y'_i \in \mathbb{Z}$, $x'_i \leq y'_i$. Let $\lambda' = (\lambda'_1, \ldots, \lambda'_n) \in (\mathbb{Z}_{\geq 0})^{n'}$ and set $M_{\lambda'} = \bigoplus_{i=1}^{n'} \mathfrak{o}/\mathfrak{p}^{\lambda'_i}$. Then the Mackey decomposition shows the following: the dimension of $\mathbb{K}_{n,\lambda'}$ -invariant part of π' is equal to the number of increasing filtrations

$$0 = F_0 \subset F_1 \subset \cdots \subset F_{t'} = M_{\lambda'}$$

of $M_{\lambda'}$ by \mathfrak{o} -submodules such that for $i=1,\ldots,t'$, the graded quotient F_i/F_{i-1} is generated, as an \mathfrak{o} -module, by at most $\ell(\Delta'_i)$ elements.

By using this formula, we are reduced to showing a formula on an alternating sum of the numbers of some filtrations on $M_{\lambda_{\pi}}$.

10. Proofs of Theorem 6.2 and Theorem 6.3

The proof of Theorem 6.2 is relatively easy, and follows from the functional equation of local zeta integrals in Godement and Jacquet [5].

We will give a very rough sketch of proof of Theorem 6.3. We are reduced to the case where π is a ladder representation of type χ for some unramified character χ of F^{\times} . Let us

write $\pi = Z(\Delta_1 + \dots + \Delta_t)$ so that the inequalities $x_1 > \dots > x_t$ and $y_1 > \dots > y_t$ are satisfied. Then π is a unique irreducible quotient of the normalized parabolic induction $Z(\Delta_m) \times \dots \times Z(\Delta_1)$. Then a key point is an explicit construction of the non-trivial linear form

$$(Z(\Delta_1) \times \cdots \times Z(\Delta_m))^{\mathbb{K}_{n,\lambda_{\pi}}} \to \mathbb{C}$$

that factor through the surjective homomorphism

$$(Z(\Delta_1) \times \cdots \times Z(\Delta_m))^{\mathbb{K}_{n,\lambda_{\pi}}} \pi^{\mathbb{K},\lambda_{\pi}}.$$

11. Acknowledgment

The author would like to give a heartful thank to the organizers of the RIMS conference "Automorphic form, automorphic L-functions and related topics" who have given me an opportunity to write this manuscript. I would also like to thank them for their patience in waiting for the completion of the manuscript.

REFERENCES

- [1] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_0(m)$. Math. Ann. 185 (1970), 134–160.
- [2] H. Atobe, S. Kondo, S. Yasuda, *Local newforms for the general linear groups over a non-archimedean local field.* Preprint, arXiv 2110.09070.
- [3] I. N. Bernstein and A. V. Zelevinsky, *Induced representations of reductive* p-adic groups. Ann. Sci. École Norm. Sup. (4) **10** (1977), no. 4, 441–472.
- [4] W. Casselman, On some results of Atkin and Lehner. Math. Ann. 201 (1973), 301–314.
- [5] R. Godement and H. Jacquet, *Zeta functions of simple algebras*. Lecture Notes in Mathematics, Vol. **260**. *Springer-Verlag, Berlin-New York*, 1972. ix+188 pp.
- [6] H. Jacquet, A correction to Conducteur des représentations du groupe linéaire. Pacific J. Math. 260 (2012), no. 2, 515–525.
- [7] H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika, *Conducteur des représentations du groupe linéaire*. *Math. Ann.* **256** (1981), no. 2, 199–214.
- [8] H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika, *Rankin-Selberg convolutions*. *Amer. J. Math.* **105** (1983), no. 2, 367–464.
- [9] H. Knight and A. V. Zelevinsky, *Representations of quivers of type A and the multisegment duality. Adv. Math.* 117 (1996), no. 2, 273–293.
- [10] S. Kondo and S. Yasuda, L and epslion factors in terms of the Hecke eigenvalues on non-miraholic local newforms. In preparation.
- [11] J. Lansky and A. Raghuram, Conductors and newforms for U(1, 1). Proc. Indian Acad. Sci. Math. Sci. 114 (2004), no. 4, 319–343.
- [12] E. M. Lapid and Z. Mao, *Local Rankin–Selberg integrals for Speh representations. Compos. Math.* **156** (2020), no. 5, 908–945.

- [13] E. M. Lapid and A. Mínguez, *On a determinantal formula of Tadić*. *Amer. J. Math.* **136** (2014), no. 1, 111–142.
- [14] M. Miyauchi, On epsilon factors attached to supercuspidal representations of unramified U(2, 1). Trans. Amer. Math. Soc. **365** (2013), no. 6, 3355–3372.
- [15] M. Miyauchi, On local newforms for unramified U(2, 1). Manuscripta Math. 141 (2013), no. 1-2, 149–169.
- [16] M. Miyauchi, Conductors and newforms for non-supercuspidal representations of unramified U(2, 1). J. Ramanujan Math. Soc. 28 (2013), no. 1, 91–111.
- [17] M. Miyauchi, On L-factors attached to generic representations of unramified U(2, 1). Math. Z. 289 (2018), no. 3-4, 1381–1408.
- [18] T. Okazaki, Local Whittaker-newforms for GSp(4) matching to Langlands parameters. Preprint (2019), arXiv:1902.07801v2.
- [19] B. Roberts and R. Schmidt, *Local newforms for* GSp(4). Lecture Notes in Mathematics, 1918. *Springer, Berlin*, 2007. viii+307 pp.
- [20] P.-Y. Tsai, *On Newforms for Split Special Odd Orthogonal Groups*. PhD Thesis, Harvard University. 2013. 143 pp.
- [21] A. V. Zelevinsky, *Induced representations of reductive* p-adic groups. II. On irreducible representations of GL(n). Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210.

Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan