The proximal point algorithm of a resolvent for equilibrium

problems in geodesic spaces with negative curvature
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Abstract

In this paper, we consider properties of a resolvent of equilibrium problems.
We prove a A-convergence theorem with the proximal point algorithm using a

resolvent of equilibrium problems in a CAT(—1) space having the convex hull
finite property.

1 Introduction

Let K a nonempty set and f: K x K — R. An equilibrium problem is defined as to
find 2y € K such that f(zg,y) > 0 for y € K. Equilibrium problems were first studied
by Blum and Oettli [1]. Equilibrium problems include optimization problems, saddle
point problems and fixed point problems, etc. In 2005, Combettes and Hirstoaga
introduced the resolvent of equilibrium problems in Hilbert spaces [3].

Theorem 1.1 (Combettes and Hirstoaga [3]). Let H be a Hilbert space and K a
nonempty closed convex subset of H. Let f: K x K — R and Sy the set of solutions
to the equilibrium problem for f. Suppose the following conditions:

e f(y,y) =0 forally € K;
e f(y,2)+ f(z,y) <0 forally,z € K;
e f(y,-): K — R is lower semicontinuous and convex for everyy € H;



e f(-,2): K — R is upper hemicontinuous for every z € K.

Then the resolvent operator Jy defined by

fo:{zeK

inf (f(209) + (2 — 2y — 2)) > o}

yeK

has the following properties:

(i) D(Jy) = X;
(ii) J¢ is single-valued and firmly nonexpansive;
(1113 F(Jy) = 5f;

(iv) Sy is closed and conve.

In 2018, Kimura and Kishi [7] introduced a resolvent of equilibrium problems in
a complete CAT(0) space having the convex hull finite property. In 2021, Kimura
[6] introduced a resolvent of equilibrium problems in an admissible complete CAT(1)
space having the convex hull finite property.

In this paper, we propose fundamental properties of a resolvent of equilibrium
problems and prove a A-convergence theorem with the proximal point algorithm in a
complete CAT(—1) space having the convex hull finite property.

2 Preliminaries

Let (X,d) a metric space, and T" a mapping of X into itself. The set of all fixed
points of T' is denoted by F(T'). Let {x,} be a bounded sequence of X. The set of
AC({x,}) of all asymptotic centers of {x,} C X is defined by

limsup d(z,, z¢) = inf limsupd(:cn,x)} :

n—00 zeX npnooco

AC({zn}) = {:z:o €X

A sequence {z,} C X is said to be A-convergent to xy € X if AC({z,,}) = {z0}

for all subsequence {z,,} of {z,}. It is denoted by x,, A 2. Let f be a function of X
into R. Then, Argmin,c f(z) is the set of all minimizers of f. Let T' be a mapping
of X into itself. Then, a mapping T is hyperbolically nonspreading if for x,y € X, the
inequality

2coshd(Tz,Ty) < coshd(Tx,y) + coshd(x,Ty)

holds. A mapping T is quasinonexpansive if F(T') is nonempty and the inequality
d(Tz,z) < d(z,z) holds for x € X and z € F(T). We know that if T is hyperbolically
nonspreading and F(T') is nonempty, 7' is quasinonexpansive. In fact, for x € X and
z € F(T), by hyperbolical nonspreadingness of T', we get

2coshd(Tz,z) < coshd(Tz,z) + coshd(z, z)

and hence T is quasinonexpansive.



Let z,y € X and v, a mapping of [0,d(x,y)] into X. A mapping 7., is called a
geodesic with endpoints x and y if v, (0) = x, vz, (d(z,y)) = y and d(Vzy (5), Yay (1)) =
|s — t| for all s,t € [0,d(x,y)]. X is called a geodesic space if for all z,y € X, there
exists geodesic with endpoints x and y. In what follows, we assume that for x,y € X,
X has a unique geodesic with endpoints x and y. The image of geodesic with endpoints
x and y is denoted by Im~,,. For z,y € X and ¢ € [0, 1], there exists z € Im~,, such
that d(z, z) = (1—t)d(z,y) and d(y, z) = td(x,y), which is denoted by z = tx®(1—t)y.

