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Abstract

The Neumann—Poincaré operator (abbreviated by NP) is a boundary integral operator naturally arising
when solving classical boundary value problems using layer potentials. If the boundary of the domain, on
which the NP operator is defined, is C>® smooth, then the NP operator is compact. Thus, the Fredholm
integral equation, which appears when solving Dirichlet or Neumann problems, can be solved using the
Fredholm index theory. Regarding spectral properties of the NP operator, the NP spectrum depends heavily
on geometry of the surface (or the curve) on which the operator is defined. Our main purpose is to introduce
recent selected properties of the NP spectrum on convex domains. Then we discuss relationships among the
NP spectrum and PDEs.

1 Introduction

Let us consider a bounded Lipschitz domain © in R™ (n = 2,3). The (electro-static) Neumann—Poincaré
(abbreviated by NP) operator Kaq : L2(9Q) 3 ¢ — L*(09) > Kaq[t] is defined by
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ds, is the line or surface element and % is the outer normal derivative on 0f2. If the boundary of the domain
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99 is smooth, then it is known that Kaq is a compact operator on L?(99) (even on H*(9Q)) and consists of at
most a countable number of eigenvalues, with 0 as the only possible limit point (See e.g. [M, MS] and references
therein for the details.). It is also known that the eigenvalues of the NP operator (the so-called double layer
potential integral operator) lie in the interval (—1/2,1/2] and that the eigenvalue 1/2 corresponds to constant
eigenfunctions. Here it is worth mentioning that if the boundary has corners (i.e. Lipschitz) then absolute
continuous spectrum appears on a suitable Hilbert space H (e.g. [HKL, PP]). Especially for the case of smooth
boundaries, the spectrum of the NP oerator (NP spectrum) on H is the same as one on L?. Thus we shall
denote the spectrum of the NP operator as o(Kpq) unless stated otherwise.

Our purpose here is to introduce some structural properties of the NP spectrum. Micellous properties of
the NP spectrum are ongoing topics and they are significant not only in modern physics but also in pure
mathematics. However, to avoid the condition of being tedious, we shall mention only a few selected properties
and meanings instead of mentioning enomous results (See references and therein for the details.). To do so, let
us recall Harmonic Bergman space A2((2), namely, harmonic L? functions:

A2 ={f(z) e L*(Q) | Af=0in Q }. (1.1)

When we denote a single layer potential operator as

SoalY](x) = o Y(y)E(x,y) dSy, (1.2)

*This article is based on a talk supported by the Research Institute for Mathematical Sciences, an International Joint Us-
age/Research Center located in Kyoto University. The author was supported by JSPS of Japan KAKENHI grants JP19K14533,
20K03655 and 21K13805 and by NRF (of S. Korea) grants No. 2019R1A2B5B01069967.



the operator Spq : H~1/2(98) — A%(Q) is known to be bijective (See e.g. [AKM2].). Thus an arbitrary operator
Toq on H=Y/2(99Q) is comprehended as the corresponding operator T, on A%(Q):

To on A*(Q) = Spa - Toa - Syg  on H '/2(09). (1.3)

This formulation is a toy model of holographic principles, that is, correspondence between boundary behaviors
and interior behaviors. It is easily seen that the NP operator Kyq is the typical one of boundary integral
operators. Then the corresponding operator Tg is the so-called Ahlfors—Beuling operator in the case of two
dimensions [Ahl, PP]. In fact, M. Perfekt and M. Putinar have shown from (1.3) that the NP operator of
two-dimensional curvilinear polygon has an essential spectrum, which depends only on the angles of the corners
[PP]. So we may consider the calculation of the NP spectrum as an example of getting familiar with the principle
(1.3).

2 A resent result of the NP spectrum in two dimensions

Miscellous properties of the NP spectrum have been shown even in two dimensions (See e.g. [AKM2, MS] and
references therein.). Here we shall introduce one of the interesting properties for thin domains: As in section
1, it is proved lately in [PP] that if a two-dimensional domain  has corners on its boundary, then Kyo has
essential spectrum which is a connected interval symmetric with respect to 0, and the end points of the interval
are completely determined by the smallest angle of the corners. In particular, if € is a rectangle, then the
essential spectrum is known to be the interval [—1/4,1/4]. It is also known that o(Ksq) \ {1/2} is a closed
subset of (—1/2,1/2). In recent work [HKL], a classification method to distinguish eigenvalues from essential
spectrum has been proposed and implemented numerically to investigate existence of eigenvalues on various
domains with corners. The numerical experiments reveal that on rectangles more and more eigenvalues of the
NP operator appear outside the interval [—1/4,1/4] of the essential spectrum as the aspect ratio of the rectangle
gets larger. It is also proved that if the aspect ratio is large enough, there is at least one eigenvalue outside
[—1/4,1/4]. In [AKMI1] we improve this result drastically and prove that the spectra actually fill up the whole
interval (—1/2,1/2) in some sense as the aspect ratio gets larger.

