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Abstract

In this article, we review the results in [9] on the Agmon estimate for dis-
crete Schrodinger operators. We first discuss the semiclassical analysis for discrete
Schrédinger operators with emphasis on the microlocal analysis on the torus. We
discretize a semiclassical continuous Schrodinger operator with mesh size propor-
tional to the semiclassical parameter. Under this setting, we show the Agmon
estimate for eigenfunctions. The natural Agmon metric for the discrete Schrédinger
operator is a Finsler metric rather than a Riemannian metric. It turned out that
Klein-Rosenberger (2008) already discussed the semiclassical Agmon estimate in
terms of the same Finsler metric by a different argument in the special case of a
potential minimum. We also show the Agmon estimate and the optimal anisotropic
exponential decay of eigenfunctions for discrete Schrodinger operators in the non-
semiclassical standard setting.

1 Introduction

1.1 Discrete Schrodinger operators

In this article, we review the results in [9]. We recall the discrete Schrédinger operator

Hu(z) = = Y (u(y) — u(x)) + V(z)u(z),

lz—y|=1

where u € (?(Z%).

If the potential V : Z¢ — R is bounded, we see that H is a bounded self-adjoint
operator. Of course, there are many works on discrete Schrodinger operators. We study
a semiclassical setting for discrete Schrodinger operators. We discuss the exponentially
small semiclassical estimate of the eigenfunctions in terms of a Finsler metric. We also
prove the optimal anisotropic exponential decay of the eigenfunctions for non-semiclassical
discrete Schrodinger operators.

1.2 Finsler metric

Finsler metric is a generalization of Riemannian metric. Roughly speaking, a Finsler
metric measures the length of tangent vectors by norms, while a Riemannian metric does
by inner products. The relation is similar to that between Banach space and Hilbert



space in functional analysis. The precise definition of Finsler metric is as follows ([2,
Section 1.1]). Suppose that a nonnegative number L(z,v) is given for any point = on a
given smooth manifold and any tangent vector v at x. We say that L is a Finsler metric
if the following hold.

1. L(z,v) is smooth near any (z,v) with v # 0.
2. L(x,\v) = AL(z,v) for any (z,v) and A > 0.
3. 0*L(z,v)? is positive definite for any (x,v) with v # 0.

In general, it may not be true that L(z,v) = L(z, —v). The Finsler metric in this article
satisfies L(z,v) = L(z, —v).

We discuss a relation between discrete Schrodinger operators and Finsler metric. This
relation appears if we study discrete Schrodinger operators from the viewpoint of semi-
classical analysis.

2 Semiclassical analysis for discrete Schrodinger op-
erators

2.1 Semiclassical analysis

We recall semiclassical analysis for the continuous Schrodinger operator
H®"(h) = —h*A +V(z) on L*(RY).
Semiclassical analysis studies its semiclassical (h — 0) behavior with emphasis on
P (z2,8) =€ +V(z) on T*R%

See for instance [16] for semiclassical analysis. We would like to consider a discrete
analogue. Since the discrete Laplacian is a bounded operator, the straightforward gener-
alization does not seem to be so interesting.

2.2 Discretization

If we discretize H°™(h) with mesh size 7 > 0, we obtain a discrete Schrodinger operator
H7(h) on ?(7Z%) defined by

H(Ru() = (ﬁ) S (uly) — ule)) + V(o).

-
|lz—y|=7

where z,y € 7Z% C R? and u € (?(7Z%).

There are several works on “lim, ,o H™(h) = H"(h)” for fixed h > 0. This is the
problem of the continuum limit. See [7],[13]. In this article, we set 7 = h and consider
the limit h — 0. It will be interesting to study 7 = h* for 1 < a < co. The continuum
limit formally corresponds to a = oo.



2.3 Semiclassical discrete Schrodinger operators

We then study

H(hyu(w) = = Y (uly) —u(@)) + V(x)u(z)

lz—y|=h

on 2(hZ?), where V : R — R. This is unitarily equivalent to the discrete Schrodinger
operator on (*(Z%) with the potential V (hx).

When d = 1, this was studied by Helffer-Sjostrand [6] in the context of the Harper
operator

Hopu(n) = %(u(n +1) + u(n — 1)) + cos(hn + 8)u(n)

on ¢*(Z). This operator is related to the problem of the 2d-electron in a periodic electric
potential and a periodic magnetic field. For general d, see the discussions in Subsection 3.5.

