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Abstract

This paper focuses on the feasibility of multi-valued optimization problems under
perturbations. By using set relations and their scalarization, a modified version of
theorems of the alternative can characterize the robustness of the feasibility. Espe-
cially under some assumptions, we show algorithms for evaluating the robustness which
computers could deal with.

1 Introduction

We usually solve optimization problems to make decisions for planning, scheduling, or match-
ing. However, mathematical optimization models can’t reflect every part of issues which has
many errors and perturbations. Perturbation theory deals with problems called “robust
optimization problems” that contain parameters giving them small deviation. If a solution
remains itself under such deviation, it is said to be “robust.” In general, the difficulty of solv-
ing a robust optimization problem is strongly dependent on the way giving perturbations.
This paper investigates criteria for the robustness of multi-valued optimization problems via
set-valued analysis.

Set relations, originally given in [§8], are kinds of binary relations between two sets and
used to determine which one is prefer to the other. To ease set-to-set comparisons, We usually
quantify set relations with scalarization commonly done in two ways: scalarizaion functions
or oriented distance functions. The relationship between the relations and the functions have
been studied as dual expressions or theorems of the alternative (e.g., see [3,9-11, 14] for
scalarization functions, [5-7| for oriented distance functions). Recently, Hui et. al. studied
calculability of scalarization functions and they proved the value of the functions can be
computed by solving linear programming problems when given sets are polyhedra ( [4]).
Their results enable computers to find out which a preferred set is.

We sould like to show more relaxed scalarization theorems of the alternative in a topolog-
ical vector space based on ones in [11]. For proving this kind of theorems, some topological
assumptions are required such as compactness, boundedness, closedness. As opposed to for-
mer researches, we use convex cone properties inspired by [1]. And as an application, we



introduce criteria for robustness of feasibility of a multi-valued optimization problems and
their calculation algorithms by using set comparisons.

2 Basic notations

Unless otherwise specified, we let X be a topological vector space, C C X a convex cone
satisfying intC' # () throughout the thesis. For two vectors z,y € X, x <¢ v is defined to be
rey—C. For twosets A, B C X \ {0} and o € R,

e A+ B:={a+blacAbe B}
o aA:={aa|ac A}

We use convex cone properties with respect to C: A is C-closed if A 4+ C' is closed, A
is C-bounded if it holds that A € U + C for any open neighborhood U of the zero, A is
C-compact if any cover of S being like {U, + C' | U, is open} admits a finite subcover. We
clearly see C-compactness leads to C'—closedness and C-boundedness.

At first, we introduce the six types of set relations originally proposed in [8]: for nonempty

sets A, B C X\ {0} and i = 1,...,6, the relations < are defined by

e A=Z'B = ACepb-C);
¢« AXPB ANyeplb = C) #0;
e A=¥YB «— BCA+C;

¢ AZYB = ANeala+C)#0;
oAj(C?)B < ACB-C(,

e A<9B «— BN(A+0C)#0.

Note that jg) implies jg) and j(é), which lead to j(g) and 5(05) respectively. The last
relation j(g) is implied by the others. Moreover, these relations 529 for:=1,...,6 coincide
with < when two compared set A, B are both singleton.

3 Scalarization functions

In the thesis, we use the following Minkovski-type Garstewitz functional pc g4 : X — RU{o0}
given in [2] defined by

voa(r) =inf{y e R |z <¢ vd}.

for a given vector x € X and a fixed direction d € X. This function coincides with the linear
functional f € X* where C':= {x € X | f(x) > 0} is a half space. This functional is utilized
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in set scalarization.some set inequality. Nishizawa et.al. proposed theorems of the alternative
for set-valued maps with the function in [10]. Moreover, [3,9] generalized the functional and

introduced a set scalarization functional (D(Cl) Bd: 2% — R U {00} defined by
O o(A) = inf{y e R| A <) B +d}.

for a given set A, a fixed reference set B, and a fixed direction d. All the functions coincide
with ¢cq when A = {z}, B = {0x}. Also, it holds that A jg)B implies @(Cl)B J(4) <.

Speaking of set scalarization, set relation-based characterization theorems have been pro-
posed ( [11,14]) under the compactness of given sets.

Proposition 3.1 ( [11]). Let A, B € 2¥\{0}. Then the following assertions hold.

IN

e If A is compact, then A jgé B and A jg’é B follow from @g%B,d(A) 0 and

@gfg p.4(A) <0 for some d € X, respectively.

o If B is compact, then A jg% B and A jg‘é B follow from (I)E%,B,d(A)
@Sé p.4(A) <0 for some d € X, respectively.