To be more precise, the two-dimensional domains to be considered here are not just rectangles. The long
sides are lines, but the short sides do not have to be lines, they can be curves. Since the NP operator is dilation
invariant, we define planar thin domains as follows: for R > 1, let Qr be a rectangle-shaped domain whose
boundary consists of three parts, say

ONp =THUTLUTY, (2.1)

where the top and bottom are
I} =[-R R} x {1}, Ty=[-R,R]x{-1}, (2:2)

and the side I'§; consists of the left and right sides, namely, '}, = ', UT%,, where I'y; and T'}, are curves
connecting points (FR,1) and (FR, —1), respectively. We assume that FlR and I'; are of any but fixed shape
independent of R. In other words, I'; and T'% are of the form Ty, =T — (R,0) and T, = I'" + (R, 0), where T
and I'™ are curves connecting points (0,1) and (0, —1). If both T'" and I'" are line segments, Qg is a rectangle.
The boundary 0€2g is assumed to be Lipschitz continuous. We say that the domain Qg is of the aspect ratio
R even if it is not necessarily a rectangle. It is worthwhile to emphasize that 0Qg is allowed to be smooth in
which case the associated NP operator is compact and has eigenvalues accumulating to 0.
The following theorem is one of our results in two dimensions:

Theorem 1 ([AKM1]). If {R;} be an increasing sequence such that R; — oo as j — oo, then

U a(Koay,) = [~1/2,1/2]. (2.3)

3 Recent results of the NP spectrum in three dimensional convex
domains

Three-dimensional bounded domains exhibit the NP spectral structure different from two-dimensional ones. In
two dimensions, the NP spectrum (spectrum of the NP operator) always appears in pair +X except 1/2. In fact,
we know that the NP eigenvalues on a sphere are 1/(4k+2) for k = 0,1,2 ... [Poi], and they are all positive even
on prolate spheroids [AA]. Thus, the property (2.3) can not hold for prolate spheroids. It is worth mentioning
that, as far as we are aware of, prolate spheroids are the only domains without negative NP eigenvalues. It is an



intriguing question to find geometric conditions which allow only positive NP eigenvalues. It is proved in [MR]
that the NP operator on the boundary of strictly convex domains in three dimensions can have at most finitely
many negative eigenvalues. If the boundary of the domain has a concave part, then there are (infinitely) many
negative eigenvalues (see [AJKKM, JK, MR)).

Let us begin with the prolate spheroids. Let I1i be a prolate spheroid, namely, for R > 1,

2
Mg = {(ml,xg,m3):xf+x§+%<l}. (3.1)
Then we obtain the following theorem for prolate spheroids.

Theorem 2 ([AKLM]). Let Il be the prolate spheroid defined by (3.1). If R; is a sequence of numbers such
that R; > 1 for all j and R; — oo as j — oo, then

T

I
-

o(Komy,) = [0,1/2]. (3.2)

J

Theorem 2 shows that totality of eigenvalues of Kon Iy is dense in [0, 1/2] regardless of choice of the sequence

R;. A natural question arises: whether the property (3.2) is generic for thin, long domains, e.g., long cylinders.
(If we dilate TIg by R™!, I becomes thin. That is why we call them ‘thin’ domains. The spectrum of the NP
operator is invariant under dilation.)

There are significant work on the NP spectrum on ellipsoids [Ahn2, AA, ADR, Ma, Ritt]. However, it is
unlikely that Theorem 2 (and Theorem 4 below) are derived from those results. However, we are able to prove
the following theorem based on those results, which is in good comparison with Theorem 2: The following
theorem shows that the totality (in continuum) of the NP eigenvalues on prolate spheroids covers the interval
(0,1/2] while Theorem 2 shows that the NP eigenvalues on a sequence of prolate spheroids, which is countable,
are dense in [0, 1/2] regardless of the choice of the sequence.

