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Abstract

This paper examines an execution game model in a Markovian environment. We focus on how
two risk—averse large traders execute a large volume of a risky asset to maximize the expected
utility of each large trader from the terminal wealth over a finite horizon. The price impact
caused by each large trader and the Markovian environment are assumed to affect the market
and execution price. A formulation as a Markov game model enables us to solve this problem.
We obtain an equilibrium execution strategy and its associated value function under a Markov
perfect equilibrium via the backward induction method of dynamic programming.

1 Introduction

Developments in trading technology for algorithmic trading have attracted a growing body of re-
search regarding execution problems. According to [21], although traders did not often use high—
frequency trading (HFT) around 2000, HFTs have accounted for 20 percent of the total trading
volume in the market since the mid-2000s (until 2019). The volume-weighted average price (VWAP)
or time—weighted average price (TWAP) strategy was the mainstream of algorithmic trading in the
early 2000s. However, liquidity—seeking algorithm usage has become more common since the mid—
2000s (until 2019). These facts underscore the importance of analyzing algorithmic trading that
large traders have heavily used for more than a decade.

With the above fact in mind, we examine an execution problem for two large traders. In
particular, our model sheds light on the effect of a Markovian environment on an “equilibrium”
execution strategy for the large traders. We can interpret the Markovian environment in several
ways. An example would be to consider the price impact caused by (random) aggregate orders of
small traders, such as [32], [13], and [33]. The so—called “order book imbalance,” as investigated in
[38] and [27], is also significant in the analysis of execution problems and market microstructure.
The order book imbalance is of great interest in recent literature. [34] conducts an experimental
analysis and shows that public information available for all traders is well incorporated into market
prices. This finding supports the model taking into account the order book imbalance since much
information about the imbalance is available for all traders.
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The model we analyze in this paper is closely related to [27], which investigates the influence
of (Markovian) microstructure signal on the optimal execution strategy. Our model can be seen
as an extension of this paper from the following viewpoint. Firstly, [27] considers an optimal
execution problem for a single large trader, although our model focuses on an interaction between
two large traders. To this end, our problem is formulated as a Markov game model. Secondarily, we
incorporate the effect of permanent impact on the “fundamental price” we define in the sequel, as
opposed to [27].1 Besides, the most important difference between their model and our model is that
we incorporate both transient price impact and risk—averse property of the large trader into the
market model for deriving an equilibrium execution. Their analysis shows that a cost minimization
problem with a risk—averse term under the influence of market microstructure signal admits at most
one optimal execution strategy.? However, they only derive an explicit optimal execution strategy
under the following situations with the effect of the market microstructure signal: (i) no term
representing the risk aversion with transient price impact; (ii) no transient price impact with risk—
aversion term. Our formulation enables us to derive an equilibrium execution strategy considering
both transient price impact and a risk—averse term under the existence of a Markovian environment.

The model of the “fundamental price” in this paper is also different from seminal papers which
stem from [26] and study the field of market microstructure. The so-called “order flow imbalance”
is also a key ingredient of price fluctuation, as [9] empirically shows. One of the related works is
[2], which studies the effect of dynamic order flow imbalance on an optimal execution. Their model
also considers an endogenous impact on the order flow dynamics caused by a large trader as well
as a trading horizon under a cost minimization framework. Their analysis is worth mentioning,
although the model does not derive the optimal execution strategy explicitly in this setting.

We derive an equilibrium execution strategy at a Markov perfect equilibrium with the effect of
a Markovian environment. Large traders are assumed to have a Constant Absolute Risk—Averse
(CARA) Von Neumann-Morgenstern (vN-M) type utility. Our analysis prevails that the transient
price impact and what we call the residual effect of past price impact and a Markovian environment
described by an AR (1)-type normal distributed random variable affect the execution strategy. The
derivation method is similar to [32].

The organization of this paper is as follows. Section 2 summarizes related literature. In section
3, we describe a market model where two large traders have large impacts on their execution price
due to their large volumes of orders. An effect of a Markovian signal on a traded asset is embedded
in the model. We describe the methodology to formulate this model as a Markov game model.
Applying the backward induction method of dynamic programming then allows us to obtain an
explicit equilibrium execution strategy at a Markov perfect equilibrium as an affine function of four
state variables: the remaining execution volume of each large trader, the residual effect of past price
impact caused by both large traders, and the last Markovian environment. The proof for the main
theorem is shown in the appendix.

2 Related literature

2.1 Optimal execution problem

In the last (two) decades there has been considerable interest in optimal execution problems for a
single large trader among academic researchers and practitioners. The first investigation into the
optimal execution strategy is conducted by [3] in a discrete—time framework. They find that the
optimal strategy becomes a basket of equally divided trading volumes. [1] subsequently extends
and constructs their model incorporating both the execution cost caused by a large trader and the

'In [27], they call the underlying asset price “unaffected price,” which (partially) corresponds to the “fundamental

price” we define in our model setting. Our assumption that the permanent price impact would have an impact makes
the difference of what we define as the fundamental price.

2They show that the objective function representing the cost with risk—averse term for the large trader is strictly
convex with respect to the trading speed.



degree of risk—aversion of the large trader. The formulation of their model makes the analysis entail
a mean—variance approach. In addition, [35] addresses an optimal execution strategy for a risk—
averse large trader with CARA-type utility maximization. They show that the optimal execution
strategy for such a large trader becomes deterministic. Another approach for an optimal trade
execution has been put forward by [16] and [17]. They incorporate a predictable return into the
cost minimization model with (quadratic) transaction cost which can be seen as a price impact in
an infinite discrete— and continuous—time framework, respectively.

Much work on the optimal execution strategy has been carried out as we mentioned in the
previous paragraph. However, there are still some points that need careful consideration. Firstly, a
pitfall with much of the literature on the optimal execution problem including the above research is
the lack of a transient part of the price impact. As [4] empirically demonstrates, the price impact
dissipates over the trading window. Thus one should take a transient price impact into account. [15]
extends the model considered in [4] for a continuous-time framework. [30] subsequently formulates
the model from a viewpoint of a limit order book (LOB) dynamics with transient price impact. [32],
[13], and [33] study the optimal execution problem with a generalized transient price impact model
assuming that aggregate orders posed by small traders also cause price impact. All of these studies
highlight the importance of transient price impact being embedded in the analysis of an execution
problem by showing that transient price impact does affect the optimal execution strategy. Our
formulation of the transient price impact model bears a close resemblance to our previous studies
[25], [31], [32] and [13].