IN

0 and

e If both A, B are compact, then A jgﬁéB follows from q)g%g’d(/l) < 0 for some d € X.
Proposition 3.2 ( [14]). Let A, B € 2X\{0}.
e If both A, B are compact, then A ji(it)CB follows from CIDi(it)C’B’d(A) < 0Oforsomed € X.

e If B is compact, then A fi(zt)c B and A ji(r?t)C B follow from q)i(zt)c,B,d<A) < 0 and
(I’i(st)a 5.a(A) <0 for some d € X, respectively.

o If A is compact, then A <" B and A <), B follow from (IDi(ft)aB’d(A) < 0 and
@fjt)c p.4(A) <0 for some d € X, respectively.

One can see the case ¢ = 1 for Proposition 3.1, and the case i = 6 for Proposition 3.2 hold
without any compactness.

Theorem 3.1 ( [12,13]). Let A, B € 2\ {0}. Then,
A= B < 3k eintC st. Y (A, B) <0
where

e Ais C-compact for case i = 2;
e A is C-closed for case 1 = 3;
e B is (—C)-compact for case i = 4;

B is (—C)-closed for case i = b;

A is C-closed and B is (—C')-compact,
or A is C-compact and B is (—C')-closed for case i = 6.
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4 Application

Let S be a nonempty set and consider the following optimization problem:
(P) Minimize f(z) subject to g(z) <¢ 7

where f: S - R" ¢g: 5 — R™ reR™
We assume that g and r are perturbed in the sets G and R, respectively. Moreover, we
let G(x) := {g(z) | g € G}.

Proposition 4.1 ( [13]). We assume (P) is feasible. Then, the following statements hold on
G and R:

e (P) is still feasible for all ¢ € G and r € R if and only if (ID(C{),C(G(x), R) < 0 for some
k € intC;

e there exists g € G such that (P) is feasible for all » € R if and only if @g)k(G(m), R) <0
for some k € intC’;

e forallr € R, we can find g € G to make (P) remain feasible if and only if @g’,)k(G(m), R) <
0 for some k € intC

e there exists r € R such that (P) is feasible for all g € G if and only if @g{)k(G(m), R) <0
for some k € intC’;

e forall g € G, we can find r € R to make (P) remain feasible if and only if <I>(C5),€(G (x),R) <
0 for some k € intC

e (P) is feasible for some g € G and some r € R if and only if <I>(CG7),€(G($), R) < 0 for
some k € intC.

The above proposition implies the values of scalarization functional indicate the robust-
ness of feasibility for a multi-valued optimization problem. Moreover, each value is calculated
by solving linear programming problems.

Proposition 4.2 ( [4]). Let G(x), R, C be polyhedral for all z € S, that is,

G(z) = {z e R™ | Pa(2)z < qa},
R ={z € R" | Ppz < qr},
C={zeR"|(pj,z) >0forall j=1,...,J}

where Pg(z) is an a x n matrix for all x € S, Py is a 8 x n matrix, ¢¢ € R?, qg € R?, and
pj € R™ for all j =1,...,J. Then, the following statements hold for x € S:

° (I’(c})k(G(m), R) = jiria”)fj{\/al(Pl(m)j)} for (P1(x);) defined by

(pjw 2G — ZR>

(P1(z);) Maximize k)

subject to Pg(7)za < q¢ and Przr < qg;



o ®3)(G(x), R) = Val(P2(x)) for (P2(x)) and (P2;) defined by

<pjv Z>
<pjv k>

(P2(z)) Minimize ¢ € R subject to

Pa(x)z < ¢q,

+ Val(P2;) < tforall j =1,...,J and

(P2;) Maximize P =2) subject to Prz < qg;

) @g’)k(G(x), R) = I?ea]%(Val(PB(x, z)) for (P3(z, z)) defined by
(pj; 26 — 2)

<pj7 k>

(P3(z,2)) Minimize t € R subject to <tforall j=1,...,J and

Po(r)2q < qa
o &) (G(x), R) = Val(P4(z)) for (P4(x)) and (P4(z),) defined by

pj7 _Z>

(P4(z)) Minimize ¢ € R subject to Val(P4(x),) + << B <tforallj=1,...,J and
pj7

PRZ S 4dRr,
. <pj7 Z>
(P4(x);) Maximize
’ <pj7 k>

subject to Pg(z)z < qg;

o <I>(C§),€(G(m), R) = max Val(P5(z)) for (P5(2)) defined by

2€G(x)

(pj,z — 2r)
<pj7 k>

o &) (G(x), R) = Val(P6(x)) for (P6(x)) defined by

(P5(z)) Minimize ¢t € R subject to <tforallj=1,...,Jand Pgrzg < qg;

<pj7 Z21 — Zz>

(P6(z)) Minimize ¢t € R subject to
<pjv k>

<tforallj=1,...,J, Pe(z)x < qqc,

and PRZQ < qR-
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