Scattering by the local perturbation of an open periodic waveguide in the half plane

Takashi FURUYA

Department of Mathematics, Hokkaido University

1 Introduction

Let k > 0 be the wave number, and let $\mathbb{R}^2_+ := \mathbb{R} \times (0, \infty)$ be the upper half plane, and let $W := \mathbb{R} \times (0, h)$ be the waveguide in \mathbb{R}^2_+ . We denote by $\Gamma_a := \mathbb{R} \times \{a\}$ for a > 0. Let $n \in L^\infty(\mathbb{R}^2_+)$ be real value, 2π -periodic with respect to x_1 (that is, $n(x_1 + 2\pi, x_2) = n(x_1, x_2)$ for all $x = (x_1, x_2) \in \mathbb{R}^2_+$), and equal to one for $x_2 > h$. We assume that there exists a constant $n_0 > 0$ such that $n \geq n_0$ in \mathbb{R}^2_+ . Let $q \in L^\infty(\mathbb{R}^2_+)$ be real valued with the compact support supp q in W. We denote by Q := supp q. In this paper, we consider the following scattering problem: For fixed $y \in \mathbb{R}^2_+ \setminus \overline{W}$, determine the scattered field $u^s \in H^1_{loc}(\mathbb{R}^2_+)$ such that

$$\Delta u^{s} + k^{2}(1+q)nu^{s} = -k^{2}qnu^{i}(\cdot, y) \text{ in } \mathbb{R}^{2}_{+}, \tag{1.1}$$

$$u^s = 0 \text{ on } \Gamma_0, \tag{1.2}$$

Here, the incident field u^i is given by $u^i(x,y) = G_n(x,y)$, where G_n is the Dirichlet Green's function in the upper half plane \mathbb{R}^2_+ for $\Delta + k^2 n$, that is,

$$G_n(x,y) := G(x,y) + \tilde{u}^s(x,y), \tag{1.3}$$

where $G(x,y) := \Phi_k(x,y) - \Phi_k(x,y^*)$ is the Dirichlet Green's function in \mathbb{R}^2_+ for $\Delta + k^2$, and $y^* = (y_1, -y_2)$ is the reflected point of y at $\mathbb{R} \times \{0\}$. Here, $\Phi_k(x,y)$ is the fundamental solution to Helmholtz equation in \mathbb{R}^2 , that is,

$$\Phi_k(x,y) := \frac{i}{4} H_0^{(1)}(k|x-y|), \ x \neq y, \tag{1.4}$$

where $H_0^{(1)}$ is the Hankel function of the first kind of order one. \tilde{u}^s is the scattered field of the unperturbed problem by the incident field G(x,y), that is, \tilde{u}^s vanishes for $x_2=0$ and solves

$$\Delta \tilde{u}^s + k^2 n \tilde{u}^s = k^2 (1 - n) G(\cdot, y) \text{ in } \mathbb{R}^2_+.$$
(1.5)

If we impose a suitable radiation condition introduced in [8], the unperturbed solution \tilde{u}^s is uniquely determined. Later, we will explain the exact definition of this radiation condition (see Definition 2.4).

In order to show the well-posedness of the perturbed scattering problem (1.1)–(1.2), we make the following assumption.

Assumption 1.1. We assume that k^2 is not the point spectrum of $\frac{1}{(1+q)n}\Delta$ in $H_0^1(\mathbb{R}^2_+)$, that is, every $v \in H^1(\mathbb{R}^2_+)$ which satisfies

$$\Delta v + k^2 (1+q) nv = 0 \text{ in } \mathbb{R}^2_+,$$
 (1.6)

$$v = 0 \text{ on } \Gamma_0, \tag{1.7}$$

has to vanish for $x_2 > 0$.

If we assume that q and n satisfy in addition that $\partial_2((1+q)n) \geq 0$ in W, then v which satisfies (1.6)–(1.7) vanishes, that is, under this assumption all of k^2 is not the point spectrum of $\frac{1}{(1+q)n}\Delta$ (see Section 6). Our aim in this paper is to show the following theorem.

Theorem 1.2. Let Assumptions 1.1 and 2.1 hold and let k > 0 be regular in the sense of Definition 2.3 and let $f \in L^2(\mathbb{R}^2_+)$ such that supp f = Q. Then, there exists a unique solution $u \in H^1_{loc}(\mathbb{R}^2_+)$ such that

$$\Delta u + k^2 (1+q) n u = f \text{ in } \mathbb{R}^2_+, \tag{1.8}$$

$$u = 0 \text{ on } \Gamma_0, \tag{1.9}$$

and u satisfies the radiation condition in the sense of Definition 2.4.

Roughly speaking, the radiation condition of Definition 2.4 requires that we have a decomposition of the solution u into $u^{(1)}$ which decays in the direction of x_1 , and a finite combination $u^{(2)}$ of propagative modes which does not decay, but it exponentially decays in the direction of x_2 .

This paper is organized as follows. In Section 2, we briefly recall a radiation condition introduced in [8]. Under the radiation condition in the sense of Definition 2.4, we show the uniqueness of $u^{(2)}$ and $u^{(1)}$ in Section 3 and 4, respectively. In Section 5, we show the existence of u. In Section 6, we give an example of n and q with respect to Assumption 1.1.