2.4 Microlocal analysis on the torus

We set T¢ = R?/27Z?. The coordinate of T¢ is denoted by & and the dual variable is
denoted by z. We identify functions on T¢ or 7*T? with those on R? or T*R? which are

21 Z%periodic with respect to &.
We define a(&, hDg) : C°(T?%) — C>(T?) by

& hDu(e) = ) [ [ al.a)e ) ands

for a € C°(T*T¢) and u € C°°(T%). Although this definition is based on the special
structure of the torus, we can employ the general theory of pseudodifferential operators
on manifolds.

2.5 Quantum-classical correspondence

The semiclassical discrete Fourier transform JFj, : £2(hZ?*) — L?*(T?) is defined by

Fru(€) = 2m)™2 > u(x)e w0,

x€hZ4

We then have

H(h) = FH(h)F," = (2 2cos&;) + V(hD)

j=1

= p(&, hDy),

where p(¢,x) = ijl(Q —2cos&;) + V(z) € C(T*T%). Thus our semiclassical setting

is natural from the viewpoint of semiclassical analysis and we expect “lim,_o H(h) =

p(& )"



2.6 The Weyl law

As an illustration of “limy,_,o H(h) = p(&, x)”, we present the following Weyl law. Assume
that V' € Cp°(R% R), limy, V() > 0 and there exists 0 < § < 1 such that

0°V ()] < Cal1 + [a])~" (1)

for any o € Z<,. Then for any fixed a < b < 0, the number Nj,;(h) of eigenvalues of
H(h) in [a, b] satisfies

Niagy (h) = (2mh)~Vol({(¢, @) € T"T’|a < p(&, x) < b}) + o(h™)

when h — 0.
The condition (1) comes from a technical reason. The proof follows the standard
strategy.

3 The semiclassical Agmon estimate for discrete
Schrodinger operators

3.1 Usual Agmon estimate

The Agmon estimate ([1]) describes the exponential decay of eigenfunctions. We recall
the semiclassical Agmon estimate for H°"(h) = —h*A + V(x). For E € R, the Agmon

metric is defined by
dsg™ =/ (V(x) — E).ds,

where ds is the length of the standard metric on RY. Note that this vanishes on the
classically allowed region Gp = {z € RV (z) < E}. This induces the (pseudo-)distance
di™ (x,y). Set dg™(z) = infyeg, dg™(z,y).

Then the semiclassical Agmon estimate roughly states that if (H*"(h) — E)u = 0 and
l[ul| 2(ray = 1, then |u(z)| < Cem((1==E™ @)=/ for small h > 0.

3.2 Strategy of the proof

We recall the strategy of the proof of the semiclassical Agmon estimate (see [12], [16,
Chapter 7] for details). We set HS*™(h) = er™)/h Heont(h)e=#(®)/h Then

H™(h) = (hD, + i0p(x))* + V (x).
Its semiclassical principal symbol is
(& +i0p(x))* + V(x) = € + V(x) — [9p(x)]* + 2i€ - Ip(x).

If [0p(x)]* < V(x)— E outside G, the elliptic estimate for H°"(h)— E proves the Agmon
estimate. We can take p(r) as a smooth approximation of (1 — &)dg" ().
We employ an analogous argument for H(h) though we work on the Fourier space.



3.3 Exponentially conjugated operator

We compute H,(h) = e?/PI/ME (h)e=r"P)/h - We have er"PO/MY (BD)erhDO/m - —
V(hDe). We set po(§) = >0 (2 —2cos&;) =437 sin® &,
Lemma 3.1. For p € C°(R%R),
PPl py(€)e PP = a, (€, hDg; h),
where a, ~ Y o hFa, (&, x) with a,, € C2(T*T?) and

ap,O(f) I) = pO(f - Zap(x)> l’)
If moreover
02 p(x)] < Cola)' ™1 for any o € ZL,, (2)
then a, € S° and a,) € S7".

Here
S™ = {a(+ h) € C°(T*T%)|[9¢0%a(&, x5 h)| < Ca p(x)™ 11},

where o and 8 range over Z%; and (z) = (14 2%)/2. The second part of this lemma is
used in the proof of the theorem presented in Section 4.

