TORSION IN THE SPACE OF COMMUTING ELEMENTS IN A
LIE GROUP
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ABSTRACT. Let G be a compact connected Lie group, and let Hom(Z™, Q)
denote the space of homomorphisms from a free abelian group Z™ to G. We
study the problem of which primes p Hom(Z™,G) has p-torsion in homol-
ogy. We give a new homotopy decomposition of the space, and we prove that
Hom(Z™,SU(n)) for m > 2 has p-torsion in homology if and only if p < n. In
this text we overview the proof and observe some examples.

1. INTRODUCTION

This text is based on the joint work with Daisuke Kishimoto ”Torsion in the
space of commuting elements in a Lie group”[14]. In this text, the focus will be on
introducing the results of this joint work and observing examples.

Let G be a compact connected Lie group. Let Hom(Z™, G) denote the space of
homomorphisms from a free abelian group Z™ to G. This space has induced topol-
ogy of the space of continuous maps from Z™ to G. Hom(Z™, ) is homeomorphic
to the subspace of the Cartesian product G™ consisting of (g1,...gm) € G™ such
that g;9; = g;g; for all 4,j. So we call Hom(Z™, G) the space of commuting ele-
ments in G. We denote Hom(Z™, )1 as the connected component of Hom(Z™, G)
containing the trivial homomorphism.

Since Hom(Z™, G) is identified with the based moduli space of the flat bundle,
Hom(Z™, G) is studied in geometry and mathematical physics, for example [1, 7,

, 17, 18]. And there are many results about Hom(Z™, G) in topology, for example
[ s Oy Jy Uy ) ) ) ]

In this text we denote 7" a maximal torus of G and W the Weyl group of G. Let
F be a field of characteristic not dividing the order of W or 0. In [5] Baird described
the cohomology of Hom(Z™, G); with coefficient F as a certain ring of invariants
of W. Based on this result, Ramras and Stafa [15] proved that the Poincaré series
of the cohomology of Hom(Z™, G); with the coefficient F is given by

[T, (1 —¢2d0) det(1 + tw)™
|[W| det(1 — t2w)’
weW

where dy,...,d, are the characteristic degrees of W. This formula doesn’t depend
on the characteristic of F as long as its characteristic does not divide the order of
W or is zero. Thus we obtain the non-existence of torsion in homology.

Lemma 1.1. The homology of Hom(Z™,G); doesn’t have p-torsion in homology
when p doesn’t divide the order of W.

On the other hand, there is few result about existence of torsion in the homology
of Hom(Z™, G);. Baird, Jeffrey and Selick [6] and Crabb [9] give the stable decom-
position of Hom(Z™, SU(2)). By this result, we can obtain that Hom(Z™, SU(2))
has 2-torsion. By combining the result of the computation of fundamental groups
by Adem, Gémez and Grischacher [4] and the computation of secomd homotopy
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groups by Gémez, Pettet and Souto [10], we obtain that Hom(Z™, Sp(n)) has 2-
torsion for m > 3. These are all result about existence of torsion in homology of
Hom(Z™, G).

The main theorem in [14] is the following.

Theorem 1.2. The homology of Hom(Z™, SU(n))1 for m > 2 has p-torsion if and
only if p <n.

To prove this theorem, we give a new homotopy decomposition of Hom(Z™, G);.
In this text, we overview the proof and observe some examples.

2. TRIANGULATION OF A MAXIMAL TORUS

In this section we briefly description a cell structure on 7//W and a character-
ization of each cell. For more information on this section, please see Section 2 in

[14]-

Hereafter, let G denote a compact simply-connected simple Lie group with
rank G = k. Let t be the Lie algebra of T, and let ® be the set of roots of G.
The Stiefel diagram is defined by

U a”l(i) Ct
acd
i€EZ

For example, the Stiefel diagram of Sp(2) is given as follows.

IR
7 <
PTRTK

We call each connected component of the complement of the Stiefel diagram a
Weyl alcove. Since G is a compact simply-connected simple Lie group, the closure of
any Weyl alcove is homeomorphic to k-simplex. Moreover a Weyl alcove is identified
with the following a k-simplex

A={zet|ay(z)>0,...,a5(z) >0, a(z) < 1},

where o, ...ay are simple roots, and « is the highest root. Then the facets of A
is corresponding to the one of the simple roots or the highest root. On the other
hand, T'/W is identified with the closure of a Weyl alcove. By combining the upper
discussion, we obtain the next proposition.

