Tangent spaces and a metric on geodesic spaces
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Abstract
In this work, we introduce a notion of tangent spaces to geodesic spaces with
curvature bounded above. We first consider functions like inner products and
angles with the functions. Further, we consider relations between newly proposed
angle and the Alexandrov angle. We finally define the tangent space and a metirc
on geodesic spaces.

1 Introduction

In Hilbert spaces, a monotone operator and its zero points play an important role for
convex optimisations. Rockafellar [8] showed a weak convergence theorem with the
proximal point algorithm for a maximal monotone operator. Since the subdifferential
of a proper lower semicontinuous convex function is a maximal monotone operator and
the set of zero points of the operator coincides with the minimisers of the function, we
can apply the zero points approximation theorem to finding minimisers of the function.

On the other hand, Berg and Nikolaev [2] proposed the concept called quasilinear-
isation. It satisfies some properties like inner products in Hilbert spaces. After that,
Khatibzadeh and Ranjbar [6] introduced a notion of maximal monotone operators to
Hadamard spaces, and investigated some properties using dual spaces proposed by Ah-
madi Kakavandi and Amini [1]. The dual space in the sense of [1] is known to generalise
the usual dual spaces when the considered space is a linear space. However, it is not
known what relations there are between the dual space of a Hadamard manifold and
the Riemannian tangent space.

In 2021, Chaipunya, Kohsaka and Kumam [4] introduced a notion of the tangent



space to Hadamard spaces. Tangent spaces on a given Hadamard space were introduced
carlier in [3]. In [4], for the technical convenience, they make a slight modification on
the definition of tangent spaces.

In this paper, we adopt the similar methods of [4] and consider the tangent spaces of
a CAT(k) space. We first propose a function like inner products and a notion of angles.
Further, we consider relations between newly proposed angle and the Alexandrov angle.
After that, we define the tangent spaces and a metric on CAT (k) spaces. In discussions
about the tangent spaces, we mention the relation between the Euclidean cones in the
sense of [3] and the tangent space proposed in this article.

2 Preliminaries

Let (X,d) be a metric space and let D € ]0,00]. For z,y € X, we call an isomet-
ric mapping 7, from [0,d(z,y)] into X a geodesic from z to y if 7,,(0) = x and
Yey(d(z,y)) = y. X is said to be uniquely D-geodesic if for each z,y € X with
d(z,y) < D, there is a unique geodesic. In a uniquely D-geodesic space, for z,y € X
with d(z,y) < D, 72y([0,d(x,y)]) C X is called a geodesic segment joining z and y,
and we denote it by [z,y]. We denote a geodesic triangle with vertices z,y,z € X by
ANz, y,2) =y, z) U [z, 2] U [z, z].

To define a CAT(k) space, we use the following notation called a model space. Let
n € N. For k = 0, the n-dimensional model space M = M[' is the n-dimensional
Euclidean space E". For k > 0, M is the n-dimensional sphere (1//k)S"™ whose
metric is a length of a minimal great arc joining each two points. For x < 0, M} is
the n-dimensional hyperbolic space (1 / \/—_H) H™ with the metric defined by a usual
hyperbolic distance. The diameter of M," is denoted by D,, and is defined by D, = oo
if Kk <0and D, =7/y/k if kK > 0. M is a complete uniquely D,-geodesic space for
each k € R.

Let k € R. For a geodesic triangle A(x,y, z) satisfying that d(y, z) + d(z,z) +
d(z,y) < 2D, in a uniquely D,-geodesic space X, there are points Z,7,z € M2 such
that d(y,2) = du2(Y,%), d(z,z) = dp2(Z,7) and d(z,y) = dp2(7,y). We call the
triangle having vertices 7,7,z € M? a comparison triangle of A(z,y, z). Notice that it
is unique up to an isometry of M?2. For a specific choice of comparison triangles, we
denote it by A(Z,7,Z). A point p € [T, 7] is called a comparison point for p € [x,y] if

Let x € R and X a uniquely D,-geodesic space. If for any x,y, z € X with d(y, z) +
d(z,z) + d(x,y) < 2D,, for any p,q € A(zx,y, z), and for the comparison points p,q €
N (T, 7, z) of M2, the CAT(k) inequality

holds, then we call X a CAT(k) space. For any n € N and « € R, the n-dimensional
model space M is a CAT (k) space.