3.4 The Agmon-Finsler metric

We recall G = {z € R V(z) < E}. We want to find a nontrivial p such that p = 0 on
Gr and
Re (polé — ip(x)) + V(x) — E) >0

outside Gg. We note that

- 9p(x)
Repo(§ — idp(x)) > —4 > sinh’ %,

j=1

We set .
K,={{eR"| 4Zsinh2% < (V(z)— E);}.

j=1

Thus we want to find p(x) such that dp(z) € K, C T R
We define the Agmon-Finsler metric as the supporting functions of convex sets K;

L(z,v) = sup (€,v) for v € T,R? =R?,

(EK,

which gives the length of v € T,R? = R? in this metric. This induces a (pseudo-)distance
dg(x,y). We set dg(x) = dg(x,Ggr). We easily see that [(v,ddg(x))| < L(xz,v) by the
triangle inequality. Recall that the compact convex set K, is determined by its supporting
function as

K, ={¢ e R (¢, v) < L(z,v) for any v € R?}

([4, Section 4.3]). Thus ddg(z) € K,. Then we can take p(z) as a smooth approximation
of (1 —¢)dg(x).



3.5 Discrete Agmon estimate

Assume V' € Cp*(R%4R) and inf,ege V(z) > E for any § > 0, where Gp; is the o-
neighborhood of G in the Euclidean distance.

Theorem 1 ([9]). For any Cy > 0, &g > 0 and € > 0, there exist C > 0, hy > 0,
0<d<d, X, X € CP(RY0,1]) with

supp(l — x) C Gis, suppX C Gis \ Gpo/2
and p € C®(R% Rxg) with |(1 — e)dp(z) — p(z)| < € such that for 0 < h < hy,
Ixe” @ ulle < Cllxulle + Cllxe” " (H(h) — 2)ull2

for anyu € (*(hZ?) and z € [E—Cy, E+Coh]+i[—Cy, Cy|. In particular, if (H(h)—E)u =
0, [ullezpza =1, then |u(z)| < Ce=(=E@=)/h for small h > 0.

After preparing the manuscript [9], we learned that Klein-Rosenberger [10] already
introduced the same Finsler metric and proved the Agmon estimate in the case of a
potential minimum. The strategy of their proof is similar to that in Dimassi-Sjostrand [3,
Section 6] while our proof is similar to that in Nakamura [12] and is more microlocal.
Rabinovich [14] also studied the same semiclassical setting for general d and proved the
Agmon estimate though he did not discuss the relation with Finsler metric.

3.6 WKRB solutions near a potential minimum

We next discuss WKB solutions for the eigenfunction problem near a potential minimum.
Assume the potential V' € C*°(R%; R) satisfies

V(0) =0, oV(0) =0 and 9*V(0) > 0.
Take Ey > 0 such that there exists a unique o € Z%, with Ey = ijl Aj(aj+1/2), where
AL, ..., Aq are positive square roots of eigenvalues of 30V (0). Let d(z) = dy(x,0) be the
Agmon-Finsler distance to 0 € R? at energy 0 for this potential. Then there exist E; € R,
j =1, and a;(z) € C*(R?), j > 0, such that if E(h) ~ 372 W E; and a ~ > ha,
then
(H(h) = hBE(h))(a(z)e ") = r(z)e” /", r(z) = O(h>)

near 0 € R,

This suggests that the Agmon-Finsler metric is the natural notion for estimating the
tunneling effect for semiclassical discrete Schrodinger operators. The continuous case of
this was proved by Helffer-Sjostrand [5]. The proof for the discrete case follows the argu-
ments in [3, Section 3] with modifications for treating a Finsler metric. After preparing
the manuscript [9], we learned that this was already done by Klein-Rosenberger [11].



4 The non-semiclassical Agmon estimate for discrete
Schrodinger operators

4.1 Exponential decay of discrete eigenfunctions

Set
Hu(z) = — > (u(y) —u(@)) + V(x)u(z),

lz—y|=1

where z,y € Z?. Namely, we set H = H(1). We also take £ < 0. Assume that the
potential V : Z? — R extends to V : R — R such that

0°V (2)] < Ca(1+J2)) ™, 0< 0 <1, (3)
and li_m|w‘_>ool7(93) > 0. We set KE = {¢€ € RY 42?:1 sinh? %’ < |E|} and

pe(z) = sup (r,§).
(CKE

Theorem 2 ([9]). Under the above setting, for any Cy > 0 and € > 0 there exist C > 0
and 1 — x, x € (2, (Z%) such that

comp

e =72l < Cllxull + Cllxe™ 75O (H — 2)ul|e

for any u € (*(Z%) and any z € [E — Cy, E] + i[—Cy, Co].

In particular, if (H — E)u =0 and u € (*(Z%), then for any € > 0 there exists C. > 0
such that
for any x € 7.