2 A radiation condition

In Section 2, we briefly recall a radiation condition introduced in [8]. Let $f \in L^2(\mathbb{R}^2_+)$ have the compact support in W. First, we consider the following problem: Find $u \in H^1_{loc}(\mathbb{R}^2_+)$ such that

$$\Delta u + k^2 n u = f \text{ in } \mathbb{R}^2_+, \tag{2.1}$$

$$u = 0 \text{ on } \Gamma_0. \tag{2.2}$$

(2.1) is understood in the variational sense, that is,

$$\int_{\mathbb{R}^{2}_{+}} \left[\nabla u \cdot \nabla \overline{\varphi} - k^{2} n u \overline{\varphi} \right] dx = - \int_{W} f \overline{\varphi} dx, \tag{2.3}$$

for all $\varphi \in H^1(\mathbb{R}^2_+)$, with compact support. In such a problem, it is natural to impose the *upward* propagating radiation condition, that is, $u(\cdot, h) \in L^{\infty}(\mathbb{R})$ and

$$u(x) = 2 \int_{\Gamma_h} u(y) \frac{\partial \Phi_k(x, y)}{\partial y_2} ds(y) = 0, \ x_2 > h.$$
 (2.4)

However, even with this condition we can not expect the uniqueness of this problem. (see Example 2.3 of [8].) In order to introduce a *suitable radiation condition*, [8] discussed limiting absorption solution of this problem, that is, the limit of the solution u_{ϵ} of $\Delta u_{\epsilon} + (k + i\epsilon)^2 n u_{\epsilon} = f$ as $\epsilon \to 0$. For the details of an introduction of this radiation condition, we refer to [5, 6, 7, 8].

Let us prepare for the exact definition of the radiation condition. First we recall that the *Floquet Bloch transform* $T_{per}: L^2(\mathbb{R}) \to L^2((0, 2\pi) \times (-1/2, 1/2))$ is defined by

$$T_{per}f(t,\alpha) = \tilde{f}_{\alpha}(t) := \sum_{m \in \mathbb{Z}} f(t + 2\pi m)e^{-i\alpha(t + 2\pi m)}, \qquad (2.5)$$

for $(t,\alpha) \in (0,2\pi) \times (-1/2,1/2)$. The inverse transform is given by

$$T_{per}^{-1}g(t) = \int_{-1/2}^{1/2} g(t,\alpha)e^{i\alpha t}d\alpha, \ t \in \mathbb{R}.$$
 (2.6)

By taking the Floquet Bloch transform with respect to x_1 in (2.1)–(2.2), we have for $\alpha \in (-1/2, 1/2]$

$$\Delta \tilde{u}_{\alpha} + 2i\alpha \frac{\partial \tilde{u}_{\alpha}}{\partial x_{1}} + (k^{2}n - \alpha^{2})\tilde{u}_{\alpha} = \tilde{f}_{\alpha} \text{ in } (0, 2\pi) \times (0, \infty).$$
 (2.7)

$$\tilde{u}_{\alpha} = 0 \text{ on } (0, 2\pi) \times \{0\}.$$
 (2.8)

By taking the Floquet Bloch transform with respect to x_1 in (2.4), \tilde{u}_{α} satisfies the Rayleigh expansion of the form

$$\tilde{u}_{\alpha}(x) = \sum_{n \in \mathbb{Z}} u_n(\alpha) e^{inx_1 + i\sqrt{k^2 - (n+\alpha)^2}(x_2 - h)}, \ x_2 > h,$$
(2.9)

where $u_n(\alpha) := (2\pi)^{-1} \int_0^{2\pi} u_{\alpha}(x_1, h) e^{-inx_1} dx_1$ are the Fourier coefficients of $u_{\alpha}(\cdot, h)$, and $\sqrt{k^2 - (n+\alpha)^2} = i\sqrt{(n+\alpha)^2 - k^2}$ if $n+\alpha > k$.

We denote by $C_R := (0, 2\pi) \times (0, R)$ for $R \in (0, \infty]$, and $H^1_{per}(C_R)$ the subspace of the 2π -periodic function in $H^1(C_R)$. We also denote by $H^1_{0,per}(C_R) := \{u \in H^1_{per}(C_R) : u = 0 \text{ on } (0, 2\pi) \times \{0\}\}$ that is equipped with $H^1(C_R)$ norm. The space $H^1_{0,per}(C_R)$ has the inner product of the form

$$\langle u, v \rangle_* = \int_{C_h} \nabla u \cdot \nabla \overline{v} dx + 2\pi \sum_{n \in \mathbb{Z}} \sqrt{n^2 + 1} u_n \overline{v_n},$$
 (2.10)

where $u_n = (2\pi)^{-1} \int_0^{2\pi} u(x_1, R) e^{-inx_1} dx_1$. The problem (2.7)–(2.9) is equivalent to the following operator equation (see section 3 in [8]),

$$\tilde{u}_{\alpha} - K_{\alpha}\tilde{u}_{\alpha} = \tilde{f}_{\alpha} \text{ in } H^{1}_{0,per}(C_{h}),$$

$$(2.11)$$

where the operator $K_{\alpha}: H^1_{0,per}(C_h) \to H^1_{0,per}(C_h)$ is defined by

$$\langle K_{\alpha}u, v \rangle_{*} = -\int_{C_{h}} \left[i\alpha \left(u \frac{\partial \overline{v}}{\partial x_{1}} - \overline{v} \frac{\partial \overline{u}}{\partial x_{1}} \right) + (\alpha^{2} - k^{2}n)u\overline{v} \right] dx$$

$$+ 2\pi i \sum_{|n+\alpha| \leq k} u_{n}\overline{v_{n}} \left(\sqrt{k^{2} - (n+\alpha)^{2}} - i\sqrt{n^{2} + 1} \right)$$

$$+ 2\pi \sum_{|n+\alpha| > k} u_{n}\overline{v_{n}} \left(\sqrt{n^{2} + 1} - \sqrt{(n+\alpha)^{2} - k^{2}} \right). \tag{2.12}$$

