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Abstract

In this paper,we propose a global optimization algorithm based on a procedure for
listing KKT points to solve a quadratic canonical dc¢ programming problem (QDC)
whose feasible set is expressed as the area excluded the interior of a convex set from
another convex set. We can obtain an approximate solution of (QDC) by combining our
algorithm with a parametric optimization method and branch-and-bound procedure.

1 Introduction

In this paper, we propose a procedure for listing KKT (Karush-Kuhn-Tucker) points of a
quadratic canonical dc programming problem (QDC) whose feasible set is expressed as the
area excluded the interior of a convex set from another convex set. It is known that many
global optimization problems can be transformed into such a problem (see, e.g., [2]). Iterative
solution methods for solving (QDC) have been proposed by many other researchers. Since it
is difficult to solve (QDC), we transform (QDC) into a parametric quadratic programming
problem. In order to solve such a quadratic programming problem for each parameter, we
introduce an algorithm for listing KKT points. Moreover, we propose an global optimiza-
tion algorithm for (QDC) by incorporating our KKT listing algorithm into a parametric
optimization method and a branch-and-bound procedure.

Throughout this paper, we use the following notation: R and R"™ denote the set of all
real numbers and an n-dimensional Euclidean space. The origin of R™ is denoted by 0,,.
Given a vector a € R", a' denotes the transposed vector of a. For given real numbers a
and 8 (o < B), weset [,f] = {xr e R:a <z < b} |a,f={reR:a<z<p}
la,fl:={reR:a<x<p}and [o, 8= {r € R: a < x < }. The sets of all nonnegative
real numbers and all nonnegative vectors are denoted by R, and R respectively, that is,
Ry ={r eR:2>0and R? = {z = (z1,...,2,)] € R : 2z > 04 =1,...,n}.

Given a vector @ € R", ||a|| denotes the Euclidean norm, that is, ||a| = va'a. Given a
vector @ € R™ and a positive real number r > 0, BZ(a,r) := {& € R" : || — al| < r}

and B2(a,r) == {x € R" : || —al| < r}. Given a subset X C R", dim X denotes the
dimension of X. For a subset X C R”, int X, ri X ¢l X, bd X and co X denote the interior,
the relative interior, the closure, the boundary and the convex hull of X, respectively. For a
subset X C R", diam X denotes the diameter of X, that is, diam X := max ||’ —a"||. The
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n X n unit matrix is denoted by E,,. Given real numbers aq, ..., a,, diag {a,...,a,} denotes
the n x n diagonal matrix whose diagonal elements are aq, ..., a,. For a given differentiable

2
function f : R — R, di f(z) and % f(z) denote the differential and the second order
T T

differential of f at Z € R, respectively. Given a convex function f : R" — R, df(x) denotes
the subdifferential of f at x, that is, df(x) := {a € R": f(y) > f(z)+a' (y—=x), y € R"}.
For a differentiable function f : R® — R, V f(x) denotes the gradient vector of f at & € R™.

2 A quadratic canonical dc programming problem
Let us consider the following quadratic canonical dc programming problem:

minimize w'x 4
(QDC) ¢ subject to gi(z) =x" Az — () ®x—¢c; <0, i=1,...,m,
hiz) =x'xz—1r?>0, ¢ cR",

where A; € R™" (i = 1,...,m) are real positive definite symmetric matrices, b', ..., b, w €
R" (JJw|| = 1) and ¢y, ..., ¢y, r are real values (r > 0). Let G :={x € R" : g;(x) <0, i =
I,...,m} and H := {& € R" : h(x) < 0}. From the definition of A; (i = 1,...,m), g;
(¢ =1,...,m) are strictly convex functions. Hence, G and H are compact convex sets. Then,
G\int H denotes the feasible set of (QDC). It is well known that quadratic dc programming
problems can be transformed into the (QDC).

For (QDC), we suppose the following statements.

(A1) The feasible set of (QDC) is nonempty, that is, G\int H # ().

(A2) The reverse convex constraint of (QDC) is essential, that is, argmin{w 'z : ¢ € G} C
int H.

(A3) n>2.

From assumption (A2), (QDC) has globally optimal solutions. We notice that (QDC) is
a convex programming problem if the reverse convex constraint of (QDC) is not essential.
Moreover, by assumption (A2), we note that

—r < ap :=min{w 'z :x c G} <min(QDC) < r

because ||w|| = 1, where min(QDC) denotes the optimal value of (QDC). From the follow-
ing proposition, we note that all globally optimal solution of (QDC) are contained in the
intersection of the boundaries of G and H under assumption (A3).