Proposition 2.1. The quotient space T/W is naturally identified with A.

3. HOMOTOPY COLIMIT

In this section we recall the homotopy colimit. Let K be a simplicial complex
and P(K) be the face poset of K. We regard P(K) as a category, and we take a
functor F': P(K) — Top. Then the homotopy colimit of F', hocolim F', is defined
by

hocolim F' & H F(o)xo/~,
ceEK
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where the equivalence relation is generated by (x, F(¢)(y)) ~ (¢(z),y) for = € o,
y € F(7) and the inclusion ¢t: ¢ < 7. Roughly, this is like a fiber space with
different fibers on each cell.

To compute the homology of the homotopy colimit, we use the variant of the
Bousfield-Kan spectral sequence constructed in [11]. In [8], the original Bousfield-
Kan spectral sequence is explained.

Proposition 3.1. Let F': P(K) — Top be a functor, where P(K) denotes the face
poset of a simplicial complex K. Then there is a spectral sequence

Ey,= @ H(F(0)) = Hppy(hocolimF),
ceP,(K)
where P,(K) denotes the set of p-simplices of K.
We can construct this spectral sequence by the similar way to construct the Serre
spectral sequence.

4. HOMOTOPY DECOMPOSITION

This section constructs a new homotopy decomposition of Hom(Z™,G);. The
quotient space of G by the adjoint action of G is isomorphic to T/W, and by
Proposition 2.1 it is isomorphic to A. We define a map 7 as the composition of the
following maps

m: Hom(Z™,G); - Hom(Z,G) 2 G — A,
where the first map is the m-th projection and the last map is the quotient map
by the adjoint action of G. Then the following lemma hold.

Lemma 4.1. If x,y € A belong to the interior of a common face, then
() 27 (y).
Sketch of proof. In [5] Baird induces the map
¢: G/T x T™ — Hom(Z™,G)1  (g,t1,...tm) — (g 't19,...,9 ‘tmg),

for g € G/T, (t1,...tm) € T™ and proves this map is a surjection.

Suppose that z,y € A are in the interior of a same face. Then for each
(t1,...,tm—1) € T™, theisotropy subgroups of (¢1,...,tm-1,2) and (t1,...,tm-1,Yy)
by the adjoint action of G are equal. And there are equivalences
(pom) Mz)=G/TxT™ ' xW-x and (pom) *(y)=G/T xT™ P x W -y.
Thus by the definition of the map ¢, we obtain 7=1(x) & 771(y), as stated. O

Let o¢ denote the barycenter of a face 0 € P(K). Then we can obtain the
following theorem.

Theorem 4.2. Let G be a simple, simply connected, compact Lie group. Then
there is a functor Fy,: P(A) — Top with F,,(c) = 7~ (00) such that there is a
homeomorphism

Hom(Z™, G); = hocolim Fy,.

We look at examples about this theorem.

Example 4.3. We look at F),(c) for some 0. When o is the top cell, there is a
homeomorphism
Fon(o)=G/T x T .
When o is the O-cell of the center in G, there is a homeomorphism
Fu(0) 2 Hom(Z™ 1, G).
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Example 4.4. We consider the homotopy desomposition of Hom(Z™, SU(2)).
Since rank of SU(2) is 1, A is a l-simplex. Let vg,v; be vertices of A, and let
e be an edge of A. Since vy and vy correspond to the center, we have

Fn(v;) = Hom(Z™ ', SU(2))
for ¢ = 0,1. Then by Theorem 4.2 and Example 4.3, there is a homotopy pushout
5% x (SHym~1 — 5 Hom(Z™ 1, SU(2))

| |

Hom(Z™~t, SU(2)) —— Hom(Z™, SU(2)),

where the map S2 x (S1)™~1 — Hom(Z™~!,SU(2)) is equal to the map ¢ in the
proof of Lemma 4.1. Especially when m = 2, there is a homotopy pushout

S2x St — 53

| l

S§3 ——— Hom(Z?, SU(2)),

where the map S2 x S' — S3 is not a simple quotient map but the composition of
the quotient map and the map of degree 2.