For several $\alpha \in (-1/2, 1/2]$, the uniqueness of this problem fails. We call these α exceptional values if the operator $I-K_{\alpha}$ fails to be injective. For the difficulty of treatment of α such that $|\alpha+l|=k$ for some $l \in \mathbb{Z}$ in an periodic scattering problem, we set $A_k := \{\alpha \in (-1/2, 1/2] : \exists l \in \mathbb{Z} \text{ s.t. } |\alpha+l|=k\}$, and make the following assumption:

Assumption 2.1. For every $\alpha \in A_k$, $I - K_\alpha$ has to be injective.

The following properties of exceptional values was shown in Lemmas 4.2 and 5.6 of [8].

Lemma 2.2. Let Assumption 2.1 hold. Then, there exists only finitely many exceptional values $\alpha \in (-1/2, 1/2]$. Furthermore, if α is an exceptional value, then so is $-\alpha$. Therefore, the set of exceptional values can be described by $\{\alpha_j : j \in J\}$ where some $J \subset \mathbb{Z}$ is finite and $\alpha_{-j} = -\alpha_j$ for $j \in J$. For each exceptional value α_j we define

$$X_{j} := \left\{ \phi \in H^{1}_{loc}(\mathbb{R}^{2}_{+}) : \begin{array}{l} \Delta \phi + 2i\alpha_{j} \frac{\partial \phi}{\partial x_{1}} + (k^{2}n - \alpha^{2})\phi = 0 \text{ in } \mathbb{R}^{2}_{+}, \\ \phi = 0 \text{ for } x_{2} = 0, \quad \phi \text{ is } 2\pi - \text{periodic for } x_{1}, \\ \phi \text{ satisfies the Rayleigh expansion } (2.9) \end{array} \right\}$$

Then, X_j are finite dimensional. We set $m_j = \dim X_j$. Furthermore, $\phi \in X_j$ is evanescent, that is, there exists c > 0 and $\delta > 0$ such that $|\phi(x)|$, $|\nabla \phi(x)| \le ce^{-\delta|x_2|}$ for all $x \in \mathbb{R}^2_+$.

Next, we consider the following eigenvalue problem in X_j : Determine $d \in \mathbb{R}$ and $\phi \in X_j$ such that

$$\int_{C_{\infty}} \left[-i \frac{\partial \phi}{\partial x_1} + \alpha_j \phi \right] \overline{\psi} dx = dk \int_{C_{\infty}} n \phi \overline{\psi} dx, \qquad (2.13)$$

for all $\psi \in X_j$. We denote by the eigenvalues $d_{l,j}$ and the eigenfunction $\phi_{l,j}$ of this problem, that is,

$$\int_{C_{\infty}} \left[-i \frac{\partial \phi_{l,j}}{\partial x_1} + \alpha_j \phi_{l,j} \right] \overline{\psi} dx = d_{l,j} k \int_{C_{\infty}} n \phi_{l,j} \overline{\psi} dx, \tag{2.14}$$

for every $l=1,...,m_j$ and $j\in J$. We normalize the eigenfunction $\{\phi_{l,j}:l=1,...,m_j\}$ such that

$$k \int_{C_{\infty}} n\phi_{l,j} \overline{\phi_{l',j}} dx = \delta_{l,l'}, \tag{2.15}$$

for all l, l'. We will assume that the wave number k > 0 is regular in the following sense.

Definition 2.3. k > 0 is regular if $d_{l,j} \neq 0$ for all $l = 1, ...m_j$ and $j \in J$.

Now we are ready to define the radiation condition.

Definition 2.4. Let Assumptions 2.1 hold, and let k > 0 be regular in the sense of Definition 2.3. We set

$$\psi^{\pm}(x_1) := \frac{1}{2} \left[1 \pm \frac{2}{\pi} \int_0^{x_1/2} \frac{\sin t}{t} dt \right], \ x_1 \in \mathbb{R}.$$
 (2.16)

Then, $u \in H^1_{loc}(\mathbb{R}^2_+)$ satisfies the radiation condition if u satisfies the upward propagating radiation condition (2.4), and has a decomposition in the form $u = u^{(1)} + u^{(2)}$ where $u^{(1)}|_{\mathbb{R}\times(0,R)} \in H^1(\mathbb{R}\times(0,R))$ for all R > 0, and $u^{(2)} \in L^{\infty}(\mathbb{R}^2_+)$ has the following form

$$u^{(2)}(x) = \psi^{+}(x_1) \sum_{j \in J} \sum_{d_{l,j} > 0} a_{l,j} \phi_{l,j}(x) + \psi^{-}(x_1) \sum_{j \in J} \sum_{d_{l,j} < 0} a_{l,j} \phi_{l,j}(x)$$
(2.17)

where some $a_{l,j} \in \mathbb{C}$, and $\{d_{l,j}, \phi_{l,j} : l = 1, ..., m_j\}$ are normalized eigenvalues and eigenfunctions of the problem (2.8).

