DESIGNS ON TAUTOLOGICAL BUNDLE
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1. INTRODUCTION

In the area of combinatorics, many researchers have studied point arrangements called “designs”.
Roughly speaking, “designs” are “good” point arrangements with approximate given space. Here,
we introduce a difinition of spherical ¢-design.

Definition 1.1. (Delsart, Gothals, Seidel(1977) [4]) Let

<11) st = {(331’1:2"" a$n> cR" | 33% +SU% + - +SU,21 = 1}
A finite subset X of S”7! is called a spherical t-design if
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(1.2) YT fdp= 7= flu)
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for any polynomial f(z1,---x,) of degree t or less.

For spherical designs, refer to [2]. Also designs on following spaces have been studied:
e Unitary groups [5]
e Grassmannian spaces [1]
e Compact symmetric spaces [3]

In this paper, we see a new definition of designs and its examples.

2. DEFINITION OF 7-DESIGN

Definition 2.1. Let

e () :a set,

e W, H : C-vector spaces,

e H :a subset of H,

o {V,}peq a family of vector spaces,

e {e,:H — Vp}peq :a family of linear maps,

e 7:Hog — W :a linear map.
For a finite subset X C Q and linear functions A, : V,, — W, a pair (X, {\;}zecx) is a 7-design if
for any s € Ho the following equation holds:

(2.1) T(s) = Z()\xoex)(s)

zeX

Example 2.2. Now, we rewrite the spherical design with the definition of 7-design. Let
o ()= Sn—l’
o V=R H=C®R"),Ho=Pol<;(R")|gn-1,
e V=R (peQ),e:H—=V, [ [fp),
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(2.2) T:Ho =W, f— % fdu
|Sn 1| Sn—1

where p is a radon measure of S"7!,
e forzxe X CQ

1
2. Ayt —z.
(2.3) - Vx—>VV,Zb—>|X|z

Then, it is easy to see that

X is a spherical t-design < (X, \) is a 7-design.

3. DESIGNS ON TAUTOLOGICAL BUNDLE
3.1. TAUTOLOGICAL BUNDLE

We define an action SU(2) ~ CP! as follows:

(3.1) g-V={gv|veV}

and let v9 = {(z,0) | z € C}.

Proposition 3.1.

(3.2) w:SU(2) = CPY g — g-vp

is a principal bundle. Moreover, an isotropy subgroup

(3.3) I50,, (SU(2)) i= {g € SU(2) | g v = v} = S(U(L) x U(1))
leads the following isomorphism:

(3.4) CP' = SU(2)/S(U(1) x U(1)),

that is (3.2) is a principal S(U(1) x U(1))-bundle.

Now, we define the following action S(U(1) x U(1)) ~ C:

(3.5) g-T=qix (g: ( 901 902 ) e S(U(1) XU(l)),xG(C).
Then,
(3.6) 7: Ty — CP?

denotes an associated bundle to (3.2) with fiber C.
Lemma 3.2.
(3.7) Toy = {(V,v) € CP' xC?*|v € V}.

The right-hand side of (3.7) is called a tautological bundle.
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3.2. SECTION OF TAUTOLOGICAL BUNDLE
In this section, we see a decomposition of I'(T5 1), which is a set of smooth section of 1% ;.

Proposition 3.3. I'(T3 1) has the following irreducible decomposition of SU(2) representation:

(3.8) [(Ty1) = @r2*(1y,),

k>1
where dime I'?*(Ty1) = 2k.
From the general theory of representations in SU(2), we can see T?#(Ty 1) as a symmetric tensor.

Lemma 3.4. Let S"(C2) be the set of all symmetric tensors of order n defined on C? and we define

(3.9) s: ST = T*M(Ty,)
(3.10) sa(l) = (l,afk (2)) (o € §%*71(C?),1 e CPY)

where ol is a coefficient of efel ™" of o when the basis of C? are e; = (z,y),ea = (—7,%) for

I = [z,9]((z,y) € S®). Then, s gives a homeomorphism between S2*~1(C2) and I'?*(Ty ).
Then, let H = @2:1 I?%(Ty4) and

(3.11) 7 H —T?(Ty)

be the projection.

3.3. T-DESIGN

Recalling that the associated bundle to (3.2) is

(3.12) m: Ty, — CP,

Q=CPYH =T(Tp,) and Ho = H(= @,_, T**(Ty1)). Also, let {V;};ccpr = {I € CP'} and

(3.13) e : D(T31) = Le(s) = sP(1).

where 52 (1) is the second component of s(1).
Now we define a G-invariant polynomial ring.

Definition 3.5. For a subgroup G C GL(n,C), we define

(3‘14) (C[xlv T 7xn]G = {f € (C[xlv T 7xn] | f(Axlv T 7Axn) = f(xh T 7xn)}
and C[z1, -+ ,2,]§ denotes a set of all elements of C[x1, - -+ ,x,]“ whose degree is d. The following
series is called Hilbert series:

[e.¢]
(3.15) PE(t) = (dimg Clay, -+, 2] § )t

d=0

Then, let
e 0 1 e+et 1 0 1

(3.16) S‘(o 2 ) T=3—3 1 —e—et U= 210

where ¢ is an primitive 5th root of 1.



Proposition 3.6.

(317) Gicosa = <S7 T, U>
is a subgroup of SU(2) and #Gicosq = 120.
_ 1 30
(318) PQC:zcosa (t) — + t — 1 + t12 + t20 + t24 + .

(1 —¢12)(1—t20)
For a subset X C CP!, linear functions A, : V; — I'*(Ty1) and g € G C SU(2), we define

(3.19) \IJ(X)\) H—)F (Tgl \IJ(X)\) Z)\ 0635(8
rzeX

and

(3.20) Uy x t H = T2 (To0), Uy x(s) = D (9 Aa) 0 egals)
rzeX

where

(3.21) 9 Aa Voo = T(T21), (9 Xa)(2) = g+ Aa(g™"2).

For subsets X,Y C CP!, we define the sum of (X, Ax) and (Y, \y) as follows:
(3.22) (X, Ax) + (Y, Ay) = (X UY, Axuy))
where

Ax(z) (ze€ X\Y)
(3.23) Axuv)(2) =9 Ax(2) + Av(2) (2 € XNY)
Av(z) (z€Y\X)

Then, we define

(3.24) G- (X,N)=> (9-X.9 ).
gelG

Lemma 3.7. Let G be a finite subset of SU(2) and (Y, \y) = #G “(X,;Ax). Then, Uy, is a
G-intertwining operator.

Theorem 3.8. For a subset X C CP!, if tre(V(x,n) = 2, (Y, Ay) = MGQCOSG (X,A) is a

7-design.

This theorem insists that

id (k=1)
(3.25) Yeylear, ) = { 0 (k=2,34,5)
Finally, we compose a 7-design. Let xg = {(z,0) | z € C} and Ao : 2o — I'*(T3 ;) be

(3.26) Ao(x,0)(1) = (I, 2pry(x, 0)).
Then, trc(¥(4,5,)) = 2. Therefore, from Theorem3.8,

1
(327) %Gicosa : (33'07 >‘O>
is a 7-design. That is

1
(3.28) =120 Z (9 Xo) © egay

9€Gicosa
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Furthermore, since the following lemma, we can calculate the equation (3.28) as follows:
12
1

= E (gl : )‘0) © €g;x0
i=1

(3.29) T

where {g;} are the representatives of Gicosa/IS0z,(Gicosa)-

Lemma 3.9.

(3.30) #1504, (Gicosa) = 10

and

(3.31) VEk € #1500 (Gicosa)s k - Ao = Ao,
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