We can consider the price impact model with the effect of aggregate trading volumes posed by
small traders on the market (and therefore execution) price. [6] and [7] include the price impact
caused by order flow (or small traders) under a cost minimization problem for a large trader and
derive the optimal execution strategy and the optimal VWAP execution strategy, respectively.
Notwithstanding an insightful analysis, both studies, however, offer no explanation for a utility
maximization problem. [25], [31], and [32] analyze a utility maximization problem for a large trader
with a generalized price impact model (which incorporates the price impact caused by small traders)
and derive the optimal execution strategy. These researches show that aggregate orders posed
by small traders affect the optimal execution strategy for the large trader through the transient
price impact. Moreover, [13] further if aggregate orders posed by small traders have a Markovian
dependence, then a “statistical” arbitrage for a large trader exists.

2.2 Execution game

The situation in a real marketplace leads to a game—theoretic formulation, which is the second aspect
one should take care of. Since multiple large traders affect the market price they execute with each
other, the so—called market impact game model, which can describe a much more complicated
financial market, might be more acceptable from a viewpoint of practitioners. [36] and [28], which
are motivated by [37], investigate a market impact game model with a transient price impact for one
risky asset. These studies then derive an equilibrium at a Nash equilibrium for a cost minimization
problem as well as a utility maximization problem. [10] subsequently extend their model to a
multiple risky asset one and derive an equilibrium execution strategy. The strategies obtained in
these studies are all static and deterministic. However, an execution strategy should be constructed
in a dynamic class even if the trading window is very short (e.g., one day or a few days). Thus,
in [32] and [31], they address a market game model with transient price impact and derive an
equilibrium execution strategy in a dynamic and non—deterministic class. Other researches, [19] or
[5] for example, analyze an execution game model via a mean—field game approach, though their
model does not take into account a transient price impact. The method to formulate the problem
we focus on in this paper is reminiscent of the one used in [31] and [32].



2.3 Execution problem for multiple assets

Another direction of optimal and equilibrium execution problems is an execution problem of multiple
(risky) assets. [8], for instance, studies the optimal execution strategy for multiple risky assets
considering temporary and permanent price impact. As mentioned above, we should model a
transient price impact as well as temporary and permanent price impacts. They also show the
way one can incorporate the information that a large trader does not trade. [40] investigates the
cross—impact of multiple risky assets in a transient price impact model via a close examination
of order book dynamics. They show that a large trader can increase his/her expected utility by
execution of other assets even when there is no obligation to buy/sell multiple risky assets (or when
they are going to buy/sell only a single risky asset). [33] addresses a pair-trade execution problem
for a single large trader and shows that buy and sell orders for each risky asset posed by small
traders affect the optimal pair—trade execution volume for both risky assets. For other research,
see, e.g.,[10].

2.4 Microstructure effect on market price

The following summary is based on [38]. The order book dynamics attract widespread interest
among academic researchers and practitioners from theoretical and empirical points of view. In
particular, how we should consider an underlying (or a fundamental) price of a risky asset is un-
dergoing a revolution in the light of empirical analysis. These represent a price without any price
impact caused by (large) order submissions. We may recognize the so—called mid—price as the
underlying price. The mean of best—bid and best—ask accounts for the mid-price:

1
M= 3 <P“ n Pb> , (2.1)
where P® and PP are respectively the best-bid and best-ask. Another feature that may be of
interest to practitioners is the weighted mid—price defined as follows:

W = wP®+ (1 — w)P?, (2.2)

where the weight w is the order book imbalance defined by the total volume at the best bid Q° and
the total volume at the best ask Q%:

Qb
QN

Although both features make a certain sense in terms of being easily obtained from market data,
empirical studies have shown that they have some shortcomings. [38] thus define another notion
of what he called the micro—price. The micro—price incorporates the effect of mid—price M, order
book imbalance I, and the bid-ask spread S := P — P? into the underlying price. In mathematical
form, we can write the dependence as follows:

w

(2.3)

P™ere .— M 4+ g(I, S), (2.4)
using a function g. The method to estimate the function g is explained in [38]. We will follow this
spirit and construct what we call the “fundamental price” in the model setting.

3 Execution game model

In a discrete time framework ¢t € {1,...,T.\T+1}(,T € Z44+ := {1,2,...}), we assume that
two large traders, denoted by i € { 1,2 }, purchase one risky asset in a trading market. It is also
supposed that each large trader has a CARA vN-M (or negative exponential) utility function with
the absolute risk aversion parameter v* > 0 for i € { 1,2 }.

4



3.1 Market

We consider the situation that each large trader must purchase Q'(€ R) volume of one risky asset
by the time T + 1. In the sequel, ¢!(€ R) stands for the large amount of orders submitted by the
large trader i € {1,2} at time ¢t € {1,...,T }.3 We denote by @; the remained execution volume
of the risky asset for the large trader ¢ € { 1,2 }, i.e., the number of shares remained to purchase
by the large trader at time t € {1,..., 7,7 + 1 }. So we have

@;H = @: - qga (3~1)

with the initial and terminal conditions: Q; = Q° € R; Qr 11 = 0 € R, for each large trader
i€ {1,2}. In the sequel of this paper, the buy—trade and sell-trade of a large trader are supposed
to induce the same (instantaneous) linear price impact.?

The market price (or quoted price) of the risky asset at time t € {1,..., 7,7 + 1} is P,. Then,
the execution price of the asset becomes ﬁt since the large traders submit a large number of orders,
influencing the asset price at which they execute the transaction. In the rest of this paper, we
assume that submitting one unit of (large) order at time ¢ € {1,...,7 } causes the instantaneous
price impact denoted as A;(> 0).

We subsequently define the residual effect of past price impact caused by both large traders
at time ¢t € {1,...,T }, represented by R;. It characterizes the discounted sum of past transient
price impact. Many existing researches, conducted from both theoretical and empirical viewpoints,
highlight the significance of the transient nature of price impacts (e.g., [4], [15], and [30]). By means
of the following exponential function G: R — R4 := (0, 00):

G(t) :=e ", (3.2)

where p (€ [0,00)) stands for the deterministic resilience speed, we formulate the residual effect of
the past orders posed by both large traders.