Remark 2.5. We can replace ψ^{\pm} by any smooth functions $\tilde{\psi}^{\pm}$ such that $\left|\psi^{\pm}(x_1) - \tilde{\psi}^{\pm}(x_1)\right| \to 0$, and $\left|\frac{d}{dx_1}\psi^{\pm}(x_1) - \frac{d}{dx_1}\tilde{\psi}^{\pm}(x_1)\right| \to 0$ as $|x_1| \to \infty$ because (2.12) is of the form

$$u^{(2)}(x) = \tilde{\psi}^{+}(x_{1}) \sum_{j \in J} \sum_{d_{l,j} > 0} a_{l,j} \phi_{l,j}(x) + \tilde{\psi}^{-}(x_{1}) \sum_{j \in J} \sum_{d_{l,j} < 0} a_{l,j} \phi_{l,j}(x)$$

$$+ \left(\psi^{+}(x_{1}) - \tilde{\psi}^{+}(x_{1}) \right) \sum_{j \in J} \sum_{d_{l,j} > 0} a_{l,j} \phi_{l,j}(x) + \left(\psi^{-}(x_{1}) - \tilde{\psi}^{-}(x_{1}) \right) \sum_{j \in J} \sum_{d_{l,j} < 0} a_{l,j} \phi_{l,j}(x), \qquad (2.18)$$

where the second term in the right-hand side of (2.13) is a H^1 -function, which is the role of $u^{(1)}$.

The following was shown in Theorems 2.2, 6.6, and 6.8 of [8].

Theorem 2.6. Let Assumptions 2.1 hold and let k > 0 be regular in the sense of Definition 2.3. For every $f \in L^2(\mathbb{R}^2_+)$ with the compact support in W, there exists a unique solution $u_{k+i\epsilon} \in H^1(\mathbb{R}^2_+)$ of the problem (2.1)–(2.2) replacing k by $k+i\epsilon$. Furthermore, $u_{k+i\epsilon}$ converge as $\epsilon \to +0$ in $H^1_{loc}(\mathbb{R}^2_+)$ to some $u \in H^1_{loc}(\mathbb{R}^2_+)$ which satisfy (2.1)–(2.2) and the radiation condition in the sense of Definition 2.4. Furthermore, the solution u of this problem is uniquely determined.

Finally in this section, we will show the following integral representation.

Lemma 2.7. Let $f \in L^2(\mathbb{R}^2_+)$ have a compact support in W, and let u be a solution of (2.1)–(2.2) which satisfying the radiation condition in the sense of Definition 2.4. Then, u has an integral representation of the form

$$u(x) = k^2 \int_W (n(y) - 1)u(y)G(x, y)dy - \int_W f(y)G(x, y)dy, \quad x \in \mathbb{R}^2_+$$
 (2.19)

Proof of Lemma 2.7. Let $\epsilon > 0$ be small enough and let $u_{\epsilon} \in H^1(\mathbb{R}^2_+)$ be a solution of the problem (2.1)–(2.2) replacing k by $k + i\epsilon$, that is, u_{ϵ} satisfies

$$\Delta u_{\epsilon} + (k + i\epsilon)^2 n u_{\epsilon} = f \text{ in } \mathbb{R}^2_+, \tag{2.20}$$

$$u_{\epsilon} = 0 \text{ on } \Gamma_0.$$
 (2.21)

Let $G_{\epsilon}(x,y)$ be the Dirichlet Green's function in the upper half plane \mathbb{R}^2_+ for $\Delta + (k+i\epsilon)^2$. Let $x \in \mathbb{R}^2_+$ be always fixed such that $x_2 > R$. Let r > 0 be large enough such that $x \in B_r(0)$ where $B_r(0) \subset \mathbb{R}^2$ be a open ball with center 0 and radius r > 0. By Green's representation theorem in $B_r(0) \cap \mathbb{R}^2_+$ we have

$$u_{\epsilon}(x) = \int_{\partial B_{r}(0) \cap \mathbb{R}_{+}^{2}} \left[\frac{\partial u_{\epsilon}}{\partial \nu}(y) G_{\epsilon}(x, y) - u_{\epsilon}(y) \frac{\partial G_{\epsilon}}{\partial \nu}(x, y) \right] ds(y)$$

$$- \int_{B_{r}(0) \cap \mathbb{R}_{+}^{2}} \left[\Delta u_{\epsilon}(y) + (k + i\epsilon)^{2} u_{\epsilon}(y) \right] G_{\epsilon}(x, y) dy$$

$$= \int_{\partial B_{r}(0) \cap \mathbb{R}_{+}^{2}} \left[\frac{\partial u_{\epsilon}}{\partial \nu}(y) G_{\epsilon}(x, y) - u_{\epsilon}(y) \frac{\partial G_{\epsilon}}{\partial \nu}(x, y) \right] ds(y)$$

$$+ (k + i\epsilon)^{2} \int_{B_{r}(0) \cap \mathbb{R}_{+}^{2}} (n(y) - 1) u_{\epsilon}(y) G_{\epsilon}(x, y) dy$$

$$- \int_{B_{r}(0) \cap \mathbb{R}_{+}^{2}} f(y) G_{\epsilon}(x, y) dy. \tag{2.22}$$

Since $u_{\epsilon} \in H^1(\mathbb{R}^2_+)$, the first term of the right hand side converges to zero as $r \to \infty$. Therefore, as $r \to \infty$ we have for $x \in \mathbb{R}^2_+$

$$u_{\epsilon}(x) = (k+i\epsilon)^2 \int_W (n(y)-1)u_{\epsilon}(y)G_{\epsilon}(x,y)dy - \int_W f(y)G_{\epsilon}(x,y)dy.$$
 (2.23)

We will show that (2.23) converges as $\epsilon \to 0$ to

$$u(x) = k^{2} \int_{W} (n(y) - 1)u(y)G(x, y)dy - \int_{W} f(y)G(x, y)dy.$$
 (2.24)

Indeed, by the argument in (3.8) and (3.9) of [2], $G_{\epsilon}(x,y)$ is of the estimation

$$|G_{\epsilon}(x,y)| \le C \frac{x_2 y_2}{1 + |x - y|^{3/2}}, |x - y| > 1,$$
 (2.25)

where above C is independent of $\epsilon > 0$. Then, by Lebesgue dominated convergence theorem we have the second integral in (2.23) converges as $\epsilon \to 0$ to one in (2.24). So, we will consider the convergence of the first integral in (2.23).