Let X be a CAT(k) space for k € R such that d(v,w) + d(w,u) + d(u,v) < 2D,
for all u,v,w € X. Note that then d(z,y) < D, for all z,y € X. For xz,y € X and
t € [0,1], we denote gy ((1 —t)d(x,y)) by tz & (1 —t)y. Note that tx ¢ (1 —t)y tends to
yast\, 0. A subset C of X is said to be convex if tx © (1 —t)y € C for each x,y € C
and t € [0,1]. A nonempty convex subset of X is also CAT(k) space.
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We define a function ¢, from R into [0, co[ by

(L (- cos(VRa) (x> 0)
c,{(a):%az—k;%: %a2 (5 = 0):
K—LKJ (Cosh( —na) — 1) (k< 0)

for a € R. Then, we know
(sin (vka) '
NG (k> 0); cos (v/ka) (k> 0);
d.(a)=<{a (k=0); and l(a)=<S1 (k= 0);
sinh ( —/m)
( V—K

for a € R. We know the following properties of ¢, ¢.. and ¢/!:

cosh (V—rka) (k< 0)

(k < 0)

Cx, Ch. and ¢! is continuous;

¢x: [0, Dy — [0,00] is strictly increasing;

¢(0) = ¢l (0) =0 and ¢//(0) = 1;

cl(—a) = —c (a) and ¢/(—a) = ¢, (a) for all a € R.

K

Moreover, for a,b € R, we get the following equations:

1= c(a) + ke (a);

1 =ci(a)? + ke (@)
cr(a+b) = ci(a)e(b) + c(b)ci(a);
cila+b) = cf(a)c(b

Note that it holds from I'Hospital’s rule that

/
t
lim clt) _ lim ¢/ (t) = 1.
t—0 ¢ t—0

For more details about the function ¢, see [5].
For a metric space (X,d), we define a function ¢, from X? into R by

¢H(x> y) - Cn(d(lﬂ, y))
for each x,y € X. We get the following properties of ¢,:

o ¢.(x,y) >0 forall z,y € X;
e ¢.(x,y) = 0if and only if x = y, where d(z,y) < 2D,;
® Ou(,y) = ¢u(y,x) for all z,y € X.

For more details about ¢,, refer to [7].



3 Angles

In this section, we consider angles on CAT (k) spaces. We first introduce a function like
inner products to metric spaces.

Let k € R and X a metric space such that d(u,v) < D, for all u,v € X. For
x,y,u,v € X, we define a product by

(roy,ucw), = ci(d@,y)dn(,v) + ¢u(y, u) — ci(d(x,y))dn(z,u) — Py, v).
If kK = 0, then this product is quasilinearisation in the sense of [2].

Lemma 3.1. Let k € R and X a metric space such that d(u,v) < D,; for all u,v € X.
Then, the following hold:

(i) (xeoy,ucv), =—-(royveu), foreuchu,v,z,yc X;
(ii) (roz,ucv), =0 for each u,z,y € X;

(ili) (roy,ucu), —Ofor each u,v,x € X;

(iv) (zoy. 20y, = c(dz.y))® for allz,y € X;

(v) (poz,poy), (p@y,p@x)nforallp,x,yeX.

Proof. Let u,v,xz,y € X and set d = d(z,y). Then, we easily get (i), (ii) and (iii). We
show (iv). We know

(roy,z0y), = l(d)dn(z,y) + ¢u(y, z) — ¢ (d)du(@, ) — Dy, y)
= (¢i(d) +1) gr(z,y).
If Kk =0, then

(woyzoy), = () +1) golz,y) = d(z,y)* = c(d(z,y))*.
Suppose k # 0. Then, we have

" 1

(@oy,20y), = (cid) +1) ez, y) = — (ci(d) + 1) (1 — ci(d) = — (1 - cli(d)?).

x|

Since ¢ (d)? + kcl.(d)* = 1, we obtain

(@oy,z0y), =c(dzy))

We finally show (v). Let p,z,y € X. Then,
(pox,pOy), = ci(dp, ) bn(p,y) + ¢u(x,p) — du(z,
¢x(pry) — (1= c(d(p, 7)) ds (P y) +
z) +
Pr (Y,

( x)
R(p’ ) (1 - CH( ( ))) qsfi(pv
= c(d(p,y))du(p, z) + by, p) —

This is the desired result and it completes the proof. O



Let n € Nand (M, dpsr ) the n-dimensional model space for x # 0. For p,z,y € M,
the angle £%(z,y) of x and y at p is defined by

45 (x,y) = arccos (C:‘/(dM? (p,2))ci(dup (p,y) — ¢l (dap (93,?/)))

ker (dap (p, @) er (dary (p,y)

if p# xand p #y; £5(p,y) = £5(x,p) = 7/2; £5(p,p) = 0. We also define A{g(a;,y)
for p,x,y € E™ by the usual angle on the Euclidian space. For more details, refer to
“The Law of Cosines in M, 2.13” in [3, Chapter 1.2].