Let X be a geodesic space, and H? the 2-dimensional hyperbolic space. A geodesic
triangle A(x,y, z) with vertices x,y,z € X is defined by Im~v;, U Im~,, UIm~,,.
Further, a comparison triangle A\(Z,7,%2) to /\(z,y, z) with vertices Z,7,%2 € H? is
defined by Im~yzy U Imyz UIm vzz with d(z,y) = du=2(Z,9), d(y, 2) = du=(y,Z) and
d(z,z) = dy2 (%, %), where dy (-, -) is the hyperbolic metric on H?. A point p € Im vz
is called a comparison point for p € Im~,, if d(z,p) = dy2(Z,p). X is a CAT(-1)
space if for p,q € A(z,y,z) C X and their comparison points p,§ € A(Z, 7, z) C H2,
the inequality d(p,q) < dyz(p, q) holds for all geodesic triangles in X. In general, a
CAT(—1) space is a CAT(0) space [2]. In CAT(—1) spaces, the inequality

coshd(tx @ (1 — t)y, z) sinh d(z, y)
< coshd(z, z) sinh td(z,y) + cosh d(y, z) sinh(1 — t)d(x, y)

always holds for z,y,z € X and ¢ € [0, 1].
The following lemmas are important properties of a CAT(0) space.

Lemma 2.1 (Kirk and Panyanak [9]). Let X be a complete CAT(0) space. Then
every bounded sequence has a subsequence which is A-convergent to xg € X.

Lemma 2.2 (Dhompongsa, Kirk and Sims [4]). Let X be a complete CAT(0) space
and {x,} a bounded sequence of X. Then the asymptotic center of {x,} consists of
one point.

Let X be a geodesic space and f a function of X into R. A function f is said to
be lower semicontinuous if the inequality

f(x) < liminf f(z,)

n— o0

holds, wherever {z,,} C X converges to x € X. If f is continuous, then it is lower
semicontinuous. A function f is said to be convex if

flax® (1 —a)y) < af(e)+ 1 -a)f(y)

holds for all z,y € X and « € |0, 1[. A function f is said to be upper hemicontinuous
if the inequality
fz) = limsup f((1 — )z & ty)
t—0+
holds for all z,y € X.
We will consider the following conditions for a function used by an equilibrium
problems.



Condition 2.1. Let X be a geodesic space and K a nonempty closed convex subset
of X. We suppose that a bifunction f: K x K — R satisfies the following conditions:

o f(r,z)=0forall z € K;

o f(x,y)+ f(y,2) <O for all 2,y € K;

o for every z € K, f(x,-): K — R is lower semicontinuous and convex;
e for every y € K, f(-,y): K — R is upper hemicontinuous.

The following theorem is important to show a A-convergence theorem with the
proximal point algorithm.

Theorem 2.1 (Kajimura and Kimura [5]). Let X be a complete CAT(—1) space, {z,}

a bounded sequence in X, {f8,} a sequence of positive real numbers with >~ | B, = o0
and

1 n
g(y) = limsup

e Bk cosh d(y, zx)
n— 00 Zl:l 6l k:z::l

fory € X. Then, Argminy g consists of one point.

The set of solutions to the equilibrium problem for f is denoted by Equil f, that is,

Equil f = {zGK

yigﬁ(f(z,y) > O}.

Let X be a CAT(—1) space and E a nonempty subset of X. Then a convex hull of
FE is defined by

coE = [j X,

n=0

where Xg = F and X,, = {tup—1 D (1 —t)vp—1 | Up—1,0n-1 € Xp—1,t € [0,1]}. X
has the convex hull finite property if every continuous mapping 7" of clco E into itself
has a fixed point for all finite subsets F of X, where clco E is the closure of co E; see
[11].

In the following theorem shows the properties of a resolvent of equilibrium problems
in a CAT(—1) space having the convex hull finite property.