5. THE FUNCTOR I3

Let d = dim(G). In the Bousfield-Kan spectral sequence of Fy, we call E, 4 the
top line. In this section to focus on this top line, we define a functor ﬁz and a
natural transformation p.

At first we observe some examples. For top cell oy, € P(A) and the 0-cell
oo € P(A) with corresponding to the center in G, the map Fy(0iop) — Fa(0o) is
identified with the map

Oo:G/TxT =G (g,t)— g g,

for ¢ € G,t € T. Tt is well known that the induced map in top homology
¢ Hy(G/T xT) — Hy(G) is the map of degree |W|. By considering the Bousfield-
Kan spectral sequence of Fs, it seems that there may be p-torsion in the top line
for prime number p that divides |W|. Moreover when o € P(A) is the top cell or
a 0-cell with corresponding to the center in G, by Example 4.3 there is a quotient
map Fy(o) — S¢ such that Hy(Fy(0)) — Hg(S?) is isomorphism. It seems that
there may be the restriction to the top line. In fact we can construct such a natural
transformation in general.

For o € P(A), let W(o) C W be the stabilizer of the barycenter of . In other
words, W (o) is the group generated by the reflection corresponding to the root
whose facet include 0. We define a functor Fy: P(A) — Top by F (0) = S such
that the map Fb(o > 7): Fy(0) — Fy(7) is a map of degree |W (7)|/|W (c)|. Then
the following proposition holds.

Proposition 5.1. There is a natural transformation p: Fo — 1/7\2 such that the map
po: Hi(Fa(0)) = Hy(Fa(0)) is an isomorphism for any o € P(A).

About the construction of p, please see the section 4 in [14].

Let (E",d") and (ET,J’”) denote the spectral sequence of Proposition 3.1 for
hocolim F, and hocolim . Then the E? term of the (E",d") and (E",d") are
illustrated below, where possibly non-trivial parts are shaded.
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E2

d
0
0 ko
Ez
d
0
0 k

Since the bottom lines of these spectral sequences correspond to the homology of
A, the bottom lines are collard white except for (0,0). The natural transformation
p induces the map between these spectral sequences that is isomorphic to the top
line. Therefore by an canonical discussion, we obtain the next proposition.

Proposition 5.2. H,(hocolim F) is a direct summand of H,(Hom(Z2,G)).

By this proposition, if hocolim ﬁg has p-torsion in homology, then there ex-
ists p-torsion in H,(Hom(Z?,G);). Moreover, since Hom(Z?, G); is a retract of
Hom(Z™, G);, the p-torsion in hocolim F, induces the p-torsion in Hom(Z™, G); in
homology.

Proposition 5.3. If hocolim F, has p-torsion in homology, then Hom(Z™, G); has
p-torsion in homology.

6. COMPUTATION OF TORSION IN HOMOLOGY

This section computes some torsion in the homology of Hom(Z™, SU(n)); for
some small n. By Proposition 5.3, if we obtain torsion in the homology of hocolim ﬁg,
we can obtain torsion in the homology of Hom(Z™, SU(n));. To obtain torsion in
the homology of hocolim ﬁg, we define a colored extended Dynkin diagram. A col-
ored extended Dynkin diagram of G is an extended Dynkin diagram of G whose
vertices are colored by black and white. For a colored extended Dynkin diagram I,
let Wt denote the subgroup of W generated by the reflections corresponding to the
roots with colored black in I'. Then the next lemma follows from the definition.

Lemma 6.1. There is a bijection

]

U: P;(A) — {colored extended Dynkin diagrams with k — i black vertices}
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which sends an i-face o € P;(A) to a colored extended Dynkin diagram such that
only n—1 vertices that correspond to the facets including o are black-colored. More-
over there is an equation

W‘Il(g) = W(O’)

We consider the chain complex of hocolim Fy. For a CW complex X, let C(X)
denote the cellular chain complex over Z. The cell decomposition of S% is given by
S% = ey Ueg, and let ¢ be the generator of Cy(S?%) corresponding to the top cell ey.
Then C, (hocolim F) is spanned by o, x ¢ for o € P(A).

Let 1,2,...,n be vertices of the extended Dynkin diagram of SU(n) as follows.