Let X be a CAT(k) space for k € R and p,z,y € X with d(z,y) +d(y,p) +d(p,z) <
2D,,. We define the k-angle /% (x,y) of  and y at p by

L, y) = £5(T,9),

where A(p,T,7) C M2 is the comparison triangle of A(p,x,y) and 4% is the angle at
p with respect to M?2.
Now, we can prove the following:

Theorem 3.2. Let X be a CAT(k) space for k € R such that d(v,w) + d(w,u) +
d(u,v) < 2Dy for all u,v,w € X. Then,

(pozpoy),
c.(d(p,x))c) (d(p,y))

for all p,z,y € X with p # x and p # y, where Z5(x,y) is the k-angle of x and y at p.

= cos £y (z,y)

Proof. Let p,x,y € X with p # x and p # y. Then, we can take their comparison tri-
angle A(p, Z,7) of the two-dimensional model space M. Note that d(z,y) = dp2(Z,7),
d(y,p) = dpnz(Y,p) and d(p,x) = dps2(p,T). We first suppose that x = 0. From the
law of cosines with respect to E2, we have

dr2(P, )% + d2 (P, 7)? — dp2 (7, 7)?
2dE2 (ﬁ? E)dﬂy (]_?7 g)
_dp,2)* +d(p,y)* —d(z,y)* _ (pOT,pOY),

2d(p, z)d(p, y) — d(p,x)d(p,y)

We next assume that x # 0. Then, from the definition of angles on M2,

0 0(= =
cos Z,(x,y) = cos £5(T,7) =

cn(da2 (7, 7)) — il (da2 (B, T)) e (dar2 (B, 7))
kcy (darz (P, T))c, (darz (P, )
_ celd(z,y)) — ci(d(p, )i (d(p, y))
Ky (d(p, z))er (d(p, y))
(pox,poy),
c,.(d(p,x))e) (d(p,y))

This is the desired result. O

cos £ (w,y) = cos £5(T,7) =




Let X be a CAT(k) space for k € R such that d(v,w) + d(w, u) + d(u,v) < 2D, for
all u,v,w € X, and let p,x,y € X. From Theorem 3.2, we can redefine the k-angle as
follows:

" pezpoy),
Z5(z,y) = arccos (

¢ (d(p, z))c (d(p,y))
if p#z and p # y; £5(p,y) = £5(x,p) = 7/2; Z5(p,p) = 0. Moreover, we define the
Alexandrov angle A,(x,y) of x and y at p by

Ap(w,y) = lim 25 (Ype (1), Yoy (1)) € [0, 7]

Here, v,, and ,, are geodesics from p to x and y, respectively. Note that A,(p,y) =
Ap(z,p) =7/2 and Apy(p,p) = 0. From the definition, we get A,(z,y) = Ap(y,z) and
Ap(z,z) = 0. Further, the Alexandrov angle has the following property:

Ap(xaz> S Ap(x7y) + Ap(y> Z)

for any p,x,y, 2z € X. For more details about the Alexandrov angles, for instance, refer
to [3, Proposition 1.14 in Chapter 1.1 and Proposition 3.1 in Chapter 11.3].

Theorem 3.3 (Bridson-Haefliger [3, Proposition 2.9 in Chapter 1.2]). Let X be a
nonempty convex subset such that dyrn (v, w) + dprn (w,u) + dare (u,v) < 2D, for all
u,v,w € X of the n-dimensional model space M forn € N and k € R. Then,

Ap(z,y) = £5(2,y)
Jor each p,x,y € X, where £3 is the angle at p with respect to M, .