Theorem 2.2 (Kimura and Ogihara [8]). Let X be a complete CAT(—1) space having
the convex hull finite property and K a nonempty closed convexr subset of X. Suppose
that f: Kx K — R satisfies Condition 2.1. Define a set-valued mapping Ly: X — 2K
by

fo:{zeK

inf (f(z,y) + coshd(x,y) — coshd(z, z)) > O}
yeK

for all z € X. Put C, = coshd(z,L¢z) for z € X. Then the following hold:
(i) D(Ly) = X;



(ii) Ly is single-valued and the inequality
(Cy + Cy) coshd(Lysx, Lyy) < coshd(Lysx,y) + coshd(z, Lyy)

holds for x,y € X, and thus Ly is hyperbolically nonspreading;
(iii) Equil f = F(Ly), and thus it is closed and convex.

3 Fundamental properties of resolvents

In this section, we prove the lemmas which is necessary to prove a A-convergence
theorem in a CAT(—1) space having the convex hull finite property.

Lemma 3.1. Let X be a complete CAT(—1) space having the convex hull finite
property and K a nonempty closed convexr subset of X. Suppose that f: K x K — R
satisfies Condition 2.1. Let Ly a resolvent of \f for A > 0. Then the inequality

d(Lys, w)
Asinhd(Ly sz, w)

0 < f(Lafz,w)+ (coshd(x,w) — coshd(x, Lxsz)coshd(w, Lysx))

holds for x € X and w € K with w # Lyyx.

Proof. Let x € X and w € K with w # Lysx. Put . = tw ® (1 —t)Lysz € K for
t €10,1[. Then, we get

0 < Af(Lajz, )+ coshd(xz, ) — coshd(z, Lysx)
< Mt f(Lysz,w) + coshd(z, 1) — coshd(x, Lysx)
L(t) — coshd(z, Lysx)sinhd(Lyjz, w)
sinh d(Ly sz, w)

<A f(Lyapz,w) +

where
L(t) = coshd(z,w)sinhtd(Lysx, w) 4+ coshd(z, Lysz)sinh(1 — t)d(Ly sz, w).
Dividing by At and letting ¢ ™\, 0, we obtain

n 1 lim L(t) — coshd(z, Lysx)sinhd(Lysz, w)

Asinhd(Lyfx,w) £\0 t

! lim 4

Asinhd(Lyfz,w) t\0 dt
d(Lasz, w)

+ Asinhd(Ly sz, w)

0 < f(Larz,w)

= f(Lasz,w) + (L(t) — coshd(x, Lysx)sinhd(Ly ¢z, w))

= f(L)\fZIT,’lU)

(coshd(z,w) — coshd(x, Lysx)coshd(Lysx,w))

and hence we get the desired result. U



Corollary 3.1. Let X be a complete CAT(—1) space having the convexr hull finite
property and K a nonempty closed convex subset of X. Suppose that f: K x K — R
satisfies Condition 2.1. Let Lyy a resolvent of \f for X > 0. Then the following
inequalities hold:

(uCx 2 + ACy, ) coshd(Lysx, Lypy) < precoshd(z, L, ry) + Acoshd(Lysz,y)

and
(A4 p)coshd(Lysx, Lury) < peoshd(x, L, sy) + Acoshd(Lysz,y)

for all x,y € X and X\, > 0, where C,, . = coshd(z, L, sz) for z € X and n > 0.

Proof. Let z,y € X and A\, > 0 with D = d(Lxsz,L,ry) > 0 and put C, ., =
coshd(Lysz,z) for z € X and > 0. By Lemma 3.1, we get

coshd(x, L, ry) — Cx 5 cosh D).

D
< =
0= f(Lagw, Lugy) + v p

Similarly, it holds that

0 < f(Lusy, Lxsx) + (coshd(Lxfx,y) — Cp y cosh D).