By the beginning of the proof of Theorem 6.6 in [8], u_{ϵ} can be of the form $u_{\epsilon} = u_{\epsilon}^{(1)} + u_{\epsilon}^{(2)}$ where $u_{\epsilon}^{(1)}$ converges to $u_{\epsilon}^{(1)}$ in $H^{1}(W)$, and $u_{\epsilon}^{(2)}$ is of the form for $x \in W$

$$u_{\epsilon}^{(2)}(x) = \sum_{j \in J} \sum_{l=1}^{m_j} y_{l,j} \int_{-1/2}^{1/2} \frac{e^{i\alpha x_1}}{i\epsilon - d_{l,j}\alpha} d\alpha \ \phi_{l,j}(x), \tag{2.26}$$

which converges pointwise to $u^{(2)}(x)$. Here, $y_{l,j} \in \mathbb{C}$ is some constant. From the convergence of $u_{\epsilon}^{(1)}$ in $H^1(W)$ we obtain that $\int_W (n(y)-1)u_{\epsilon}^{(1)}(y)G_{\epsilon}(x,y)dy$ converges $\int_W (n(y)-1)u^{(1)}(y)G(x,y)dy$ as $\epsilon \to 0$.

By the argument of (b) in Lemma 6.1 of [8] we have

$$\psi_{l,j,\epsilon}(x_1) := \int_{-1/2}^{1/2} \frac{e^{i\alpha x_1}}{i\epsilon - d_{l,j}\alpha} d\alpha
= -\frac{i}{|d_{l,j}|} \int_{-|d_{l,j}|/(2\epsilon)}^{|d_{l,j}|/(2\epsilon)} \frac{\cos(t\epsilon x_1/|d_{l,j}|)}{1 + t^2} dt - 2id_{l,j} \int_0^{x_1/2} \frac{t\sin t}{x_1^2 \epsilon^2 + d_{l,j}^2 t^2} dt,$$
(2.27)

which implies that for all $x_1 \in \mathbb{R}$

$$|\psi_{l,j,\epsilon}(x_1)| \le C \left(\int_{-\infty}^{\infty} \frac{dt}{1+t^2} + \int_{0}^{|x_1|/2} \left| \frac{\sin t}{t} \right| dt \right)$$

$$\le C \left(\int_{-\infty}^{\infty} \frac{dt}{1+t^2} dt + \int_{0}^{1} \left| \frac{\sin t}{t} \right| dt + \int_{1}^{|x_1|+1} \frac{1}{t} dt \right)$$

$$\le C \left(1 + \log(|x_1|+1) \right), \tag{2.28}$$

where above C is independent of $\epsilon > 0$. Then, we have that for $y \in W$

$$\left| (n(y) - 1)u_{\epsilon}^{(2)}(y)G_{\epsilon}(x,y) \right| \le \frac{C\left(1 + \log(|y_1| + 1)\right)}{1 + |x - y|^{3/2}},\tag{2.29}$$

where above C is independent of y and ϵ . Then, right hand side of (2.29) is an integrable function in W with respect to y. Then, by Lebesgue dominated convergence theorem $\int_W (n(y) - 1)u^{(2)}(y)G_{\epsilon}(x,y)dy$ converges to $\int_W (n(y) - 1)u^{(2)}(y)G(x,y)dy$ as $\epsilon \to 0$. Therefore, (2.24) has been shown.

3 Uniqueness of $u^{(2)}$

In Section 3, we will show the uniqueness of $u^{(2)}$ in Theorem 1.2.

Lemma 3.1. Let Assumptions 2.1 hold and let k > 0 be regular in the sense of Definition 2.3. If $u \in H^1_{loc}(\mathbb{R}^2_+)$ such that

$$\Delta u + k^2 (1+q) n u = 0$$
, in \mathbb{R}^2_+ , (3.1)

$$u = 0 \text{ on } \Gamma_0, \tag{3.2}$$

and u satisfies the radiation condition in the sense of Definition 2.4, then $u^{(2)} = 0$ in \mathbb{R}^2_+ .

Proof of Lemma 3.1. By the definition of the radiation condition, u is of the form $u = u^{(1)} + u^{(2)}$ where $u^{(1)}|_{\mathbb{R}\times(0,R)}\in H^1(\mathbb{R}\times(0,R))$ for all R>0, and $u^{(2)}\in L^\infty(\mathbb{R}^2_+)$ has the form

$$u^{(2)}(x) = \psi^{+}(x_1) \sum_{j \in J} \sum_{d_{l,j} > 0} a_{l,j} \phi_{l,j}(x) + \psi^{-}(x_1) \sum_{j \in J} \sum_{d_{l,j} < 0} a_{l,j} \phi_{l,j}(x),$$
(3.3)

where some $a_{l,j} \in \mathbb{C}$, and $\{d_{l,j}, \phi_{l,j} : l = 1, ..., m_j\}$ are normalized eigenvalues and eigenfunctions of the problem (2.13). Here, by Remark 2.5 the function ψ^+ is chosen as a smooth function such that $\psi^+(x_1) = 1$ for $x_1 \geq \eta$ and $\psi^+(x_1) = 0$ for $x_1 \leq -\eta$, and $\psi^- := 1 - \psi^+$ where $\eta > 0$ is some positive number.

