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1 Introduction

We discussed the spectral structure for a quantum graph corresponding to a variant
graphene with bumpy boundaries in the RIMS Workshop “Spectral and Scattering
Theory and Related Topics” on 1st December, 2021. The topic is based on the paper
[4]. In this note, we report the statements which we shared in the workshop. We note
that the proof of theorems in this note is described in [3, 4]. The spectral analysis for
materials with boundaries draws our attentions from the point of view of topological
insulators. Topological Insulators behave as insulators in their interior (Bulk), but
their surface (Edge) contains conducting states. This properties can be found in the
spectral analysis of a Bulk Hamiltonian and Edge Hamiltonian as an energy located
in the spectral gaps of a periodic media, but in the absolutely continuous spectrum
of the periodic media with boundaries. Thus, it is important to compare the spectral
structure of Schrodinger operators in the whole space without boundaries and the half
space with boundaries.
For example, Graf and Porta [2] considered

e the k-parametrized bulk Hamiltonian
(Hop)n = A(R)u—1 + AK) Y1 + Vu(K)y, neZ
for Y = (Yn)nez € (X(Z;CN), k € S! := [-m, ) and
o the k-parametrized edge Hamiltonian
(HEp9)s = ARt + AR Yror + Vi, neN
for v = (Yu)uen € C2(IN; CN) with ¢ = 0.

Here, A(k), V,.(k), Vfl(k) are suitable N X N matrices. They constructed 2 indices (Bulk
Index and Edge Index) and their correspondence (Bulk-Edge Correspondence). Putting
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their model corresponds to fiber operators for Bulk and Edge Hamiltonians on graphene:

( not @ +e My )

A ik\,/,A
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(He(O)p)n := AP + AK) Pia + Valk)pn = —
The operator Hg(k) is a fiber operator of the standard Laplacian on Graphene:

A — B B B
(HGHD)nI/HZ T _(anlrnZ + ny,ny—1 + 1’11—1,1’12)’

B — A A A
(HG¢)nlr”2 T _(¢n1,n2+1 + ny+1,ny + ¢n1,ﬂ2 4

In this study, we consider Schrodinger operators on variant graphenes with bumpy
boundaries (Fig. 1) from the point of view of quantum graphs [1] and discuss their
spectra. This note is organized as follows:

Section 1. From the point of view of the quantum graph, we define our Schrodinger
operator and introduce its fiber operators.

Section 2. We state main results.
1) Introduce spectral discriminants D,(u, A) and D.(u, A).
2) State main theorems.
3) Draw a picture of Dispersion Relations numerically.
4) Compare the graphene with zigzag boundaries with the variant graphene with
bumpy boundaries.

Section 3. We state an outline of the proofs. Especially, we note that Cramer’s Rule
works to determine the spectrum.

We state the definition of our quantum graph corresponding to the variant graphene
with bumpy boundaries seen in Fig. 1. Let I” = (E”, V") be the metric graph appearing
in Fig. 1. Here, E’ and V" are the set of edges and vertexes of I'". Each vertex in V°
is uniquely identified by the labels A(n, k), B(n, k), C(n, k) and D(n, k) as seen in Fig. 1.
Furthermore, we assume the followings:

D(-1k-1)

Figure 1: variant graphenes with bumpy boundaries



Figure 2: The definition of index (1, j, k) of each edge e € E".

(1) The length of each edge e € E’ is equal to 1.

(2) The potential g € L*(0, 1) is real-valued and bounded from the below.
Due to the assumption (1), we identify each edge ¢ € E* with the interval (0, 1). Under
these assumption, we define the variant edge Hamiltonian H’ in L%(I") as follows: For
any e € E’, the variant edge Hamiltonian H’ acts as

(H')ex) = =y, () + 9(@)ye(x),  x€(0,1) =e, (11)
where y € Dom(H") satisfies

(a) the Kirchhoff vertex condition at each v € V" \ 9T and

(b) the Dirichlet boundary condition y = 0 on JI".

To explain the Kirchhoff vertex condition, we give an address (n, j, k) as seen in Fig. 2
uniquely to each edge e € E’ and put Yle, ;s = Yn,x for a function y on I'. Then, the
Kirchhoff vertex condition at B(, k) is given as

Yn1k(1) = Yu24(0) = Yuer-1(1), —y;,l,k(l) + y;,z,k(O) - y;,6,k_1(1) =0.