D
psinh D

From Condition 2.1, adding these inequalities, we get

D
0 < f(Las, Lyusy) + f(Lygys Lagx) + s (coshd(z, Ly py) — O cosh D)
+ m(cosh d(Lysx,y) — Cp,ycosh D)
D coshd(x, L, ry) — CrycoshD  coshd(x, L, sy) — Cxcosh D
< - : i ,
~ sinh D A 7

Since t/(sinht) > 0 for t > 0, we get
(WCxz + AC,.y) cosh D < pcoshd(z, L, ry) + Acoshd(Ly sz, y).
Since cosht > 1 for t > 0, we get
(A+ p)cosh D < pcoshd(z, L, ry) + Acoshd(Ly sz, y).
If D =0, the inequalities obviously hold. It completes the proof. U

Corollary 3.2. Let X be a complete CAT(—1) space having the convex hull finite
property and K a nonempty closed convex subset of X. Suppose that f: K x K — R
satisfies Condition 2.1 and that Equil f is nonempty. Let Ly; a resolvent of Af for
A > 0. Then the following inequality holds:

coshd(x, Lyyx)coshd(Lysz,z) < coshd(z, z)
for all x € X and z € Equil f.



Proof. Let x € X, z € Equil f and A > 0. By Corollary 3.1, we get

(coshd(z, Lxsx) + Acoshd(z, Lsz))coshd(Lxsx,2) < coshd(z, z) + Acoshd(Ly sz, z)

and hence

(coshd(z, Lysx) + A) coshd(Lyjx, 2) < coshd(z,2) + Acoshd(Lyyx, 2).
Therefore, we have
coshd(z, Lysx)coshd(Lysz,z) < coshd(z, z)

and get the desired result. O

Lemma 3.2. Let X be a complete CAT(—1) space having the convex hull finite
property and K a nonempty closed convexr subset of X. Suppose that f: K x K — R
satisfies Condition 2.1. Let {\,} C ]0,00[ such that limsup, _,. oA, > 0, Ly,f a

resolvent of A\, f, and {x,} a bounded sequence of X such that x, A xo € X and
limy, o0 d(Zp, L, f2n) = 0. Then zy € Equil f.

Proof. Put \g = limsup,,_, ., \,. By Corollary 3.1, we get

hd(L ny L <
coshd(Ly, ¢x Fxo) < T n

coshd(Ly, fxn, o) + coshd(zy, Lyxo).

14+ A,
Take a subsequence {z,,} of {z,} arbitrarily. For y € K, then, we get

d(L)\nj FZn, y) < d(LAnj FTn;, xnj) + d(xnj ’ y) < Qd(LAnj FZn;, xnj) + d(Lknj fTn;, y)

Since d(xnj,L,\njfxnj) — 0, letting j — oo, we get

limsupd(Ly, f%n,,y) = limsupd(z,,,y).
j—00 7 Jj—oo
Suppose Ao = co. Then we take a subsequence {\,,} of {\,} such that lim;_,. A, =
oo. It implies that

lim sup (cosh d(zy,, Lyxo)) = limsup (coshd(Ly, §@n,, L§xo))
1—>00 1—>00 ‘
< lim sup (Cosh d(Ly, fn,, xo))
—00 ‘
= lim sup (cosh d(zy,, xo)) .
—00
Since z is an asymptotic center of {z,,}, we get g = Lfzo and hence zo € Equil f.
We next suppose \g < oo. Then we get



lim sup (cosh d(zy,, Lxo))

1—00

= lim sup (cosh d(Lx,,. fTn,, L))

1—>00

limsup (coshd(Ly, jtn,, o)) +

lim sup (cosh d(zy,, L fx¢))

T 14+ XA s 1+ X isoo
Ao
= lim sup (coshd(x,,,xq)) + limsup (coshd(x,, , Lz
0 timsup (coshd(w,,a0) + 155 imsup (coshd(z,, Lyan)
and hence

lim sup (cosh d(xy,, L¢xo)) < limsup (coshd(z,,, o)) -

11— 00 1—>00

Since x( is an asymptotic center of {x,, }, we get x9 = Lz and hence zy € Equil f.
Consequently, we complete the proof. O

4 A A-convergence theorem

In this section, we prove a A-convergence theorem with the proximal point algo-
rithm in a CAT(—1) space having the convex hull finite property.