Theorem 3.4 (Bridson-Haefliger [3, Proposition 1.7 in Chapter II.1]). Let X be a
CAT(k) space for k € R such that d(v,w)+d(w,u) +d(u,v) < 2D,; for all u,v,w € X.
Then,

Ap(z,y) < K%(E, )
for each p,x,y € X and its comparison triangle A(p,T,y) C M?2, where A3 1is the angle
at p with respect to M?2.
As a direct consequence of this theorem, we obtain the following lemma:

Lemma 3.5. Let X be a CAT (k) space for k € R such that d(v,w)+d(w,u)+d(u,v) <
2D, for all u,v,w € X. Then,

for each p,x,y € X, where Z3 is the k-angle at p.

Further, the following theorem called the first variation formula holds:



Theorem 3.6 (Bridson—Haefliger [3, Corollary 3.6 in Chapter I1.3]). Let X be a
CAT(k) space for k € R such that d(v,w)+d(w,u) +d(u,v) < 2D,; for all u,v,w € X.
Then,

. d(p,y) — d(1pa (), y)
= A
}{% ; cos Ay (z,y)
for each p,x,y € X with p # x.
In what follows, we introduce a metric space with the Alexandrov angles.

Lemma 3.7. Let X be a CAT (k) space for k € R such that d(v,w)+d(w,u)+d(u,v) <
2D, for allu,v,w € X, and let p € X. We define a binary relation ~, on X by x ~, y
if Ap(z,y) = 0, where A, is the Alezandrov angle at p. Then, ~, is an equivalence
relation on X.

Proof. ~, is obviously reflexive and symmetric. We show it has transitivity. We suppose
x ~p y and y ~, z. Then,

0< Ap(x,z) < Ap(a:,y) + Ap(ya z)=0

and thus x ~, z. Therefore, ~, is an equivalence relation on X. O

Let X be a CAT(k) space for k € R such that d(v,w) + d(w,u) + d(u,v) < 2D,
for all u,v,w € X, and let p € X. For x € X, we define an equivalence class of x by
[z], = {z € X |z ~, z}. Further, put

DpX = X/~ ={[z], |z € X}.

Since Ap(z,p) =n/2 for all x € X and A,(p,p) =0, [pl, = {p}.

Lemma 3.8. Let X be a CAT (k) space for k € R such that d(v,w)+d(w,u)+d(u,v) <
2D, for all u,v,w € X, and let p € X. Then, (D,X,A,) is a metric space, where the
distance function A, is defined by A,([x]p, [ylp) = Ap(x,y) for [z]p, [y], € DpX.

Proof. We first show A, (x1,y1) = Ap(22,y2) for each z1, 22 € [z], € D, X and y1,y2 €
[ylp, € DpX. Since Ap(z1,72) = Ap(y1,y2) = 0, we have

|Ap(z1,y1) — Ap(x2,y2)| = |Ap(z1,y1) — Ap(21,y2) + Ap(z1, y2) — Ap(T2,92)|
< |Ap($1,y1) - Ap($1a92)| + |Ap($1,y2) - Ap($2,y2)|
< Ap(y1,y2) + Ap(w1,72) = 0.

Consequently, we can define a value A,([z],, [y]p) by Ap(z,y) for [z],, [y], € DpX.
Let [2]p, [ylp, [2]p € DpX. Then, Ap([z]y, [ylp) > 0, p([x]pa [Wlp) = Ap([ylp, [m]p) and

Ap([z]p, [2lp) < Ap([]ps [W]p) + Ap([Ylp, [2]p)-

Further, A,([z]p, [y]p) = 0 if and only if [z], = [y],. Therefore, (D, X, A,) is a metric
space. ]



4  Tangent spaces

In this section, we introduce the tangent spaces on a CAT (k) space with similar methods
in [4].

Let X be a CAT(k) space for k € R such that d(v,w) + d(w, u) + d(u,v) < 2D,; for
all u,v,w € X, and let p € X. We define a function (, from D, X into {0,1} by

L ([z]p = [Plp);
ol[z]p) = {1 ([2]p # [plp)

for each [z], € D, X. We define a binary relation ~, on [0,00[ x D, X by (A1, [z],) =~
(A2, [y]p) if one of the following conditions is satisfied:

o MiGp([x]p) = A2lp([ylp) = 0;
o MiGp([x]p) = A2Gp([ylp) > 0 and [z], = [y]p.

Then, we get the following;:

Lemma 4.1. Let X be a CAT (k) space for k € R such that d(v,w)+d(w,u)+d(u,v) <
2D, for all u,v,w € X, and let p € X. Then, ~, is an equivalence relation on
[0,00[ x D, X.