Remark 3.1 (Extension of deterministic resilience speed). We can extend the exponential decay
kernel model. The time dependency for the resilience speed, i.e., p;, is consistent with empirical
analysis. However, we conduct the following analysis without assuming the time dependency for
the resilience speed since the assumption does not lead to any illuminating results.

Then the dynamics of the residual effect of past price impact are defined as follows:

Ry =0;
Ryt = Zt: oM (g + g2) e PHD=R)
k:1t—1
=e "> aphi (gh+ai) e " +ah (qf +qf) e’
:e—PIER1t+atAt (gt +4p)], t=1,....T, (3.3)

where a; € [0,1] represents the linear price impact coefficients representing the temporary price
impacts. Eq. (3.3) indicates that R; has a Markov property in this settings, which stems from the
assumption of the exponential decay kernel.

Furthermore, we define a sequence of independent random variables ¢; at time ¢t € {1,...,7T}
as the effect of the public news/information about the economic situation between ¢t and ¢+ 1 since

3For each large trader i € { 1,2}, the positive g} for t € {1,...,T } stand for the acquisition and negative ¢; the
liquidation of the risky asset. This setting allows us to establish a similar setup for a selling problem of large traders.
4This assumption is justified by some empirical studies, for example, [6] and [7].



some public news or information affect the price. ¢ for ¢t € {1,...,7 } are assumed to follow a
normal distribution with mean 1§ € R and variance (o¢)? € Ry, i.e.,

e~ N (u;, (a;)Q) L t=1,....T. (3.4)

In the sequel, we assume that puf =0 forallt € {1,...,7T }.

We here focus on the dynamics of the “fundamental price” at time ¢t € {1,...,7T }, denoted
by Ptf . The fact that the residual effect of the past price impact dissipates over the course of the
trading horizon allows us to define P, — R; as the fundamental price of the risky asset, i.e.,

P/ .=P - R, (3.5)
We assume that the linear permanent price impact is represented by

B¢ (qtl + q?) ) (3.6)

where §; € [0, 1]. Here the additional factor that affects the fundamental price is assumed to affect
the fundamental price. The Markovian environment, denoted by Z;, directly influences the funda-
mental price of the risky asset. The distribution of Z; is assumed to have a Markovian dependence
as follows:

Zy = 0;

I I T o\2 (3.7)
Liyilz, ~ N (at+1 = b Zi, (0711) ) :

Note that af, b, and (atz) are deterministic functions of time t. We can rewrite the dynamics of
T; as follows:

Ty =0;

(3.8)
It-i—l = (a‘tI+1 - b%—+1:z’-t) + UtI+lwt+17 t= 07 s 7T - 17

where wy ~ N (0,1) forall t € {1,...,T }.

Remark 3.2 (Implication of Markovian environment). The interpretation of a Markovian environ-
ment is various and needs to be carefully mentioned. We can consider the price impact caused by
aggregate orders of small traders as the Markovian environment. [6] and [7], for instance, analyze
the effect of order flows on the optimal execution strategy under the existence of temporary and
permanent price impacts. [12], [13], and [33] also investigate the case that aggregate orders posed
by small traders follow a normal distribution and have a Markovian dependence in a transient price
impact as well as temporary and permanent price impacts. These studies show that, under this
setting, the small traders’ orders directly affect the optimal execution strategy for a single large
trader. Another example is the so—called order book imbalance. [38] defines a notion of micro—price
as an extension of mid—price or weighted mid—price and shows the importance of incorporating
order book imbalance into the formulation of market price dynamics. [27] investigates an optimal
execution strategy focusing on the effect of order book imbalance (or what they call a marketmi-
crostructure signal) and shows that the signal does influence the optimal execution strategy. From
these viewpoints, we can consider the Markovian environment as an extension of these models.

Remark 3.3 (Property of Markovian environment). Eq. (3.7) and (3.8) take the same form as the
aggregate orders posed by small traders in [13]. The classification in terms of various conditions for
atZH and th+1 are the same as and thus detailed in the paper.

Here we make the following assumptions.



Assumption 3.1 (Correlation between two stochastic processes Z; and ¢;). We assume that Z; and

e are correlated with correlation coefficient p¢ € (—1,1) for each time t € { 1,...,T }. So we have
2
(It—H) ~N ((%IH - b;?r+1It> ( (UtI+1) PI‘U;IHUEH)) ) (3.9)
€41 ) 1T; P 7 PLeUtIHva (U§+1>2

In addition, no other sequential dependencies between two stochastic sequences exist in the sequel.

By definition of ¢;, we define the dynamics of the fundamental price Ptf := P,— R; with Markovian
environment and the permanent price impact as follows:

Pt{rl =P/ + B\ (G +a@)+Ti+e
(= P41 — Rit1)
=Pt—Rt+5t/\t(qg+qg)+It+€t, tzl,,T (310)

Remark 3.4 (Implication of Eq. (3.10)). The above relationships indicate that the permanent price
impact caused by large traders and the public news or information about an economic situation is
assumed to affect the fundamental price. This assumption also reveals that the permanent price
impact may give a non—zero trend to the fundamental price. For a more detailed discussion, see

[32].
According to Eq. (3.3) and (3.10), the dynamics of market price are described as
Piy1 =P+ (Rij1— Re) + Bihe (¢ + @) + T + &

=P —(1—e )R+ (e P +B) N (¢t +a}) + T+ e, t=1,...,T. (3.11)
We here consider the following assumption in the rest of this paper.
Assumption 3.2. For oy € [0,1], B; € [0,1] and p € [0, 00), the relationships

ae P+ 6 <1 (3.12)

holds for all t € {1,...,T }.

The implication for Eq. (3.12) is that the friction of permanent and transient price impact at
time t € {1,...,T} is (strictly) less than the price impact caused by both large traders. This
assumption is plausible from the perspective of limit order book dynamics.