Proposition 2.1 (See Proposition 2.1 in [3]) Assume that n > 2 and assumption (A1) holds.
Then, all locally optimal solutions of (QDC) are contained in (bd G) N (bd H).

3 Optimality conditions

In this section, we introduce optimality conditions for (QDC).



Now, we consider the following parametric programming problem for each a € [ag, 7],
because it is hard to solve (QDC) directly.

minimize  g(x) (1)
subject to h(z) =0, w'z = a.

From the definition of oy and assumptions (A1) and (A2), we note that the feasible set of
problem (1) is nonempty for each a € [ag,7]. Let D € R (=1 be a matrix satisfying the
followings.

e D=(d,....d" " (decR", i=1,...,n—1)
e |d||=1foralli=1,...,n—1
e w' d =0foralli=1,....,n—1

By replacing « by Dy + aw (y € R*™1), problem (1) can be transformed into the following
problem.

minimize  g§(y; )
CRO |

subject to  h(y;a) =0,

9(y; a) := max{gi(y; o) : i = 1,...,m},
Gi(y:a)=yAy— (b)) y—=cla), i=1,...,m,

h(y;a) =y y —r(a)?,

A;:=D'"A,D, i=1,...,m,

b(a) :==D'b' —2aD"Aw, i=1,...,m,

() == ¢; — *w' Aw + « (bl)T w, i=1,...,m,
r(a) == vVr?2 — a2

Then, we have the following theorem.

Theorem 3.1 Let & € [ag, 7] satisfy the following conditions, and let g be an optimal solu-

tion of (QP(«)).
(i) min(QP(@)) =0
(i) min(QP(a)) > 0 for each a €] —r,a]
Then, & and Dy + aw are the optimal value and an optimal solution of (QDC), respectively.

Let a € [ap, r[. If g € R™ satisfies the following conditions (KKT1) and (KKT2) with a
Lagrangian multiplier x4 € R, then g is called a KKT point of (QP(«)).

(KKT1) § — uVh(z) =0, for some § € 9,5(y; ), that is,
2A(s)y — b(s,a) — 2uy = 0 for some s € S,

(KKT2) 7(g;a) =0



S

where € = 2A(8)y — b(s, ), A(s) := Zsiﬁi, (8, ) := Z s;b' () and
i=1 i=1

S = {SERmizSi:L 31,...,3m20}.

i=1
Then, we have the following theorems.

Theorem 3.2 (See, e.g., Theorem 4.2.8 in [1]) Let o € [avp, r]. Each locally optimal solution
of (QP(«)) satisfies (KKT1) and (KKT2).

Since A; ( = 1,...,m) are symmetric positive definite matrices, A(s) is an n x n sym-
metric positive definite matrix for each s € S. Let A\i(s) € R (i = 1,...,n — 1) and p(s)
(i=1,...,n— 1) satisfy the following conditions for each s € S.

s)p'(s) = \i(s)p'(s), i=1,...,n—1,
| i
)

We note that \;(s) and p(s) are an eigen value and an eigen vector of A(s) respectively, for
each i € {1,...,n —1}. Let P(s) := (p'(s),...,p" '(s)) € R V>V Then, P(s) is an
orthogonal matrix and satisfies the following.

P(s)TA(s)P(s) = diag (A1(8), ..., A_1(8)) =: A(s)

By fixing s € S and replacing y by P(s)z (s € R"!), (KKT1) and (KKT2) can be rewritten
as follows.

(KKT1) 2A(s)z — b(s,a) —2uz = 0,_1,
(KKT2) z"2 —r(a)?=0

where b(s, a) = P(s)Tb(s, ).
We note that & € R™ is a globally optimal solution of (QDC) if and only if there exists
z € R* ! satisfying

e T=DP(s)z +w'zw
e Z satisfies (KKT1) and (KKT?2) for some s € S, where a = w'&

To find an approximate solution of (QDC), we propose an algorithm for listing z satisfying
(KKT1) and (KKT2) for any a € [ag,7] and s € S.



4 Procedures for listing KK'T points

For given a € [ag, 7] and s € S, we define z(u;8,a) : R — R* ! and ¢(p;8,a) : R — R as
follows.

(A(s) = L-1)"'b(s, ),
( 1 ,04) (ms a) —r(a)?

Z — ()’
=1
For each u € R, z(p; s, o) satisfies (KKTl). Moreover, if ¥ (p; s, ) = 0 holds, then z(u; s, @)
d
satisfies (KKT2). On R\{A1(s),...,\n_1(s)}, we obtain the derivative d—l/)(,u; s,a) and the
m
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second derivative ﬁz/)(,u; s, ) as follows.

z(p; 8, @) =
U(p; s, a) =

Nl\DIH

Let T;(s) (i = ,n(s )) e line segments defined as follows.