_
Since H’ is periodic with respect to the vector a, := B(0,0)B(0, 1), we construct a
direct integral decomposition (see [5])

du
b N
H ‘fjH(“’zn'

where u € S! := [-7;, ) is a quasi-momentum and H’(y) is a fiber operator of H’ defined
as follows. At first, we pick the fundamental domain as in Fig. 3. In Fig. 3, we consider
the part of k = 0 of I"’. In the case of k = 0, we dropped the index from each edge. We
describe the definition of fiber operators H’(i) for H’. For y = (y,,;) € dom(H"(u)), the
fiber operator H’(u) in Lz(l“g) acts as

(H (0)y)e(x) = =y, () + q(x)ye(x), x € (0,1) =e € E,
where y € dom(H"(u)) satisfies



Figure 3: A fundamental domain I’g = (Eg, Vg)

(a) the Kirchhoff vertex condition at Vo € intV?,
(b) the Dirichlet boundary condition ¥ = 0 on JI"” and
(c) the quasi-periodic boundary conditions:

Yn1(1) = ¥n200) = e M yu6(1), =y, (1) + 1, ,(0) — ey, (1) = 0.

Then, we have the unitarily equivalence (1.1). Let m be the Lebesgue measure on
S' := [-m, ). According to [Reed-Simon IV, Section XIII], we have the following
spectral correspondence.

(1) A € o(H")if and only if m({u € SY| o(H'(w)) N (A —€, A +€) # 0}) > 0 forany e > 0.
2) Ae ap(H") ifand only if m({u € S'| A e Gp(Hb([J))}) > 0.

Due to these correspondence, we notice that it suffices to study o(H"(u)) in order to
study o(H").

2 Main Results

In this section, we introduce the main results from [4]. At first, we prepare notations to
describe them. Expand g to the 1-periodic function. Let op be the set of eigenvalues of
the spectral problem

-y"+qy=Ay on (0,1) and y(0)=y(1)=0.

Note that op = {n*n?| n € N}if g = 0. Moreover, let O(x, A) and ¢(x, 1) be the solutions
to —y” + qy = Ay in R satisfying

(0(0,A),0(0,A)) =(1,0) and (¢(0,A),¢'(0,A)) =(0,1),
respectively. Furthermore, we put

0(1,A) +¢’(1,A)
2

0(1,A)—¢'(1,A)

AQA) = 5

and A_(A) =
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If g =0, then
sinx VA
\/X 7

Under these notations, we introduce spectral discriminants for H’(u). For each (g, A) €
S!' x R, we define

O(x,A) = cosx VA, ¢(x,A) = A(A)=cos VA and A_(A)=0.

Dy(u, A) = d3(1, A) = 16sin? %

and

2 B

4/
where d(u, 1) = 9A% (1) — A%2(A) — 1 —4sin* £ and d(u, A) = 9A%(A) — A2 (A1) — 1 —4cos? &.
We define

D.(u, A) = d*(u, A) — 16 cos

D;:={A¢opl Ds(u,A)<0, D.(u, A)<0},
Dy:={A¢apl Di(u,A)<0, D.u,A)>0),
D;:={A ¢ op| Ds(u,A)>0, D.(u,A)<0},
Dy:={A ¢ opl Ds(u,A)>0, D.(u,A)>0}.
Putting
v H .M
Df={A¢ aD| A(p, 1) > dcos s, diu,A) > 4sin g
and

D, := {/\ ¢ UD| d.(u,A) < —4cos %, ds(u, A) < —4|sin%

L

we have the decomposition D, = D; UD;. Then, we have the followings on the spectra
of the fiber operator H"(y):

Theorem 2.1. ([4, Theorem 1.1])
(0) Forany u € S, op C a,(H"())-
(1) If u € S* \ {0}, then Dy C o(H"(w)).
(2) If u € S*\ {0}, then D, C a(H"(w)).
(3) If u € S*\ {0, £37}, then D5 C o(H"(1)).
(4) If p € S'\ {0, £7}, then D} C p(H?(w)).

This theorem does not deal with D;. The statements on the area D, are more
complicated. To state the corresponding statements, we use the abbreviations

(91/ 91/ P1, (Pi) = (6(1/ /\)/ 6’(1/ A)/ (P(lr /\)/ 90’(1/ A))

Then, we have the followings:
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Figure 4: The dispersion relation for g = 0.