Theorem 3 ([AKLM]). Let Il be the prolate spheroid defined by (3.1). It holds that for any Ry > 1,

U eKom,) = (0,1/2]. (3.3)

R> Ry

The property for oblate spheroids seems a generic property of thin, flat domains as in Theorem 1. To
demonstrate it, we consider typical thin, flat domains other than oblate ellipsoids. To define such a domain, let
U be a bounded planar domain with the Lipschitz continuous boundary OU. Let ® be the domain in R? whose
boundary consists of three pieces, namely,

0P =2Tux - ux® (3.4)

where the top and bottom are given by ¥+ = U x {£1} and ¥ is a surface connecting OU x {+1} and 90U x {—1}.
We assume that 9P is Lipschitz continuous. For R > 0 let

[OFRES {(Ril?l,RCCQ,J,’g) : (CUl,IQ,.I‘g) S CI)} (35)
Then we obtain the following theorem.

Theorem 4 ([AKLM]). Let ®r be the domain defined by (3.5). If R; is a sequence such that R; — oo as
j — oo, then

s

Il
=

7(Koap,) = [~1/2,1/2]. (3.6)

J

Here we can also give a property as a consequence of Theorem 3 and Theorem 4:

Corollary 5. Let —1/2 < ¢ < 0. There exists a smooth convex domain Q C R? such that the minimum NP
eigenvalue satisfies
mino(Kaq) = c. (3.7)

In fact, the smooth perturbation of domains yields the continuity of minimum eigenvalue [AKMU]. It then
follows that the oblate-like perturbation of a sphere gives the satisfactory minimum eigenvalue. It is worth
mentioning that to construct an explicit domain is a formiddable task.

Thus even in convex regions we can find negative NP spectrum (See also [AJKKMR].). However, we couldn’t
find the domain except for prolate spheroids, in which there are no negative eigenvalues.



4 Unsolved problems and conjectures as future prospects

In section 1 we introduce a toy model of holographic principles, that is, the correspondency between boundary
behaviors and interior behaviors. The Bergman space A%(€) consists of harmonic functions and the correspon-
dency (1.3) can be denote as the product of single layer potential operators. Here we employed the Bergman
space as harmonic functions. When we can define single layer potential operators via fundamental solutions of
linear PDEs, one can expect the analogy of the Bergman space as the solutions of PDEs. In fact, the so-called
Dirichlet—Neumann map can be denoted by NP operators and single layer potential operators. So one can
expect a rigorous theory of holographic principles other than 2-dimensional NP operators (See e.g. [LBM] for
the idea of correspondencies).

Many applications of NP operators also can be found in mathematical physics. As a significant applicantion,
we disproved the so-called cloakings by anomalous resonance (abbreviated by CALR), which is one of electro-
magnetic effects, if the boundary 0f2 is convex smooth. We emphasize that such applications deeply depend
the NP spectrum. In other words, if CALR happens in three dimensions then the NP operator has infinitely
many negative eigenvalues (See e.g. [AKMN] and references therein.).

They are ongoing subjects and so we end this article by proposing problems and conjectures:

Problem 6. Can one find CALR for concave regions such as a torus ?

We don’t have such an example of concave regions at present. The infinitely many negative NP eigenvalues
are essential. At this point, it is emphasized that we can’t find satisfactory conditions for the nonexistence of
negative eigenvalues (See [AJKKMR].):

Problem 7. Can one find the rigion except prolate spheloids in which the corresponding NP operator has positive
eigenvalues only ?

Corollary 5 similarly allows us to ask problem 8:

Problem 8. Let {€2;};en be a sequence of regions in R?. For —1/2 < ¢ < 0, can one construct a sequence such
that

U o(Kag,) = [e,1/2)? (4.1)

The maximal eigenvalue other than 1/2 corresponds the so-called Fredholm eigenvalue (See e.g. [Ahl] for
two dimensions and [MS].). Details of such eigenvalue are significant in PDEs. However they are still unknown
especially in dimension 3:

Congecture 9 ([MS]). Let @ C R? and A = max 0,(Ksq)\{1/2}. Can one prove

R 1
A =5

where the infimum is taken over all C'*™ simply connected closed surfaces? Is the infimum achieved if and only
if 0Q = S27

The present author confirmed the validity of conjecture 9. When C°° closed surfaces are replaced by
ellipsoids, this problem is proved in [MS]. Related results can be also found in [AKMU].

Congecture 10 ([M, MR]). Let Q; and Q be three dimensional bounded regions. If each NP spectrum coincides,
namely, 0,(Kaq,) = 0,(Kaq,) (i-e. isospectral), then are €1 and Q9 similar figures?

Conjecture 10 is proven only for the case of 9Q = 5% or 9Q = T? (Clifford Torus). We suspect that
conjecture 10 holds true for all of Willmore surfaces.
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