For 1 >y <ig < --- < i <n wedenote {i1,...ix} an (k—1)-face 0 € Pr_1(A)
such that the white vertices of the extended Dynkin diagram ¥(c) are {iy,...ix}.
For example, as for G = SU(3), {1, 3} corresponds the following colored extended
Dynkin diagram.

Now we compute the homology for hocolim Fy for G = SU(3), SU(4). First we
consider the case G = SU(3). We compute the derivation, 9, in Cj(hocolim Fy).
By the definition of F, the derivation on the basis corresponding to o € P(A) is

equal to the derivation in C,(A). And the derivation on the other basis is defined
as follows.

9({1,2,3} x 1) = 2{2,3} x t — 2{1,3} x 1+ 2{1,2} x ¢
8({i1,i2} X L) = 3{12} XL — 3{21} XL
A({ir} x 1) = 0,

for 1 <4y < iy < 3. Therefore when G = SU(3) the homology of hocolim 1/7\2 is

Y/ (t=0)
T L
0 (the others).

Therefore we obtain that Hom(Z™, SU(3)); has p-torsion in homology for p = 2, 3.
6



Next we consider the case G = SU(4). We compute the derivation, 9, in
C.(hocolim Fy) by a similar way. The derivation is defined as follows.
0({1,2,3,4} x 1) =2{2,3,4} x v — 2{1,2,4} x ¢ +2{1,3,4} x ¢ — 2{2,3,4} x ¢
0({1,2,3} x 1) =3{2,3} x t — 2{1,3} x t +3{1,2} x ¢
0({1,2,4} x 1) =2{2,4} x ¢ — 3{1,4} x t +3{1,2} x ¢
0({1,3,4} x 1) =3{3,4} x ¢ — 3{1,4} x t +2{1,3} x ¢
)
)
)

0({2,3,4} x 1) =3{3,4} x ¢ — 2{2,4} x 1 +3{2,3} x ¢
O{i,i+ 1} x o) =4{i+ 1} x o —4{i} x ¢
O{j,d+2} xuv)=6{j+2} xt—6{j} x¢
O({k} x 1) =0,
for 1 <74 §§, 1<j<2and 1<k <4. Therefore when G = SU(4) the homology
of hocolim F5 is

v/ (i =0)

ZOL2OL/20L/A (i =15)
H;(hocolim F) 2 { 7./3 (i = 16)

7,2 (i =17)

0 (the others).

Therefore we obtain that Hom(Z™, SU(4)); has p-torsion in homology for p = 2, 3.
In this case Hom(Z™, SU(4)); has higher 2-torsion Z/4, but we don’t know when
the torsion is higher torsion or not.

In our paper [14], by using an another property and prove the following theorem.

Theorem 6.2. The homology of Hom(Z™, SU(n+ 1)), for m > 2 has p-torsion in
homology if and only if p < n+ 1.

By the upper calculation, we obtain this theorem for n = 2, 3.

7. ANOTHER RESULTS

In this section we see some results that we cannot write in the main part. By
using the homotopy decomposition of Hom(Z™, G), we can compute the top term
of the homology like the followings.

Theorem 7.1. Let G be a compact simply-connected simple Lie group of rank n,
and let

~ JdimG +n(m—1) -1 m is even
~ | dim G + n(m — 1) m is odd.
Then the top homology of Hom(Z™, G); is given by

Z/2 m is even

Hy(Hom(Z™, G)1) & {Z m is odd

Corollary 7.2. Let G be a compact simply-connected simple Lie group. Then
Hom(Z™, G)y for m > 2 has 2-torsion in homology.

By the computation similar to the case G = SU(n), we can obtain existence of
p-torsion for some p.

Theorem 7.3. Ifp <n andn =0,1 mod p, then for m > 2, Hom(Z™, Spin(2n));
has p-torsion in homology.
7



Theorem 7.4. Let G be an exceptional Lie group. Then Hom(Z™,G)1 for m > 2
has p-torsion in homology if and only if p divides |W |, except possibly for (G,p) =
(E77 5)5 (E77 7)5 (Eg, 7)

But in the other cases we can’t obtain existence of p-torsion. Moreover we have

proved that hocolim ﬁg doesn’t have p-torsion in almost all of the cases. We write

thi

s precisely in Section 8 of [11].
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