Ti(s) =] — 00, M (s)],
Ty(s) == Ai1(8), Ni(s)], i =2,...,n(s) — 1,
Tos)(8) =] An-1(8), +o00l.

Here, /A\l(s)7 . ;\n(s)_l satisfy the followings.
e For each i € {1,...,n — 1}, there exists j € {1,...,n(s) — 1} such that \;(s) = A;(s).
o 0<A(8) < Aa(8) <+ < Apgeya(s).
From the definition of T}(s) and A;(s), Ti(s) is nonempty for each i € {1,...,n(s)}. More-
over, by (2), since d—zw(,u; s,a) >0, ¥(p; s, ) is a strictly convex function with respect to

pon each T;(s) (i =1,...,n(s)). Therefore, we can list KKT points of (QP(«)) by utilizing
a standard algorithm for solving nonlinear equations (e.g., Newton method).

5 Procedure for updating a parameter for the para-
metric programming problem

By Assumption (A2), we have min(QP(ay)) > 0.
For each a € [, r[, we define L(«) as follows.

L(a) = {(z",a)" : [z|]* =1* — o®}.
Then, the following theorem holds.



Theorem 5.1 For each o, 8 € (o, 7| and z, € L(a), there exists zg € L(B) satisfying
||(zg,ﬁ)T — (2L, 0)TP =2 — 2083 + 2\/r2 — B2Vr? — a2 =: (B, ).

For each o € [ag, r[ and 1 € [ag — a, 7 — af, we have the followings.
pla+mn,a) =2r* =20 = 2an —2y/12 — (a +1)*Vr? — a2,
2(a+n)vVr? —a?
—(a+n)?
0 2r2\/r2 — a2
a 2¢(Oé+777 >_ ( TQ_(OC+T])2>3

Hence, ¢(av+1n, @) is a strictly convex function with respect to 1 on [ag— «, r — . Moreover,

)
0_n¢(a 1, 0) = 20+

since ¢(a, ) = 0 and (%gb(a,a) = 0, we have ¢(a +n,a) > 0 for each n € [ag — a, 7 — o]
(n # 0). From the following theorem, we obtain a Lipschitz constant of g.
Theorem 5.2 For each o, €] —r,7[, (2),a)" € L(a) and (z5,8)" € L(j), the following
inequality hold.

9(P(8)25:8) — §(P(8)za; )| < (2rAu(s) + b(s, @)Dl (z5, ) " = (25.8) ",
where \.(8) is the mazximal eigen value of A(s).

From the strict convexity of ¢ with respect to 1, Theorems 5.1 and 5.2, we have the following
theorem.

Theorem 5.3 Assume that o €] — r,r[ and 1 €]0, 7 — «f satisfy the following inequalities.
R0
g S ;
AT = o) + bt )l
where P(s)z(a) € argmin{g(P(s)z: (z,«a) € L(a)}. Then, for each n €]0,7|, g(P(s)z(a+
n);a+mn) >0, where P(s)z(a+n) € argmln{g( (s)z:(z,a+mn) € L(a+n)}.

By Theorem 5.3, for given s € S, we propose the following algorithm LKKT for listing KKT
points.

Algorithm LKKT

Step 0: Set a tolerance § > 0 k := 1. Calculate an optimal solution of (QP(«yp)). Set k :=1
and go to Step 1.

Step 1: Find 7 €]0, 7 — ax] satistying
g(Pz(ok +mi); 8, )
2rAi(s) + [[b(s, o)

¢<Qk + Mk, & )

Go to Step 2.
Step 2: Calculate Z(ay + 1 + d) by executing Newton method. Go to Step 3.

Step 3: If G(Pz(ay+n,+0); 8, ) < 0, then stop; (D, w)((Pz(cx+mr+0)) T, g +mp+0) "
is an approximate solution of (QRC). Otherwise, set g1 := oy + 1 + 9, k <+ k+ 1,
and return to Step 1.



6 Branch and Bound Procedure

In this section, we propose a branch and bound procedure to execute Algorithm LKKT
throughout S.

6.1 Subdivision Process

In order to calculate Lagrangian multiplier vector s € S, we utilize the bisection which is
one of the classical subdivision processes. .
Let Sy := S and S; := {S1}. Moreover, for each k > 0, we set Sy, and Sk as follows.