Proof. ~, is obviously reflexive and symmetric. We show it has transitivity. Suppose

that (A1, [z]p) ~p (A2, [ylp) and (A2, [y]p) ~p (As; [2]p). If AaGp([a]p) = A2Gp([y]p) = 0,
then we obtain A3(,([2]p) = A2(p([ylp) = 0. It implies that (A1, [x]p) =) (A3, [2]p). If

MGp([z]p) = A2Gp([y]p) > 0 and [2]p, = [y]p, then we get A3(p([z]p) = A2Gp([y]p) > 0.
Since (A2, [ylp) =~ (As,[z]p), we have [y], = [z]p, which implies that \i(,([z],) =
A3Cp([2]p) > 0 and [z], = [2]p, and hence (A1, [x],) =~ (A3, [2]p). Therefore, ~, is an
equivalence relation on [0, 00[ x D, X. O

Let X be a CAT (k) space for k € R such that d(v,w) + d(w,u) + d(u,v) < 2D, for
all u,v,w € X, and let p € X. We define a set T, X by
T, X = ([0,00] X DpX) /2.
Let us write A[z], for [(A, [z],)]~, € T, X, where [(A.[z],)]~, is an equivalent class of
(A, [x]p) € [0,00] X Dy X.

Lemma 4.2. Let X be a CAT (k) space for k € R such that d(v,w)+d(w,u)+d(u,v) <
2D, for all w,v,w € X, and let p € X. Define a bifunction d, on T, X by

dp(Alz]p, plylp) = \/AQCp(Mp) + 126 ([Wlp) — 22MGp([2]p) G ([W]p) cos Ap([2], [ylp)

for each Nx|,, plyl, € TpX. Then, (T,X,d,) is a semimetric space.
Proof. We first show

dp (A1 [21]p), (11, [11]p) = dp (A2, [22]p), (12, [42]p))



for each (A1, [z1]p), (A2, [x2]p) € Alx]p, and (p1, [v1]p), (12, [y2]p) € ply],. Since

(A1, [21]p) ~p (A2, [22]p) and (u1, [y1]p) == (w2, [Y2]p),

we have \Gy([z1]p) = AoGp([22]p) and p1(p([wilp) = m2lp(lylp). I MiGp([z1]p) =
AaGp([z2]p) = 0 or p1Gp([yilp) = 12y ([y2]p) = 0, we easily get

dp (A1 [21lp), (11, [11]p) = dp((Aas [22]p), (12, [y2]p))-

We assume that A1(y([z1]p) = A2Gp([2]p) > 0 and p1Gp([y1lp) = p2¢p([y2]p) > 0. Then,
since [x1], = [z2], and [y1], = [y2]p, We have

dy (s 1]y, (i [n])
= 3G ([1l) + 136 () — 220 Gol[al,) G )) cos Ap([1ly 1],)

= \/)‘%Cp([mﬂp) + N%Cp([yZ]p) — 2o p2Cp ([22] ) Gp ([y2]p) cos Ap([T2]p, [Y2]p)
= dp((A2, [m2]p), (12, [y2]p))-

We next show (7, X,d,) is a semimetric space. Let A[z],, p[y], € T, X. Note that

A ([2]p) = 1Cp(lyp])| < dp(A[z]p, 1lylp) < AGp([2]p) + 1Cp([Y]p)-

Then, dp(A[z]p, ulylp) = dp(Aylp, nlz]p), dp(Alz]p, plylp) = 0 and dp(Alz]y, Alz],) =
Assume that d,(A[z]p, nly]p) = 0. Then, we get A(,([z]p) = pCp([yp))- If A ([x]p)

1p([yp]) = 0, then we have Alxlp = plylp. If AGp([2]p) = 1Cp([yp]) > 0, then

0 = dp(Malp, ulylp)* = 23°Gp([2]p) — 2A°Cp([2]p) cos Ap([2]p, [y]p)

and thus cos 4, ([z]p, [y]p) = 1. It means that A,([z]p, [y]p,) = 0 and hence [z], = [y],.
Therefore, A[z], = p[y],. Consequently, (7,X,d,) is a semimetric space. O

Let X be a CAT(x) space for k € R such that d(v,w)+d(w,u)+d(u,v) < 2D,; for all
u,v,w € X, and let p € X. Put S, X = D, X \ {[p],}. Note that (5,X,A,) is a metric
space. Then, we denote the Euclidean cone CpS,X in the sense of [3], and define

0.