Remark 3.5. In this context,

Bidi (¢t +ai); ad(ar +a7); e Pah (¢ +47), (3.13)

represent the permanent impact, temporary impact, and transient impact at time t € {1,...,T },
respectively. Moreover, if p — oo, the residual effect of past price impact becomes zero for all
te{l,...,T} since Ry =0 and from Eq. (3.3)

1 pr— 1 _p 1 2 pr— pr—
ph_}rglo Ryt plirgloe [Rt + ayp Ay (qt + ¢ )] 0, t=1,...,T, (3.14)
and therefore,
_ 1 2 _
Pt+1_Pt+6t/\t<qt +Qt)+It+6t7 t_la"'>T7 (315)

that is, we have a permanent impact model (with an effect of the Markovian environment).

From the definition of the execution price, the wealth process for each large trader i € { 1,2 },
denoted by W} (€ R), evolves as follows:

Wi =W —Pgi=W; —{P+N(a} +d)} g, t=1,...,T. (3.16)



3.2 Formulation as a Markov game

In a discrete-time window t € { 1,...,7,T + 1 }, we define the state of the decision process at time
te{l,...,T,T+1} as 7-tuple and denote it as

&:<WﬁWﬁBlﬁ@i&JgOERXRXRXRXRXRXR:S. (3.17)
Fort € {1,...,T }, an allowable action chosen at state s; is an execution volume ¢! € R =: A’ so
that the set A" of admissible actions is independent of the current state s;.
When an action ¢; is chosen in a state s; at time ¢t € { 1,...,T }, a transition to a next state
—1 =2
St4+1 = (Wt1+17 Wt2+17pt+17 Qt+17 Qt+17Rt+1,It) €S (3-18)

occurs according to the law of motion which we have precisely described in the previous subsection.
We symbolically describe the transition by a (Borel measurable) system dynamics function hy (:

SXAXxAXx(RxR)— 9):
siy1 = hi(siqf, @7 (wie)), t=1,...,T. (3.19)
A utility payoff (or reward) arises only in a terminal state spy; at the end of horizon T + 1 as

- eXP{_'YiW%+1} if @ZT+1 = 0;

ol (3.20)
—00 if QT+1 # 0,

91 (sr41) =

where «* > 0 represents the risk aversion parameter of the large trader i € {1,2}. The term —00
means a hard constraint enforcing the large trader to execute all of the remaining volume @%T at
the maturity 7', that is, g% = @% The types of large traders could be defined by

(W Q%41 =1,2, (3.21)

and these are assumed to be their common knowledge.’
If we define a (history—independent) one—stage decision rule f; at timet € { 1,...,7 } by a Borel
measurable map from a state s; € S = R? to an action

g = fi(s;) € A=TR, (3.22)
then a Markov execution strategy w is defined as a sequence of one—stage decision rules
e (fl fl e ). (3.23)

We denote the set of all Markov execution strategies as ITy;. Further, for ¢t € {1,...,T }, we define
the sub—execution strategy after time ¢ of a Markov execution strategy = € Iy as

m = (ff, o 1), (3.24)

and the entire set of 7} as II{,.

5In a real market, large traders have little access to this information of the counterpart. We can, however, consider a
plausible explanation for the assumption of Eq. (3.21) from the viewpoint of a game—theoretic analysis. In this model,
our focus is placed on how the existence of the other large trader influences the execution strategy in comparison
with a single large trader’s (optimal) execution problem. We formulate this Markov game model as a dynamic game
of complete information. Therefore, the above (hypothesized) definition and assumption associated with the notion
of common knowledge are legitimate so that the solution concept of a Nash equilibrium in a non-cooperative game
is (rationally or ideally) applicable in this model. The formulation of a generalized model as a dynamic game of
incomplete information requires further intricate analysis, which is left for our future research.



By definition (3.20), the value function under a pair of execution strategies (7!, 72) becomes an

expected utility payoff arising from the terminal wealth W% 41 of the large trader ¢ € {1,2} with
the absolute risk aversion parameter v* € Ry, :

. 1.2 .
Vi, o] = B [gh (s1) 31
T — — . —i . .
=Ef[ e { =1 Win} g gy + (00 L pfsi] 629)
Then, for t € {1,..., 7,7 4+ 1} and s; € S, we further let
i 12 (mgmf) [ i
Vit xd) (1] = BV [ghya(srs)|s¢]
_ (wimf)[_ WALV _ ’ ]
=E, exp{ — 7' Wi} ]l{alﬂlzo} + (—o0) -1 QT+17'50} ¢ (3.26)
be the expected utility payoff at time ¢ under the strategy w. Note that the expression of the
1.2 1.2
conditional expectation, ]ngr ™) in (3.25) and E(ﬂt ) n (3.25), implies the dependence of the
probability laws on the strategy profiles, (7!, 72) and (7}, 7rt) respectively. Also, 14 stands for the
indicator function of an event A.

What we seek here is an equilibrium execution strategy for large traders. First, we consider the
definition of a Nash equilibrium in this model as follows.

Definition 3.1 (Nash Equilibrium). (7'*,72*) € II}; x [I3; is a Nash equilibrium starting from a
fixed initial state s if and only if
Vi (', 2*)[31] > Vi (m 1, ) [s1], vl € (3.27)
VR, 72 [s1] > VE(n'*.7?)[s1], Va? € I} (3.28)

We can define a refinement of the Nash equilibrium of this model as the notion of a Markov
perfect equilibrium:

Definition 3.2 (Markov Perfect Equilibrium). (r'*,72*) € 11}, x1I3; is a Markov perfect equilibrium
if and only if

v, (7rt*,7rt2*)[ t) > Vi (wf. 7)) [se], Vmf €lly,, Vsi€S, Vi=1,...T; (3.29)

VA mi ) [se]) = Vil (il mf) [se], VAP € IRy, Vsi €S, Vt=1,...,T. (3.30)

Based on the following One Stage [Step, Shot] Deviation Principle, we obtain an equilibrium

execution strategy at a Markov perfect equilibrium by backward induction procedure of dynamic
programming from time 7" to 1.