Step1 (Green's theorem in Ω_N): We set $\Omega_N := (-N, N) \times (0, \phi(N))$ where $\psi(N) := N^s$. Later we will choose a appropriate $s \in (0, 1)$. Let R > h be large and always fixed, and let N be large enough such that $\phi(N) > R$. We denote by $I_{\pm N}^R := \{\pm N\} \times (0, R)$, $I_{\pm N}^{\phi(N)} := \{\pm N\} \times (R, \phi(N))$, and $\Gamma_{\phi(N),N} := (-N,N) \times \{\phi(N)\}$. (see the figure below.) We set $I_{\pm N} := I_{\pm N}^R \cup I_{\pm N}^{\phi(N)}$.

By Green's first theorem in Ω_N and u=0 on $(-N,N)\times\{0\}$, we have

$$\int_{\Omega_N} \{-k^2 (1+q)n|u|^2 + |\nabla u|^2\} dx = \int_{\Omega_N} \{\overline{u}\Delta u + |\nabla u|^2\} dx$$

$$= \int_{I_N} \overline{u} \frac{\partial u}{\partial x_1} ds - \int_{I_{-N}} \overline{u} \frac{\partial u}{\partial x_1} ds + \int_{\Gamma_{\phi(N),N}} \overline{u} \frac{\partial u}{\partial x_2} ds$$

$$= \int_{I_N} \overline{u^{(2)}} \frac{\partial u^{(2)}}{\partial x_1} ds - \int_{I_{-N}} \overline{u^{(2)}} \frac{\partial u^{(2)}}{\partial x_1} ds$$

$$+ \int_{I_{N}} \overline{u^{(1)}} \frac{\partial u^{(1)}}{\partial x_{1}} ds + \int_{I_{N}} \overline{u^{(1)}} \frac{\partial u^{(2)}}{\partial x_{1}} ds + \int_{I_{N}} \overline{u^{(2)}} \frac{\partial u^{(1)}}{\partial x_{1}} ds$$

$$- \int_{I_{-N}} \overline{u^{(1)}} \frac{\partial u^{(1)}}{\partial x_{1}} ds - \int_{I_{-N}} \overline{u^{(1)}} \frac{\partial u^{(2)}}{\partial x_{1}} ds - \int_{I_{-N}} \overline{u^{(2)}} \frac{\partial u^{(1)}}{\partial x_{1}} ds$$

$$+ \int_{\Gamma_{\phi(N),N}} \overline{u} \frac{\partial u}{\partial x_{2}} ds.$$

$$(3.4)$$

By the same argument in Theorem 4.6 of [7] and Lemma 6.3 of [8], we can show that

$$\int_{I_{N}} \overline{u^{(2)}} \frac{\partial u^{(2)}}{\partial x_{1}} ds - \int_{I_{-N}} \overline{u^{(2)}} \frac{\partial u^{(2)}}{\partial x_{1}} ds
+ \int_{I_{N}^{R}} \overline{u^{(1)}} \frac{\partial u^{(1)}}{\partial x_{1}} ds + \int_{I_{N}^{R}} \overline{u^{(1)}} \frac{\partial u^{(2)}}{\partial x_{1}} ds + \int_{I_{N}^{R}} \overline{u^{(2)}} \frac{\partial u^{(1)}}{\partial x_{1}} ds
- \int_{I_{-N}^{R}} \overline{u^{(1)}} \frac{\partial u^{(1)}}{\partial x_{1}} ds - \int_{I_{-N}^{R}} \overline{u^{(1)}} \frac{\partial u^{(2)}}{\partial x_{1}} ds - \int_{I_{-N}^{R}} \overline{u^{(2)}} \frac{\partial u^{(1)}}{\partial x_{1}} ds
= \frac{1}{2\pi} \sum_{j \in J} \sum_{d_{l,j}, d_{l',j} > 0} \overline{a_{l,j}} a_{l',j} \int_{C_{\phi(N)}} \overline{\phi_{l,j}} \frac{\partial \phi_{l',j}}{\partial x_{1}} dx
- \frac{1}{2\pi} \sum_{j \in J} \sum_{d_{l,j}, d_{l',j} < 0} \overline{a_{l,j}} a_{l',j} \int_{C_{\phi(N)}} \overline{\phi_{l,j}} \frac{\partial \phi_{l',j}}{\partial x_{1}} dx + o(1),$$
(3.5)

and the first and second term in the right hand side converge as $N \to \infty$ to $\frac{ik}{2\pi} \sum_{j \in J} \sum_{d_{l,j} > 0} |a_{l,j}|^2 d_{l,j}$ and $-\frac{ik}{2\pi} \sum_{j \in J} \sum_{d_{l,j} < 0} |a_{l,j}|^2 d_{l,j}$ respectively. Therefore, taking an imaginary part in (3.4) yields that

$$0 = \operatorname{Im} \left[\frac{1}{2\pi} \sum_{j \in J} \sum_{d_{l,j}, d_{l',j} > 0} \overline{a_{l,j}} a_{l',j} \int_{C_{\phi(N)}} \overline{\phi_{l,j}} \frac{\partial \phi_{l',j}}{\partial x_1} dx \right]$$