CoSpX = ([0,00] x S, X) /2,

where ~, is the same equivalence relation adopted in 7, X. For more details about
the Euclidean cones, see [3, Definition 5.6 in Chapter 1.5]. From the definition of
the Euclidean cone CyS,X, we get CpS,X C T, X, and CyS,X can adopt the same
semimetric of (7, X, d,). Further, the following holds:

Theorem 4.3 (Bridson-Haefliger [3, Proposition 5.9 in Chapter 1.5]). Let X be a
CAT(k) space for k € R such that d(v,w)+d(w,u) +d(u,v) < 2D,; for all u,v,w € X,
and let p € X. Then, (CoSpX,d,) is a metric space. Namely, d, satisfies the triangle
inequality on CpSpX.

As a direct consequence of this theorem, we obtain the following:



Theorem 4.4. Let X be a CAT(k) space for Kk € R such that d(v,w) + d(w,u) +
d(u,v) < 2D, for all u,v,w € X. Then, (T,X,d,) is a metric space for each p € X.

Proof. We show d,, satisfies the triangle inequality. Take A[z|,, plylp, v[2], € TpX. If
[z]p = [plp, then

dp(N[z]p, v[2]p) = v(p([2]p) = 1 ([ylp) + vCp([2]p) — 1lp([ylp)
< dp(A[z]p, ulylp) + dp(plylp, v[zlp)-

In the same fashion, we obtain the inequality if [z], = [p],. Further, in the case
[ylp = [p]p, we obtain

dp(A[z]p, v[2lp) < AGp([2]p) + vCp([2]p) = dp(A[@]p, nylp) + dp(p[ylp, v[2]p)-

Therefore, if one of the three elements [z],, [y]p, [2], € SpX coincides with [p],, then
the triangle inequality holds. We assume [z]|, # [plp, [ylp # [p]p and [z], # [plp-
Then, Axlp, plylp, v[z], € CoSpX, where CyS,X C T,X is the Euclidean cone of
SpX =D, X \ {[plp}. Since (CpS,X,d,) is a metric space, we get

dp(A[2lp, v[2]p) < dp(Az]p, plylp) + dp(plylp, v[2]p)-
Consequently, (T,X,d,) is a metric space. O

Theorem 4.5. Let X be a CAT (k) space for k € R such that d(v,w) + d(w,u) +
d(u,v) < 2Dy, for all u,v,w € X. Then, (CoSpX,dy,) and (T,X,d,) are isometric.

Proof. We show that there is a surjective isometric mapping from 7, X to CpS,X. We
define a mapping ¢ from 7, X to CpS,X by

(Al if [z]p # [plp:
t(A[z]p) = {[(0, []p)]~, if [z], = [plp

for A\[z], € T,X. Then, the mapping ¢ preserves the distance, namely, it is isometric.
We show that it is surjective. Let plyl, € CoSpX. From the definition of CyS, X, we
have [y], # [plp. Then, ulyl, = «(ulyly) if p > 0. Furthermore, 0[y], = ¢(0[p],). Hence,
(CoSpX,dy,) and (T),X,d,) are isometric. O

If X is a nonempty convex subset of the n-dimensional model space M for n € N
and k € R such that dyn (v, w) + dyn(w,u) + dyn (u,v) < 2D, for all u,v,w € X,
then CpS,X is the usual Riemannian tangent space at p € X. Namely, T, X is also the
Riemannian tangent space at p € X. For details, see [3, “The Space of Directions” in
Chapter IL.3].

Let X be a CAT(k) space for k € R such that d(v,w)+d(w,u)+d(u,v) < 2D, for all
u,v,w € X, and let p € X. We call (T,X,d,) the tangent space over X at p. We write
TX =,ecx TpX and call it the tangent bundle of X. For x* = A[z], € T, X, we denote
vA[z], by va*. For each z € X, we denote a normalised vector ¢ (d(p,x))[z], € TpX
by z,. Similarly, for € X, we denote d(p, x)[z], € T,X by Z,. Note that

—d( ) Ty, =T
. (dp,x)"" 7

10



for each z € X with p # z. Further, set 0, = p,. Note that 0, = Ap, = Oz, for each
A>0and z € X.