V;ﬁ (ﬂ-t ?Trt )[st] = sup E[%il(wkﬁlvﬁ?—il)[ht(stv (qtlvfzg*(st))a (Wt,€t>>:| ‘St]

qtleR
= B[V (mtta min) [Pas, (fF (s0), £ (50 s e0))] [ (3.31)
VRt ) (s = sup E[VA (rlta,witn) [l (2 (30, 6F), (s e0)] o]
— B[V (s, m2i) [RaCse, (£ (0), £ (50)), (ns )] 1] (3.32)

3.3 Equilibrium execution under a Markov perfect equilibrium

Theorem 3.1 (Equilibrium execution under a Markov perfect equilibrium). There exists a Markov
perfect equilibrium at which the following properties hold for each large trader i € { 1,2 }:



1. The execution volume at the Markov perfect equilibrium for the large trader i € { 1,2 } at time
te{1l,...,T}, denoted as ¢;*, becomes an affine function of the Markovian environment at

time t — 1, Z;_1, the remaining execution volume of each large trader, @; and @i (i #34,i,j €
{1,2}), and the cumulative residual effect, Ry, that is,

@* =dl + Q. + Q) + diR + €T, 1, t=1,...,T. (3.33)

The dynamics of ai,bi,ci, di el fort € {1,...,T,T + 1} are deterministic functions of time ¢
which are dependent on the problem parameters and can be computed backwardly in time ¢
from maturity 7.

2. The value function Vi (n!, n?)[s;] at timet € { 1,...,T,T + 1} for each large trader i € { 1,2 }
is represented as a functional form as follows:

i —1 =2
Vi (77151777152) [thu Wt27Pt7 QththtaIt—l]
_ i TAL 1i (702 2i At 1iA
=—expy — VWi =P, Q+G;" Q) +GQy+ H ' QR
+ HERY + HP Ry + 1'Q,Q + QIR + 17 (@) + 110
FIHQIT, + JERT o + JIQIT,y + JET2 | JYT, o+ Z;} } (3.34)

where G}, G HY, HZ' HP' IV 120 13 1} JR g2 g3t gy gt Zifort € {1,..., T, T +1}
are deterministic functions of time ¢ which are dependent on the problem parameters and can
be computed backwardly in time ¢ from maturity T

Proof. See Appendix A (|

As the above theorem shows, the equilibrium execution volume ¢i* at the Markov perfect equi-
librium for ¢ € {1,...,7 } depends on the state s; = (W},Wf,Pt,@i,@f,Rt,L,l) € S of the
decision process through the Markovian environment at the previous time, Z;_1, in addition to the
remaining execution volume of each large trader, @, for i € { 1,2}, and the cumulative residual
effect, Ry, and not through the wealth of each large trader, Wti for i € { 1,2}, or market price P;.
Furthermore, by the definition of the Markovian environment, the equilibrium execution volume q,f*
fort € {1,...,T } includes a nondeterministic term through Z;_;.

Corollary 3.1 (Deterministicness of the equilibrium execution strategy). If the Markovian en-
vironment for ¢ € {1,...,T } are deterministic, the equilibrium execution volumes ¢;* at time
te{1,...,T} for each large trader also become deterministic functions of time.

Remark 3.6 (In the case without transient price impact). If we consider only temporary and
permanent price impact, the optimal execution volume for the large trader at time t € {1,...,7T}
becomes

gi = af + bQ; + Q] + diZ; . (3.35)

In this case, the Markovian environment affects the optimal execution volume of the large trader.
However, if we further assume that Z; is an independent random sequence and follows a normal
distribution as follows:

7y ~ Nr (M%? UtI) ) (336)
then the equilibrium execution volume of each large trader at time ¢ € {1,...,T } takes the form
as follows:

6" = aj + bjQ; + ¢/ Q1, (3.37)

meaning that the Markovian environment does not affect the equilibrium execution strategy, even
if we incorporate the effect of the environment on the fundamental or market price.
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4 Conclusion

This paper examines an execution game under a transient price impact with a Markovian envi-
ronment. We then derive an equilibrium execution strategy and its associated value function at a
Markov perfect equilibrium and show that the Markovian environment directly affects the execution
strategy.

One direction of future research is to consider an endogenous model for optimal or equilibrium
execution problems. The submission of large orders by large traders may affect the subsequent orders
posed by small traders in a real market. Thus incorporating the orders submitted by large traders
into the modeling of aggregate orders posed by small traders endogenously deserve consideration.
This model may enable us to investigate the interaction between large traders and small traders in
detail.
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Appendix

We here use the notation R™ to denote the set of all n—dimensional real-valued vectors and M, (R)
to denote the set of all n x n real-valued square matrices. For an n x m real-valued matrix
(or vector) A, we denote by AT the transpose of the matrix (or vector). Moreover, if a random
variable X follows an n—dimensional normal distribution with mean px € R™ and covariance matrix
Yx € M, (R), we denote it by X ~ Ngn (px,Xx).

A Distribution of sum of normally distributed random variables
with correlation

Here we show, as a lemma, that any finite sum of normally distributed random variables with
correlation also follows a normal distribution. Although the statement is straightforward, we note
the result below for this paper to be self-contained.

Lemma A.1 (Distribution of sum of normally distributed random variables with correlation).
Define, for a set of random variables X1, Xo, ..., Xy, E[X;] := p’ and Cov [X;, X;] := o%. If an R"~
valued random variable X := (X1, X»,..., X,,) follows a normal distribution with mean px € R"
and variance X x € M,(R), i.e.,

X ~ Np» (x,Ex), (A.1)
where
1 011 012 - Oln
2 021 022 -+ O2p
PR L N e YRS (4.2)
n, Onn Onn " Onn

then the following (one—dimensional) sum of the random variables each of which is multiplied by
constants:

CTX =0 X1+ X+ -+ Xy, (A?))

n
where ¢ := (c1,...,¢,)" € R”, also follows a normal distribution with mean Zciﬂi € R and

=1
n

variance E cicjoiy; € Ryy == (0,00).
ij=1

Proof. The characteristic function for the random variable X, denoted by ¢(c), is given by
1
o(c):=E [exp {icTX}] = exp {ich,X - §CT2_}(C} , (A.4)
where i is the imaginary number that satisfies i = —1. The characteristic function of a random

variable uniquely determines its probabilistic law or distribution. Thus, Eq. (A.4) shows that the
n

n
random variable g ¢iX; follows a normal distribution with mean ¢'px = E c;u' and variance
i=1 i=1

n
CTEXc: E CiCj0ij. O
2,j=1

Remark A.1 (Definition as a multivariate normal distribution). Some books state the result above
as the definition for a random variable to follow a normal distribution (for example, [39]).
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B Proof of Theorem 3.1

We derive an equilibrium execution volume q,f* at the Markov perfect equilibrium for each large
trader i € { 1,2 } and time ¢t € { 1,...,T } by backward induction method of dynamic programming
from time ¢t = T via the following steps.