Theorem 2.2. ([4, Theorem 1.2]) Assume that u € S* \ {0, i%n, +7ttand A € Dj.

(A) Assume that 01 + 2] # 0 and 3A + A_ = 0.

(1) If 31t < |yl < 7, then A € a,(H"(1)).
(2) If0 < |ul < 37, then A € p(H"(p)).

(B) Assume that 01 + 27 # 0and 3A + A_ # 0.

(1) Ifd;— VDs+d. — VD. +8 # 0, then A € p(H"(w)).
(2) Ifds — VDs +d. — VD, +8 =0, then A € ap(H"(y)).

(C) Assume that O1+2¢} = 0and qiseven. If 21 < |u| < 7, then A € o,(H"(1)). Otherwise,
A € p(H’ (1)

(D) If 61 + 29}, = 0 and q is not even, then A € p(H"(u)).

In the case of g = 0, we see that 0, + 2¢] = 0 and 3A + A_ = 0 is equivalent. So, we
derive only the results (B) and (C) for 4 = 0. In order to understand the meaning of
Theorems 2.1 and 2.2, we give the dispersion relation in the case of 4 = 0. Let M; and
M2 be

I, in}} ,

7
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Figure 5: graphenes with zigzag boundary (without bumps)

where
t(u)={AeD;| d— D, +d.— /D, +8 =0}

and
6(u) ={AeD;|l 3A+A_=0}.

Then, we derive a picture of the dispersion relation as seen in Fig. 4.

In order to compare the results for our quantum graph with the ones corresponding
to graphene with standard zigzag boundaries discussed in [3]. Let I'* = (E*, V¥) be the
metric graph appearing in Fig. 5, where Ef and V* are the set of edges and vertexes
of I, respectively. The difference between I'* and I'” is whether or not the bumps are
present. In a similar way to H’, we assume that the length of each edge e € E* is equal
to 1. For any e € E¥, the edge Hamiltonian H* acts as

(H'y)(x) = v/ (x) + (x)y.(x), x€(0,1) ~e,

where the potential g € L?(0, 1) is the same one as H’. Let the function y € Dom(H*) be
characterized the following two boundary conditions:

(a) the Kirchhoff vertex condition at any v € V#\ oT*.

(b) the Dirichlet boundary condition y = 0 on Jr*.
Utilizing the periodicity of I'*, we obtain the fiber operator H*(u) to attain the unitarily

equivalence
du
o #
H f: H"(u) o
L

D(u, A) = d*(u, A) — 16 cos? 5

Then, the function

for A ¢ op and p € S' \ {7} plays the role of spectral discriminant for H¥, where

o M

d(u, A) = 9A*(A) — A2(A) — 1 — 4 cos 5
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Figure 6: The dispersion relation for g = 0.

Theorem 2.3. ([3, Thm 2.7.]) Assume that u € S'\ {xm}.
(0) op C G(Hﬁ(],l)).
(1) Assume that A ¢ op and D(u, A) < 0.

® A € o(H ().

@ IfD(u,A) <0, then A & a,(H ().

® If D(u,A) = 0and u # £2m, then A ¢ o,(H ().
(2) Assume that A ¢ op and D(u, A) > 0.
@ If 01 +2¢, # 0, then A € p(HF(w)).

@ If 01+ 29, = 0and u # +3m, then conditions

(i) 2rc < |ul < 7, (ii) A € o, (H (), (iii) A € o(H (1))

are equivalent.

Based on Theorem 2.3, we derive a picture of the dispersion relation for H¥. Com-
pared Fig. 4 with Fig. 6, we find the eigenvalue line M; in Fig. 4, which appears due

to bumpy boundaries.

3 Outline of the proofs

The complete proofs of Theorems 2.1 and 2.2 are given in the original paper [4]. Thus,
we give only an outline of the proof of Theorem 2.1 (2) here. Especially, we stress that

a Key Tool to prove it is the Cramer’s Rule in Linear Algebra:
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Theorem 3.1. Let aj,ay,...,a,,b,x = (x1,x3,...,x,) € R"and A = (a; a, ... a,).
For a linear equation Ax = b, we put

Ai=(@ -+ a1 b ag - ay).