$$- \operatorname{Im} \left[\frac{1}{2\pi} \sum_{j \in J} \sum_{d_{l,j}, d_{l',j} < 0} \overline{a_{l,j}} a_{l',j} \int_{C_{\phi(N)}} \overline{\phi_{l,j}} \frac{\partial \phi_{l',j}}{\partial x_1} dx \right]$$

$$+ \operatorname{Im} \int_{I_N^{\phi(N)}} \overline{u^{(1)}} \frac{\partial u^{(1)}}{\partial x_1} ds + \operatorname{Im} \int_{I_N^{\phi(N)}} \overline{u^{(1)}} \frac{\partial u^{(2)}}{\partial x_1} ds + \operatorname{Im} \int_{I_N^{\phi(N)}} \overline{u^{(2)}} \frac{\partial u^{(1)}}{\partial x_1} ds$$

$$- \operatorname{Im} \int_{I_{-N}^{\phi(N)}} \overline{u^{(1)}} \frac{\partial u^{(1)}}{\partial x_1} ds - \operatorname{Im} \int_{I_{-N}^{\phi(N)}} \overline{u^{(1)}} \frac{\partial u^{(2)}}{\partial x_1} ds - \operatorname{Im} \int_{I_{-N}^{\phi(N)}} \overline{u^{(2)}} \frac{\partial u^{(1)}}{\partial x_1} ds$$

$$+ \operatorname{Im} \int_{\Gamma_{\phi(N),N}} \overline{u} \frac{\partial u}{\partial x_2} ds + o(1). \tag{3.6}$$

We set

$$J_{\pm}(N) := \pm \operatorname{Im} \int_{I_{\pm N}^{\phi(N)}} \overline{u^{(1)}} \frac{\partial u^{(1)}}{\partial x_1} ds \pm \operatorname{Im} \int_{I_{\pm N}^{\phi(N)}} \overline{u^{(1)}} \frac{\partial u^{(2)}}{\partial x_1} ds \pm \operatorname{Im} \int_{I_{\pm N}^{\phi(N)}} \overline{u^{(2)}} \frac{\partial u^{(1)}}{\partial x_1} ds, \tag{3.7}$$

and we will show that $\limsup_{N\to\infty} J_{\pm}(N) \geq 0$.

Step2 (limsup_{N $\to\infty$} $J_{\pm}(N) \ge 0$): By the Cauchy Schwarz inequality we have

$$|J_{+}(N)| \leq \left(\int_{R}^{\phi(N)} |u^{(1)}(N, x_{2})|^{2} dx_{2}\right)^{1/2} \left(\int_{R}^{\phi(N)} \left|\frac{\partial u^{(1)}}{\partial x_{1}}(N, x_{2})\right|^{2} dx_{2}\right)^{1/2}$$

$$+ \left(\int_{R}^{\phi(N)} |u^{(1)}(N, x_{2})|^{2} dx_{2}\right)^{1/2} \left(\int_{R}^{\phi(N)} \left|\frac{\partial u^{(2)}}{\partial x_{1}}(N, x_{2})\right|^{2} dx_{2}\right)^{1/2}$$

$$+ \left(\int_{R}^{\phi(N)} |u^{(2)}(N, x_{2})|^{2} dx_{2}\right)^{1/2} \left(\int_{R}^{\phi(N)} \left|\frac{\partial u^{(1)}}{\partial x_{1}}(N, x_{2})\right|^{2} dx_{2}\right)^{1/2}$$

$$\leq \left(\int_{R}^{\phi(N)} |u^{(1)}(N, x_{2})|^{2} dx_{2}\right)^{1/2} \left(\int_{R}^{\phi(N)} \left|\frac{\partial u^{(1)}}{\partial x_{1}}(N, x_{2})\right|^{2} dx_{2}\right)^{1/2}$$

$$+ C(\phi(N) - R)^{1/2} \left(\int_{R}^{\phi(N)} |u^{(1)}(N, x_{2})|^{2} dx_{2}\right)^{1/2}$$

$$+ C(\phi(N) - R)^{1/2} \left(\int_{R}^{\phi(N)} \left|\frac{\partial u^{(1)}}{\partial x_{1}}(N, x_{2})\right|^{2} dx_{2}\right)^{1/2}.$$

$$(3.8)$$

In order to estimate $u^{(1)}$, we will show the following lemma.

Lemma 3.2. $u^{(1)}$ has an integral representation of the form

$$u^{(1)}(x) = \int_{y_2>0} \sigma(y)G(x,y)dy + k^2 \int_W (n(y)(1+q(y)) - 1)u^{(1)}(y)G(x,y)dy + k^2 \int_Q n(y)q(y)u^{(2)}(y)G(x,y)dy, \quad x_2 > 0,$$
(3.9)

where $\sigma := \Delta u^{(2)} + k^2 n u^{(2)}$.