Step 1 From the assumption that each large trader must unwind all the remainder of his/her
position at time ¢t = T, we have

@if+1 = @;“ - ql;,q =0, (B.1)

for i € {1,2}. Thus, ¢& = @lT holds. Then, for t = T, the value function for each large trader
ije{12} (i#j)s:

Vit 71)[s7] = sup E|Vrsi (17, 77 ) [s741] ‘ST}
gr€ER -
I it 1 12 oL 02
= sup E —exp{—’y WT+1} ’WT7WT7PT7QT7QT7RT7:ZT—1}
greR -
] o . 1T —1 =2
= sup E| —exp {—’Yl [WC?“ - [PT + Ar (Q%F + q%“)] q%’"] } ‘W%’ W%’ Pr,Qr, Qr, RT’IT_l]
greR -

— —exp {215 — PFQr — 3 () - MrA] |

o — SN2 i
= —oxp {4/ W~ PIQs + GF (@) + 4@ | (B2)
where
GY = —\p(< 0); (B.3)
Ji = —Ar(<0). (B.4)

Step 2 For t =T — 1, the value functions, Vf_l(ﬂ%il, 71'%*_1) [ST_1:| for each large trader
i€ {1,2}, satisfy the following functional equations:

Vli“—l(ﬁil“*—lv ﬂ'%*—l) [ST—I]

= sup_E[Vi (e, ) [or]for]

gr-1€R

_ iy TA 1i (At \2 1iAt AJ

= sup E[ — exp { - [WT = PrQr+ Gr(Qp)” + Jr QTQT] HST—J
gr_1€ER

= sup — exp{ - 'yi [ (_)\T—l + )\T_laT_l + G%i‘) (q%_1)2 + [(—AT_laT_l — 2G¥)@;~_1
qp_,€R

+ (=IMQr 1+ {~(1 = e )} Rr_1 + (“Ar—1 + Ar—1a” 7+ TG Jdh

+ Wiy = PraQp oy + GE@r1)* + (1 — e ) Qr_ Rr—1 + JH . Qr Q4

+ (=Ap_a’ - J%i)@ér—ﬂ]?r_l} }

X E[exp {Vi(@é—l — gr_1)(Tr1 + 6T—1)HST—1], (B.5)

T=1 .= ap_1e™” + fBr_1. As for the expectation term in Eq. (B.5), we have

E|exp {7'(@r 1 — g ) (@11 + er1) f |71

L ) 1 )
= exp {’}/l(Q;“—l - q%“—l)(a%—l - b%"—lz-T—Q) + §(Q§“—1 - %—1)22%51} ) (B.6)

where o
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where
E%; = V[IT—l + 6T—1‘3T—1] = (07_1)? + (05_1)* + 2p" 0% 1004, (B.7)

according to the lemma shown in Appendix A. Thus, substituting Eq. (B.6) into Eq. (B.5) and
rearranging results in

V:Ii"—l (7[-%"*—1? 77’%*—1) [ST—l]

= sup —exp { -7 [ — A (qp_1)* + By 1Qr_1 + Cr_\Qp_y + D\ Rp—y + Fp Ip_o+ My,
qp_1€R

i J i i At 14 1 e o\ 2 Z \pA
+ Ni @)@+ Wiy — PraQp_y + | Gf_y — 37 X7 (QT—l) + (—ap_1)Q7_4

+(1—e )R 1Qp_y + I Qr_1 Q1 + b7_1Qr_1Ti 2 + (—Ap—10” ' = Jf) @%_ﬂ%—l] }’

(B.8)

with the following relations:

AT1—>\T 1— A 10& G —|— ’}/ET 1(>0>

BT—l = —)\T_lozT - QG%} + "Ziil;

CﬂT_—1 = :}Z;

Dip_y = —(1—e7"); (B.9)

F:ZF‘—1 = —b%—h

Mp_y = a:IF—1§

Ni = =Ap_q + Aol 4 JH
Note that, for all z, B,C € R and all 7, A € Ry := (0,00), two functions ¢1(z) := —exp{—~yx} and
ca(z) := —Ax? + Bx + C are strictly concave function, and therefore so is the composite function

of the two, K(z) := ¢ o co(x) = —exp { — y(—Az? + Bz + C)}. Thus, we obtain the execution
volume attaining the supremum of Eq. (B.8) by completing the square of the following function:

Kr_1(qr—1) = =A% (¢p_1)* + [Br 1Qr 1+ C5 Q1 + D\ Rr—y + Fp_ Ir—o + Mj_,
i g i i i 1i 1 ioZe \ (Ai )2 I \Al
+ Np @) dr 1 + Wiy — PraQr 1+ | Gf_y — 57 Xy (QT—I) + (—a7_1)Qr_1

+ (1= e ") Rr 1 Qg + JFQr Q1 + V71 Qr 1 Lo+ (—Ar—1a” ™ = JF) Qr_ydh .
(B.10)

Then, the best response of large trader ¢ € { 1,2 } to the other large trader, denoted by BRi(q%_l),
becomes

1

BR(¢y_) = ST (BiT_1@1T—1 + O\ Qp_y + Dy Ry + Fo_\Tr—o + Mi_; + N%—1Q%_1) .
71

(B.11)

Thus, at the Markov perfect equilibrium, we have

. 1 . . . . . . .
qr_y = AL (Bé“—lQif—l +Ch \Qp_y+ Dy Ry + Fp \Tp_o+ My + N:lr—lqgr*_1>§
T—1

J*

qu

1 i S . . . —
= 2Aj (B]T—1Qgr—1 + C%—lQlT—l + Dy Ry + Fp_Iro + My, + Nijf—l‘ﬁf—l)'
T—1

(B.12)
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Solving the above simultaneous equations results in