5 A metric on CAT(x) spaces
Let X be a CAT(k) space for k € R such that d(v,w) + d(w,u) + d(u,v) < 2D, for all
u,v,w € X. For each p € X, we define a function g,: T, X x T, X — R by
gp()‘[x]p» #[y]p) = (0, © )‘[x]zh 0p © :“[y]p>o = )‘NCp([x]p)Cp([y]p) COs Ap([x]pa [y]p)
for each A[x],, ply], € T, X. Note that

Ip(Tp, Yp) = ¢, (d(p, x))c, (d(p,y)) cos Ap(x,y)

for each z,y € X. We call a family of the functions {g, | p € X} a metric on X. Note
that the following hold:

gp(x*,2*) > 0 for all p € X and z* € T, X;

gp(x*,y*) = gp(y*, %) for all p € X and z*,y* € T, X;
Agp(x*,y*) = gp(Ax*,y*) for all p € X, o*, y* € T, X and A > 0;
gp(z*,0,) =0 for all p e X and 2* € T, X.

If X is a nonempty convex subset of the n-dimensional model space M, for n € N and
x € R such that dyn (v, w) + dyn (0, u) 4 dagn(u,v) < 2D, for all u,v,w € X, then
{g9p | p € X} is the usual Riemannian metric. That is, g, is an inner product on the
Riemannian tangent space at p € X.

At the end of this article, we prove the following theorems:

Theorem 5.1. Let X be a CAT(k) space for k € R such that d(v,w) + d(w,u) +
d(u,v) < 2Dy for all u,v,w € X, and let p € X. Then, for each x,y € X,

9p(Tp,Yp) = PO TPEY), -
Proof. Let x,y € X. From Lemma 3.5, since A,(z,y) < Z5(x,y),
9p(Tps Yp) = ¢ (d(p, ))cy.(d(p, y)) cos Ap(x, y)
¢ (d(p, @))c,.(d(p, y)) cos L5 (z,y) = (pS 2, pSY),
and this is the desired result. ]

Y

Theorem 5.2. Let X be a nonempty convexr subset of the n-dimensional model space
M forn € N and k € R such that dyn (v, w) + darn (w, u) + dare (u,v) < 2Dy for all
u,v,w € X, and let p € X. Then, for each r,y € X,

gp(xpa yp) = <p ox,po y>,‘{ .
Theorem 5.3. Let X be a CAT(k) space for k € R such that d(v,w) + d(w,u) +
d(u,v) < 2Dy for all u,v,w € X, and let p € X. Then, for each x,y € X with p # x,

i @5 y) — ¢tz ® (A~ t)p,y) _ dp,2)
N0 t c.(d(p,x

))gp(xlh yp)'
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Proof. Let p,xz,y € X with p # x. We denote z; = tx @ (1 — t)p and

F(t) = m(p,y)—tcbn(zt,y)

for t €10, 1]. Note that zx = v, (td(p,x)). If Kk =0, then

ft) = d(p,y)* — d(z,y)* _ dp,x)(d(p,y) +d(ze,y))  d(p,y) — d(Vpa(td(p, x)), y)
- 2t - 2 td(p, z) '

Therefore, from the first variation formula,

lim d(p,y) — d(vpa(td(p, x)),y)
t\0 td(p,x)

= cos Ap(z,y)
and thus

lim f(t) = d(p,z)d(p,y) cos Ap(2,y) = gp(Tp, Yp)-

Assume that k # 0. Put Dy = (d(p,y) — d(zt,y))/2. Then, we get

() = C’é(d(zt,y))m—t celd(p,y)) _ %C; (d(zt,y) ;r d(p, y)) ¢ (Dy)

and therefore

f(t) — C; (d(zt,y);-d(p, y)) C;E)lt)t) . Q?t

Note that Dy — 0 as ¢t \, 0 and hence ¢, (D¢)/D; tends to 1 as ¢t \, 0. Further, it holds
from the first variation formula that

lim 22t _ iy 2:Y) — d(pe(td(p, 7)), y)
tNO 1 t\0 t

=d(p,x)cos Ap(x,y).

Therefore, we have

. d(p, )
%{% f(t) = d(p,x)c, (d(p,y)) cos Ap(z,y) = mgp(%,yp)-
Consequently, we obtain the desired result. O

Corollary 5.4. Let X be a CAT(k) space for k € R such that d(v,w) + d(w,u) +
d(u,v) < 2Dy for all u,v,w € X, and let p € X. Then, for each x,y € X,

i 2r(Py) = &tz S (1 = O)p,y)
t\0 t

= 9p(Tp, Yp)-
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