Theorem 4.1. Let X be a complete CAT(—1) space having the convexr hull finite
property, K a nonempty closed conver subset of X, f: K x K — R satisfying Condi-
tion 2.1 and {\,} C ]0,00[ such that Y .~ A, = 0o. For given 1 € X, define {x,}
by

Tpt1 = Ly, pxn = {z e K

iglf((f(z,y) + coshd(z,,y) — coshd(z,, 2)) > O}
y

for all m € N. Then, the following hold:

(i) Equil f is nonempty if and only if {x,} is bounded;
(ii) iof Equil f is nonempty and liminf,, oo A, > 0, {z,} is A-convergent to an
element of Equil f.

Proof. (i) We first suppose that Equil f is nonempty and show that {z,} is bounded.
Let u € Equil f. Since L), ¢ is quasinonexpansive, we get

d(zpy1,u) = d(Ly, t2n,u) < d(zp,u)

and hence {d(z,,u)} is nonincreasing and {z,} is bounded for n € N. We next
suppose {x,} is bounded and show that Equil f is nonempty. For k € N with k£ < n,
by Corollary 3.1 we get

(14 Ag) coshd(Ly, fxi, Lyy) < Apcoshd(Ly, fzk,y) + coshd(zk, Lry)



and hence

A coshd(zpy1, Lyy) < A coshd(xpi1,y) + (coshd(xy, Lyy) — coshd(zp41, Lry))

for all y € X. Adding both sides of the inequality above from £ = 1 to £ = n and
dividing both sides by > ; Ai, we get

n

1
1

< -

B Z?:l)‘l;;
1

< -

B Z?ﬂ)‘l;

By Theorem 2.1, we know that Argmin y ¢ consists of one point, where

A coshd(zr41, Lyy)

n

A coshd(xgy1,y) (coshd(z1, Lyy) — coshd(xn41, Lsy))

1
+ =
21:1 Al
n

A coshd(xgy1,Dp) coshd(zq,p).

1
+ =<
21:1 Al

Z A coshd(xg1, 2)
k=1

1
g(2) = limsup —=z——

n— 00 =1 )\l
for all z € X. Let p € Argminyg. Since Y ;= A\; = 00, letting n — oo, we get

9(Lysp) < g(p) < g(Lyp)

and hence p = Lyp. This implies that p € Equil f.
(ii) Suppose Equil f is nonempty and liminf,, . A, > 0. Let p € Equil f. Since
Ly, s and Equil f is nonempty, L, s is quasinonexpansive. Then, we get

0 < d(xn41,p) = d(Lx, f2n,p) < d(xn,p)

and hence {d(z,,p)} is nonincreasing. Then, there exists lim,, o, d(z,,p). By Coro-
lally 3.1, we have

coshd(z,,p)

]_ < hd n,L n S N
< coshd(zn, L, rn) coshd(zp41,p)

Letting n — oo, we obtain d(x,, Ly, fz,) — 0. Put AC{z,}) = {z¢} Take a
subsequence {z,,} of {z,} arbitrarily. Since {z,,} is bounded and by Lemma 2.2,
AC({zn,}) = {yo}. Further, there exists a subsequece {:cnij} of {x,,} such that

Tn,, A zo € X. Then, AC({xnij }) = {20}. By Lemma 3.2, we get zy € Equil f.
Then, we get

limsup d(z,, 29) = limsup d(z,, , 20)
n—oo j—o00 J



< limsupd(xy,, ,%0)
Jj—oo J

< limsup d(xy,, Yo)
71— 00

< limsup d(z,,, xo)
71— 00

< limsup d(x,, o) < limsup d(z,, 20)
n—oo n— o0

and hence yy = x¢g = 29 € Equil f. Therefore z,, A xo € Equil f. Consequently, we
get the desired result. O

Corollary 4.1. Let X be a complete CAT(—1) space having the convex hull finite
property, K a nonempty closed conver subset of X, f: K x K — R satisfying Condi-
tion 2.1 and Ly a resolvent of f. Then the following hold:

(i) Equil f is nonempty if and only if {L}Lx} 18 bounded for each x € X;
(ii) If Equil f is nonempty, {L'}x} is A-convergent to an element of Equil f for
each v € X.

Proof. Let {\,} C |0, 00[ such that A\,, =1 for n € N. Using Theorem 4.1, we get (i)
and (ii). Consequently, we complete the proof. O
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