Sy € argmax{diam S : S € S} (3)

Sirr = (S ULS, S"H\{Sk} (4)

Here

S":=co (V(Sk) U{v})\{v"},
S" = co (V(Sk) U{v})\{v'},

. v 4 V"
V=

2 7
v’ and v" € V(Sy) satisfy [|[v' — v”|| = diam Sk,
V' (Sk) is the vertex set of Sy.

Since S is an (m — 1)-simplex, all elements of S, are (m — 1)-simplices for each k > 0.
Moreover, we have the following proposition and theorem.

Proposition 6.1 (See [2], Proposition IV.2) Assume that the sequences { Sy} and {Sy} are
generated based on (3) and (4), respectively. Let an infinite subsequence {Sk,} C {Sk} satisfy
Skyi1 C Sk, for each g > 0. Then, the following statements hold.

(i) diam Sy,,,, < %gdiam Sk, for each ¢ >0

(ii) lim diam Sy, =0

q——+00

Theorem 6.1 Assume that the sequences {Sy} and {Si} are generated based on (3) and
(4), respectively. Then, lim diam Sy = 0.

k—+o0
From Theorem 6.1, we notice that Sk is empty for some k > 0 by (4) by the following.
Ser1 = (S\{Sk ) U{S € {9',5"} : diam S > 7}. (5)

Here, 7 is a positive real number as a tolerance. Then, by utilizing the following stopping
condition, the branch-and-bound procedure proposed in this section terminates within a
finite number of iterations.

(SC) If S = 0, then stop.



6.2 Lower Bound
The following theorem holds.

Lemma 6.1 Lets',8> € S, 4,5 € {1,...,n—1} satisfy A\;(8") = \i(8"). Then, the following
inequality holds.

Xi(8%) = (3] < Amax|3” = 3]

Amax = max{A :qg=1,...,m},
Ao A o all eigen values of A, satisfying 0 < A] < A <. <AL

" ‘n—1
Then, there exists 6 > 0 such that |\;(s) — \i(81)| < € for each j € {1,...,n — 1} satisfying
)\j(él) = )\2(51), and s € SN B?(él,é)

Theorem 6.2 Let s',s* € S, {t;,} CJ0,1] a sequence satisfying t, — 0 as k — +oo
and s(k) = (1 — t;,)8* + t8% for each k. Then, N\i(s(k)) — X\i(s') and A(s(k))p'(s!) —
Ni(sY)p'(s') as k — +o0 for eachi € {1,...,n —1}.

6.3 Algorithm

In this section, we propose a branch and bound procedure for calculating a globally optimal
solution of (QDC).

From the following theorem, we notice that at least one feasible solution can be calculated
over each maximal connected subset of G\int H by executing algorithm LKKT throughout
S.

Theorem 6.3 For each mazimal connected subset of G\int H, there exists a KKT point for
(QDC).

In order to execute Algorithm LKKT throughout S, we propose a branch and bound
procedure as follows.

Algorithm BBP

Step 0: Set tolerances 7,p > 0, S; = {S}, ' = qpyw, k =1, Go to Step 1.

Step 1: If S, = (), then stop; x* is an approximate solution of (QDC). Otherwise, go to
Step 2.

Step 2. Choose S; € S, satisfying diam Sy, = irgnzgx diam S. Set s, as follows.
S

where k!, ..., k™ are all vertices of S;. Go to Step 3.

Step 3: Execute Algorithm LKKT with s* selected at Step 2. Go to Step 4.
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Step 4: If Z calculated by executing Algorithm LKKT satisfies £ € G\int H and w'z <
w'xF, then ! := &. Otherwise, " := x*. Go to Step 5.

Step 5: Choose k/,k” € {k',..., K™} satisfying ||’ — k"|| = diam S;. Update Spi; as
follows.

(S U{S", S"})\{Sk}, if diamS" > p and diam S” > p,

S (S U{S'H) \{Sk}, if diam S” > p and diam S” < p,
MY (S U{S"D\{Sk},  if diam S’ < p and diam S” > p,
Si\{Sk}, if diam S” < p and diam S” < p,

where S' := co ({k',..., k™ &R}\{K"}), §" := co ({k',..., k™ K}\{K'}), and & :=
P

2

. Set k + k + 1 and return to Step 1.

Since Sy is bisected at Step 5 of Algorithm BBP, by setting a tolerance p to a positive
number, the routine between Step 1 and Step 5 is terminates within a finite number of
iterations (see, e.g., Theorem IV.1 and Proposition IV.2 in [2]).

7 Conclusions

In this paper, we propose Algorithm LKKT for listing KKT points of (QP(«)). Moreover
by combining Algorithm LKKT with a parametric optimization method and a branch-and-
bound procedure, we present Algorithm BBP for (QDC).
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