The proof is similar to that of Theorem 1. Rabinovich-Roch [15] proved the exponential
decay of eigenfunctions for the discrete Schrodinger operator with a slowly oscillating
potential. In our notation, their exponential decay corresponds to |u(z)| < C.e=(1=2)r(@)

with a condition on sup, |9, p(x)]. Our condition dp(x) € K* is more precise and is
optimal as seen in the next subsection.

4.2 Optimality of the exponential decay
Fix any E < 0 and define uy € (2(Z¢) by

d
ug(z) = (2m) ™ /Td (4;sin2 % + |E|)_1€—i(%€)d§.

Then we have Hup(z) = Fug(z) if we set V(z) = —ug(0)~'d(z). Take a bounded
domain 0 € 2 C R? and set

pa(x) = sup(z, §).
e

Assume that
|uE(x)] < Ce—ro(@)

7



for some C' > 0 and any x € Z?. Then Q C K¥, which shows the optimality of Theorem 2.
This is easily seen in view of the relation between the exponential decay of a function and
the analytic continuation of its Fourier transform.

We note that Ito-Jensen [7] discussed explicit forms of ug(x) in terms of generalized
hypergeometric functions.

Acknowledgement

The author is grateful to Shu Nakamura and Kenichi Ito for discussions and encourage-
ment. The author is also grateful to Kouichi Taira for informing him of the article [14].
The author was supported by the FMSP program at the University of Tokyo and is
supported by JSPS KAKENHI Grant Number JP21J10860. This article is based on a
talk at a conference supported by the Research Institute for Mathematical Sciences, an
International Joint Usage/Research Center located in Kyoto University.

References

[1] S. Agmon, Lectures on Exponential Decay of Solution of Second-Order Elliptic Equa-
tion, Princeton University Press, 1982.

[2] D.Bao, S.S.Chern and Z.Shen, An Introduction to Riemann-Finsler Geometry,
Springer GTM 200, 2000.

[3] M. Dimassi and J. Sjostrand, Spectral Asymptotics in the Semi-Classical Limit, LMS
Lecture Series, Cambridge University Press, 1999.

[4] L.Hoérmander, The analysis of linear partial differential operators I, Second edition,
Springer-Verlag, 1990.

[5] B.Helffer and J.Sjostrand, Multiple wells in the semi-classical limit I, Comm. in
P.D.E, 9 (4) (1984), 337-408.

[6] B.Helffer and J. Sjostrand, Analyse semi-classique pour 1'équation de Harper (avec
application a I’équation de Schrédinger avec champ magnétique), Mémoires de la S.
M. F. 2¢ série, tome 34 (1988).

[7] H.Isozaki and A.Jensen, Continuum limit for lattice Schrédinger operators, arXiv:
2006.00854.

[8] K.Ito and A.Jensen, Hypergeometric expression for the resolvent of the discrete
Laplacian in low dimensions, Integr. Equ. Oper. Theory (2021) 93:32.

[9] K.Kameoka, Semiclassical analysis and the Agmon-Finsler metric for discrete
Schrédinger operators, arXiv: 2108.11078.

[10] M. Klein and E. Rosenberger, Agmon-Type Estimates for a Class of Difference Op-
erators, Ann. Henri Poincaré 9 (2008), 1177-1215.



[11]

[12]

[13]

[14]

[15]

[16]

M. Klein and E. Rosenberger, Asymptotic eigenfunctions for a class of difference op-
erators, Asymptotic Analysis 73 (2011) 1-36.

S. Nakamura, Agmon-Type Exponential Decay Estimates for Pseudodifferential Op-
erators, J. Math. Sci. Univ. Tokyo 5 (1998), 693-712.

S. Nakamura and Y. Tadano, On a continuum limit of discrete Schrédinger operators
on square lattices, J. Spectr. Theory 11 (2021), 355-367.

V. Rabinovich, Exponential estimates of solutions of pseudodifferential equations on
the lattice (hZ)™: applications to the lattice Schrodinger and Dirac operators, J.
Pseudo-Differ. Oper. Appl. (2010) 1, 233-253.

V.Rabinovich and S.Roch, Pseudodifference Operators on Weighted Spaces, and
Applications to Discrete Schrodinger Operators, Acta Applicandae Mathematicae 84
(2004), 55-96.

M. Zworski, Semiclassical Analysis, AMS, 2012.

Graduate School of Mathematical Sciences, The University of Tokyo,

3-8-1, Komaba, Meguro-ku, Tokyo 153-8914, Japan

E-mail address: kameoka@ms.u-tokyo.ac.jp

R RFAGRIR AR L3R AR R