If det A # 0, then we have
_ det Al‘

YT qetA

We utilize this theorem in the final phase of the proof of Theorem 2.1 (2). At first,
we explain where the discriminants D,(u, A) and D.(u, A) are from. For a solution
v =(Yn;) € dom(H"(u)) to H’(1)y = Ay on the fundamental domain T(") (see Fig. 3), we
define the 4 X 4 transfer matrix M(A) = (m;;(1)) as

Yu+1,1(0, A) Yn1(0,A)
y:1+1,1(0’ /\) _ y:11 (O/ /\)
a0 ) [TMD 00y | e
y;l1+1,4(0’ A) y;lq,4(01 /\)

By straightforward calculations, we derive the components of M(A) and notice it
has a block form:

Lemma 3.2. Let € S'\ {0} = [-75,0) U (0, ) and A ¢ op. Then, we have my; = Qi(f:ifel
and my, = %ﬁf%. Furthermore, we obtain the block form
A ¢ B
M(1) = ( . ) (3.1)
where
my my2
A = ( 2Amy1—64 _1 + 2Amyp )/
P1 P1
—my —M2
B = —2Amq1—6e —el“ _ 2Amyy .
$1 P1

With the help of the block form (3.1), we directly derive eigenvalues of the transfer
matrix:

Lemma 3.3. Assume that u € S'\ {0} and A ¢ op. Then, the eigenvalues of M(A) are given by

ot = ds(p, A) £ /Ds(p, A)

s U
4

oo,
4ie~7 sin

and

. Adc(u,A) £ y/De(u, 1)
. ¢
1

iﬁ
4e~ 7 CoOs
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Put S = {pJ, ps1 N {pf, p7}. For the most part, each eigenvalue p = p;, p: are simple:
Lemma 3.4.
(1) If u € S*\ {0}, we have S = O for almost every A € D;.
(2) If u € S*\ {0}, we have S = 0 for every A € D;.
(3) If u € S'\ {0, 37}, we have S = O for every A € Ds.
(4) If u € S*\ {0}, we have S = 0 for every A € Dy.
Moreover, the eigenspace V(p7) and V(p;) can be explicitly written.

Lemma 3.5. Assume that u € S*\ {0}, A ¢ op and S = 0. Then, there exists some x> and
xZ € C? such that V(pZ) = (wr) and V(p¥) = (wZ), where

+
+ XC + X
[ = v + 4 Ws = i
erx; —e

Moreover, x* and x € C? are explicitly given'.

< i+

)eC4.

Nl

X

+
S

These are spectral properties of the transfer matrix M(A). Next, we discuss the
fundamental solutions to H’(u) = Ay for A ¢ op. Taking the Kirchhoff vertex condition
and the Dirichlet boundary condition into account, we have the following:

Lemma 3.6. Let A ¢ op and u € S'. Then, any solution y to H*(u)y = Ay on I} satisfies
y{m(O, A) = —y{m(l, A). Moreover, we have yi,1(0' A) = 2Acy and y11(0, A) = c1¢1 if y satisfies
y{),z(O, A)=c eC.

Thus, we construct the fundamental solutions P = (p,,;) and Q = (4,,/) € dom(H"(u))
to H"(1)y = Ay with the initial conditions

p11(0, A) ¢1 91,10, A) 0
P, (0,1) e | 2 q;,(0,4) ce |0
P1,4(0, /\) L 0 ’ (]1,4(0, /\) 2 0 /
p140, 1) 0 7, ,(0,A) 1

respectively. For the purpose, we prepare notations. Let P> and P; be the projections
to the eigenspace V(p}) and V(p;), respectively. Moreover we hereafter assume that
A ¢ op, u € S'\ {0} and dim V(p¥) = dim V(p7) = 1. Namely, we only consider (u, A)
satisfying S = 0 (see Lemma 3.4). Putting efc = Prey, e— =Pre;, e 5 = Pfe,, e;—'rs = Pfe,,
we consider the spectral decompositions

— At - + - — At — + —
e =e +te +e +e and e, = e,.te, +e +e,.