¢f 1 :=BF Qp +CF¥ \Qp 1+ D \Rr_y + Fff \Ir_s + Mf |

(= @y + V1 Qg+ Qg + dpRroa + ¢y Iro), (B.13)
where
. ~ Ni_,Ni_ y 1 . NR_ O
C’;"—l — 2A1T—1 _ #7 B’,lT'—l = —_— B’,lr—l =+ le ;
247, _ Croq 247 4 )
. 1 , Ni B . 1 , Ni_.DJ.
Cit = —— [ Ci + % . Dy = — Dho+ % ;. (B.14)
CT—I IQAT—l CT_l 2AT 1
. 1 . Nt FJ . 1 . Ni_ MY
Fp = — | Fpo +—2 2 My o= (M +
7 J 7 J
CT_l 214T—1 CT—l AT 1

for each i € {1,2}. q%w*_l and q%"‘_l are equilibrium execution volumes at the Markov perfect
equilibrium for time 7' — 1. Then the value function for large trader ¢ € { 1,2} at the Markov
Perfect equilibrium (7'*, 72*) € 11}, x 112, becomes

Vf“—l(”%“*—h 77%*—1) [ST—l]

i i —1 i 1 iZ —1 2 —1
= —exp { - [WT—I —Pr1Qp_1 + <G%r—1 - 37 ET)51> (QT—I) +(—af_y — pp_1)Qp_y

2
+(1- ef’))RT—1@lT_1 + Jli@qu@gr_l + b%_@%_lft_g + (=Ar— ot - J)Q QT 1q
1 *
T-1

= —exp { — [W%‘A — Pr1Qp +GY (Qp 1)*+GF \Qp 1+ Hi' \Qp Ry
#OR; L+ HY \Rpy+J7 1QT 1QT 1+J 1QT \Rr—1 + J¢ 1(QT D2+ I Qr
+ LY Qi Tr—a + L¥ \Rr\Tr o+ LY Qi Tr—2 + LE (T3 | + L} \Tr s+ Zﬁul} }a (B.15)

where
Bf*, = Bp_; + Np_ ICT i OFy = Chy + Np_ 13%* 1
Di*y =Dy + Np_ DY Ff* o= Fqy + Ny FiE s (B.16)
M’}:k*l _MT 1+NT lMT 1 Z)] _1727 Z#]a
and
. ixx 2
Gli L G _1 ’LZ A T—-1 71 Cj* ( '_lT‘—l) .
7—1 = G7 7o+ (FAroia JP)Cr
4A%
. . Bl** Ml**
GE | = b+ (AT — g Mg T
2Af‘T_1
Hi' = (1—e?)+ (=Apa? = JhDJ | + #;
2A%
) (D’L** ) ) D%filM’F(_*l ) ) B%:k*lcz**
HE =11 g¥ =11 T3 gl =7+ (=) —JP)By L+ ————
T-1* 4A%1 T-1 2A1 T—1 = 9T ( Tla )T_l 2AL_,
QAZT_l 4A§“_1 ) ) 2A§“—1 . .
) ) Bixx ek ) Dixx ik
LY .= L Aol gy g M; L% .= w;
o T*i i <>x<>(< o i ’>**T_21 i QA%T_l 3k 5k T'**l QA%T_l ixk 2
L3i C FT—l, L4i — (FTfl) . L5i — FT—lMT—l, Zi — (Mr—l) ]
T-1 2A%’*_1 ) T-1 4A1T_1 ) T-1 QA%T'_l ) T-1 4A%“_1
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Step 3Fort+1e€{T—1,...,2}, we can assume from the above results that, at time ¢ + 1, the
optimal value function has the following functional form:

Vt+1 (7rt+1v 7rt+1) [St+1]
= —exp { - |:Wti+1 - Pt+1@zis+1 + Gy (@;-1)2 + G%L@iﬂ + Htl—oi—lai—o—lRt+l
HPLG R+ HPL Ry + Jt+1Qt+1Qt+1 +J7 th+1Qt+1 +J (Qt+1) + Jtﬁl©§+l
+ Lt+1Qt+1It + L R T + Lt+1Qt+1It + Ly TP+ LT + Z§+1} } (B.17)
Then, at time t,
Vi (i, i) [s4]

= sup E [‘4@1@3’217 mii1) [se41] ‘St]
HSIS

= sup —exp{ —7'[ = {(1 = a")\ = G}y + ke PHYL + afXEe B L} ()
HSIS

+[(—afr =261, + atAte—PH}jl)@;‘; F{-(1—eP)—ePHN + zatxte—%HEjl}Rt
(=T ade PTG+ { — (1 — o)\ — aghe PHM + 20202 2 HE  + J1,
— e Jt—i—l}qt ( Gt+1 +aghe” t+1)]Qt
i+ Wt PQ; + Gm(Qt) t+1Qt +{(1— e ™) + e PHI JQ Ry + e P HA R} + e PHL, R,
QtQt +e PP RtQt +J (Qt) t+1Qt + 2
( PNfe PHEL, — at/\te_thH + I (@)? + [(— afh + e HYL — J1)Q;
+ (20phe PHE | — e P JE )R, + (ozt)\te_pjﬁ_l — 273 )@ + (e PHP | — Jﬁl)]qg]}
X E[GXP{ — [Lﬁlzg +[(1= Ly + ashe "L )gp + (1 + Lt+1>Q1; +e PLYL Ry + Lt—i—ng
+ LY + (g he PLY — Lt+1)Qt] (Qt qg)EtHSt], (B.18)

where of := aye™ + ;. Here we have the following result, which is a two-dimensional version of
Lemma A.1 in [33]. We show the result here for this paper to be self-contained, although this result
is not so difficult.

Lemma B.1. Suppose

X
(Y) ~ N (E). (B.19)
where
2
W= <“X) eER?, ¥ .= < Ox pxy(gXUY) e My(R), (B.20)
Hy PXYOXOY oy

and p € (—1,1) is the correlation coefficient between X and Y. Then, for any a, b, c € R, we have

=]

1 * wy—1, % 1 —
]E[exp {aX2+bX+cY}] = mexp{E(u )H(E) —EuTE 1u}, (B.21)
where
5. (00 TR2) Ly oyl (U200 00) e s (B.22)
021 022 o 032)’ ’

provided that ¥* is positive definite (that is, £* is invertible).
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Proof. Define b := (ZC)) € R? and denote the inverse of ¥ as 71 =: <q\,11

E[exp{aXQerXJrcYH
_ T(a O T
—'/Rzexp{:n (O O):chb w}—2772|
57 oo {6 0) e
27r|2|2

o11
0'22

1 + (o1
2” <U21

¢
0

%). Then,

021 022

e {-gle-w = e - o
1

T ({011 011
£ —~ —~ xr
2 021 0922

o)z

(B.23)

o1 on
W (01 )
021 022

(B.24)

O

1 27 o11 —2a UNH) Te-1, T I Tw1
N + ¥+ ——p X d
27T|2| / exp{ < o om)” [M y ]m o ,u} v
27T|(2*) 1|2 / 1 *\—1 T ox -1, %
= expq — = (¢ — (") p") X (x— () p") pdx
27|32 27r|(2*)— |2 Jre { 2( ) = )}
=1
1 Ts*x\—1,,% 1 Ts—1
<exp {5 ()T (=)W - SuTE
Note that dx := dxi1dws.
— N\ -1
Define (7711 7T12> = <011~_ 2a (12) = (£*)~!. Then, Rearranging Eq. (B.24) results in
21 22 021 022

=
%]

5

]E[exp {aX2 +bX+cY}] =

where

lua — “72712 (2*>—1

2

IRTTENTAD SaRyTE

b o~ o~ o~ o~
p’ = (onm + o1amar) px + (021711 + 022721) py

s =

(Note that (£*)~1 is symmetric.) Define

0;
o
S
Then, letting
a = (- i)Lﬁﬁ
b o=

o o (@),

and rearranging Eq. (B.18) results in
Vi (my* i )[st]

= ;Lé%—exp{ - { Aj(qh)’ +

+ Wi — PQr_4

(o11712 + 012m22) px + (021712 + 022m22) piy -

=1- L%il + at)\te_pL?il;
= aghe LY — L.

—A (F)tqt +80Qy + e PLE Ry + L, Q) + LY, + céf;q{) ;

+ [BiQ; + CiQ] + DR + FT,—1 + M + Niql]q

19

- [mle + Toac? + 2m19be + 2u%b + 2pfc + u“} } ,

{ 1
exp

(B.25)

(B.26)

(B.27)
(B.28)

(B.29)

(B.30)

(B.31)



{it, - Jottint = Joia? 12 b @iy
{G%il l5tLt+17Tt + v 7T,512Lt+1 + (Utllﬂtll + 0,5127%21) atZ5§ - (01511771512 + 015127T1522> atI}@iv
(L= ) P, — yi6je L a1 e P2 ) LR,

{e_QpHﬁl - %’Yze_% (Lt+1) tll} R}
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L e
where zj := ~—log =—————, and
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Xi = afNe PHY — aphe P IR + TP — (‘/’t) LOaE
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Then, the best response of large trader i € { 1,2 } to the other large trader aat time ¢, denoted by
BR'(q]), becomes

BR%( ) 2A1 <BtQt +CtQt +Dth + FtIt 1 +Mt +tht) (B.35)

Thus, at the Markov perfect equilibrium, we have

. 1
ii° = g7 (BIQL+ €1 + DI+ FiTios + M + Nl ):
1! (B.36)
g* = 2 (BJQt +CIQ, + DIR + F/T, y + M} + Nig )
Solving the above simultaneous equations results in
¢ == B*Q, + C*Q| + D;*Ry + F/*Ty_1 + M}*
(=: af + bjQ; + GQ + dy Ry + €[T; 1), (B.37)
where
. N/N]
=24; - L1,
2A] _ _
t a t 247 ; t a t 2A] ; 9
i t J ) t i t J )
G 2A7 Gt 2A]
y N
Gt 24]

foreachi € { 1,2 }. ¢/* and ¢?* are equilibrium execution volumes at the Markov perfect equilibrium
for time ¢. Then the value function for large trader i € { 1,2} at the Markov Perfect equilibrium
(m1*,72*) € T}, x 113, becomes

V;f(ﬂ-t 77Tt )[WtawtaptaQtaQtaRtaIt 1]
= —exp { — [WZ — Pt@j& + G%i <@i> + G%i@i + Htli@th
FHRE YRy + TNQIQL + SR+ I (@) 4

L%i@izt—l + L¥RTy 1 + L?i@iftq + LPT? |+ LY7o + th} }, (B.39)
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C In the case with target close orders

In this subsection, we consider an execution model with a closing price. The time framework
te{l,...,T,T+1} is the same in the model mentioned above. However, we add an assumption

that a large trader can execute his/her remaining execution volume at time 7'+ 1 , @3[ 11, with
closing price Pryi. We further assume that the trading at time T 4 1 impose the large trader to
pay the additive cost x7+1 € R per unit of the remaining volume. As stated in the last section, we
have the following theorem.

Theorem C.1 (Equilibrium Execution Strategy and the Value Function in the Case with Target
Close Orders). There exists a Markov perfect equilibrium at which the following properties hold
for each large trader i € { 1,2 }:

1. The execution volume at the Markov perfect equilibrium for the large trader i € { 1,2 } at time
te{l,...,T}, denoted as q{ﬁ*,, becomes an affine function of the Markovian environment at

time t — 1, Z;_1, the remaining execution volume of each large trader, @; and @i (i #j,i,7 €
{1,2}), and the cumulative residual effect, R;, that is,

qz*’ = a* +0Q, 4 Q] + dF Ry + €Ty, t=1,...,T. (C.1)

2. The value function V;'(7!, 7%)[s;] at time ¢ € {1,...,T,T + 1 } for each large trader i € { 1,2 }
is represented as a functional form as follows:

i —=1 =2
V;f (7T17 7T2) [thv Wt27 Pt, Qt ) Qt ) Rtazt—l]
i TA lix 7 2 (712 lix 7y 2ix 2 3ix
= —GXP{ —’Y[Wt - P Q+GQ+ G (Qt) + H;" QR + H" Ry + H;" Ry
s . N2 _
+ UQQ!+ QIR+ I (Q) + 10
F I QITy + TP RTy + Ty + JTE |+ T+ Z;'*] } (C.2)

where G%Z* GtQ’L* Htlz* Hth* ng* Itli* ItQ*i I?Z* I;Li* Jtli* Jth* ‘]EZ* !];11* Ei* Z;* fort € { 1..
are deterministic functions of time ¢ which are dependent on the problem parameters, and
can be computed backwardly in time ¢ from maturity 7.

Proof. Omitted. 0
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