Forj=1,4,{=12and e =s5,c, we define a;,, and §;,, by

.
+ _ +
ef,.—( te Piee Yire Bige ) :

'However, I avoid showing the explicit form here. See [4] for the explicit expression to x* and x*.
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We furthermore introduce M, (1) and M_(A) defined as follows:

yn,Z(O/ /\) yn,1(0, /\)
y;z(or A) y;ﬂ(O’ /\)
, =M,(A ,
130, 1) M| Yo, 1)
y,5(0,1) y;,4(0,2)
yn,S(O/ A) yn,l(of A)
Vs 0,4 |_ Yon 0,1)
e, ) [T MDY 0, 1)
¥,,6(0,4) Y40, 1)

In a similar way to the transfer matrix M(A), the components of M,(A) and M_(A) are

explicitly written (see [4]). For j =2,3,5,6,{ =1,2 and @ = 5,c, we define a;—t&‘ and ,B;ft,,.
by
+ + + + T +
(@0 Biee @ Bira ) =Mi(er,, (3.2)
T
(a2, i @iee Bire) =M-(Vei.. (33)

We note that the values a;—t&. and ﬁ;—t&. are defined forall j = 1,2,3,4,5,6, { = 1,2 and
e = 5,c. Under these notations, we have he following:

Lemma 3.7. Let y = (Yu,))n ez, be a solution to H(u)y = Ay with

.
( y11(0,4) y1,(0,4) y14(0,4) y7,(0,1) ) =cieq + 2.
Then, forn € Nand j =1,2,3,4,5,6, we have

Y6, A) = (1) Hean o + ety ) + (02)" T eamyy o + €2y )
+ ()" e + i) + (p3)" T ey + ey,

where 17]7. = r]jft,l.(x, A) = aj’.—j{,,ﬂ(x, A) + ,B]f{,,.(p(x, A)fort =1,2and e =s,c.

For (c1,¢2) = (1,0), we have y,i(x,A) = p,j(x,A). On the other hand, we have
Yn,i(X,A) = q,(x, A) for (c1,c2) = (0,1). Since the eigenvalues p; and p; are explicitly
written, we make sure the following directly.

Lemma 3.8. Assume that A € Dy and p € S'\ {0}. Then, |pZ| =1, |pz| > 1 and |p]| < 1 hold
true.

Under these preparations, we give the proof of Theorem 2.2 (2).

Proof of Theorem 2.2 (2). Pick A € D,, arbitrarily. We claim the following.

Claim: There exists some (c1,c2) # (0,0) satistying il + Qo] = 0 forall j =
1,2,3,4,5,6.

If this claim holds true, then ||y, ill;2(,1) is uniformly bounded on n € N and j. Since
there exists a generalized eigenfunction to H(u)y = Ay, we have A € o(H’(w)).

11



To show the above claim, we want to find (cy, ¢;) # (0,0) such that
c1(a7,,0(x, A) + 7, @(x, M) + eaa7, O(x, A) + B, p(x, A) =0,

namely, oy, +toa, =0 and 1B+ P, =0 forany j=1,2,3,4,5,6. Dueto

Ay 1c Apoe
e . = '81_'1'C and e, = '81_'2'C ,
1,c a 2,c a

4,1,c 4,2,c

ﬁ 41, ﬁ 4,2,

let us find (c1, ¢2) # (0, 0) such that
cleic + cze;,C =0
at first. Prepare another form of spectral decompositions

_ ot - + N — Ay +art — Ay
€ = el,c + el,c + el,s + el,s =YW, + YW, + Vs Ws + Vs Ws,

ey=e, +e, te, +e, =0 W +0 W, +0;wW +0;w,.
Then, we want to find (cy, ¢2) # (0, 0) such that
Cl)/c_ + C25C_ =0.

If y- # 0, then (c1, c;) = (67, —y7) is the desired one.
To prove y; # 0, we utilize the Cramer’s rule. The Cramer’s rule yields

det(w} e; w; wy)

Ve = det(w} w; wi wy)’

It follows by Lemma 3.4 that det(x} e]) # 0. Putting

i=(%)

we have

+ + -
x: e X X
i iu

det(w; e w! w)) =
‘ s ezxy o —erx! —ezx

m
2e2x; e?e; 0 o©

— 7,0 + -
—Ze”l X; X

Therefore, we derive y; # 0. Taking (3.2) and (3.3) into account, we also derive
oca;  + (—yc‘)a].‘,zlc =0and OBt (—y;)ﬁ;h =0forj=23,5,6. m]
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