Proof of Lemma 3.2. First, we will consider an integral representation of $u^{(2)}$. Let N > 0 be large enough. By Green's representation theorem in $(-N, N) \times (0, N^{1/4})$, we have

$$u^{(2)}(x) = \int_{(-N,N)\times\{N^{1/4}\}} \left[u^{(2)}(y) \frac{\partial G}{\partial y_2}(x,y) - G(x,y) \frac{\partial u^{(2)}}{\partial y_2}(y) \right] ds(y)$$

$$+ \left(\int_{\{N\}\times(0,N^{1/4})} - \int_{\{-N\}\times(0,N^{1/4})} \left[u^{(2)}(y) \frac{\partial G}{\partial y_1}(x,y) - G(x,y) \frac{\partial u^{(2)}}{\partial y_1}(y) \right] ds(y)$$

$$- \int_{(-N,N)\times(0,N^{1/4})} \left[\sigma(y) + k^2 (1 - n(y)) u^{(2)}(y) \right] G(x,y) dy.$$
(3.10)

By Lemma 3.1 of [2], the Dirichlet Green's function G(x,y) is of the estimation

$$|G(x,y)|, |\nabla_y G(x,y)| \le C \frac{x_2 y_2}{1 + |x-y|^{3/2}}, |x-y| > 1.$$
 (3.11)

By Lemma 2.2 we have that $|u^{(2)}(x)|$, $\left|\frac{\partial u^{(2)}(x)}{\partial x_2}\right| \leq ce^{-\delta|x_2|}$ for all $x \in \mathbb{R}^2_+$, and some $c, \delta > 0$. Then, we obtain

$$\left| \int_{(-N,N)\times\{N^{1/4}\}} \left[u^{(2)}(y) \frac{\partial G}{\partial y_2}(x,y) - G(x,y) \frac{\partial u^{(2)}}{\partial y_2}(y) \right] ds(y) \right|$$

$$\leq C \int_{-N}^{N} \frac{x_2 e^{-\delta N^{1/4}}}{|N^{1/4} - x_2|^{3/2}} dy_2 \leq C \frac{x_2 N e^{-\delta N^{1/4}}}{|N^{1/4} - x_2|^{3/2}}.$$
(3.12)

Furthermore,

$$\left| \int_{\{\pm N\} \times (0, N^{1/4})} \left[u^{(2)}(y) \frac{\partial G}{\partial y_1}(x, y) - G(x, y) \frac{\partial u^{(2)}}{\partial y_1}(y) \right] ds(y) \right|$$

$$\leq C \int_0^{N^{1/4}} \frac{x_2 y_2}{|\pm N - x_1|^{3/2}} dy_2 \leq C \frac{x_2 N^{1/2}}{|\pm N - x_1|^{3/2}}.$$
(3.13)

Therefore, as $N \to \infty$ in (3.10) we get

$$u^{(2)}(x) = -\int_{y>0} \sigma(y)G(x,y)dy + k^2 \int_W (n(y) - 1)u^{(2)}(y)G(x,y)dy.$$
 (3.14)

By Lemma 2.7, we have (substitute $-k^2qnu$ for f in (2.19))

$$u(x) = k^{2} \int_{W} (n(y) - 1)u(y)G(x, y)dy + k^{2} \int_{Q} q(y)n(y)u(y)G(x, y)dy.$$
 (3.15)

Combining (3.14) with (3.15) we have

$$u^{(1)}(x) = -u^{(2)}(x) + k^{2} \int_{W} (n(y) - 1)u(y)G(x, y)dy + k^{2} \int_{Q} q(y)n(y)u(y)G(x, y)dy$$

$$= \int_{y_{2}>0} \sigma(y)G(x, y)dy - k^{2} \int_{W} (n(y) - 1)u^{(2)}(y)G(x, y)dy$$

$$+ k^{2} \int_{W} (n(y) - 1)u(y)G(x, y)dy + k^{2} \int_{Q} q(y)n(y)u(y)G(x, y)dy$$

$$= \int_{\mathbb{R}^{2}_{+}} \sigma(y)G(x, y)dy + k^{2} \int_{W} (n(y)(1 + q(y)) - 1)u^{(1)}(y)G(x, y)dy$$

$$+ k^{2} \int_{Q} n(y)q(y)u^{(2)}(y)G(x, y)dy. \tag{3.16}$$

Therefore, Lemma 3.2 has been shown.

We set $u^{\pm}(x) := \sum_{j \in J} \sum_{d_{l,j} \leq 0} a_{l,j} \phi_{l,j}(x)$. Then, by a simple calculation we can show

$$\sigma(y) = \frac{d^2\psi^+(y_1)}{dy_1^2}u^+(y) + 2\frac{d\psi^+(y_1)}{dy_1}\frac{\partial u^+(y)}{\partial y_1} + \frac{d^2\psi^-(y_1)}{dy_1^2}u^-(y) + 2\frac{d\psi^-(y_1)}{dy_1}\frac{\partial u^-(y)}{\partial y_1}, \qquad (3.17)$$

which implies that supp $\sigma \subset (-\eta, \eta) \times (0, \infty)$. By Lemma 3.2 we have for $R < x_2 < \phi(N)$

$$|u^{(1)}(N,x_{2})|, \left|\frac{\partial u^{(1)}}{\partial x_{1}}(N,x_{2})\right| \leq C \int_{(-\eta,\eta)\times(0,\infty)} |\sigma(y)| \frac{\phi(N)y_{2}}{|N-\eta|^{3/2}} dy$$

$$+ C \int_{W} |u^{(1)}(y)| \frac{\phi(N)h}{(1+|N-y_{1}|)^{3/2}} dy + C \int_{Q} \frac{\phi(N)|u^{(2)}(y)|}{|N-y_{1}|^{3/2}} dy$$

$$\leq C \frac{\phi(N)}{N^{3/2}} + C\phi(N) \int_{W} \frac{|u^{(1)}(y)|}{(1+|N-y_{1}|)^{3/2}} dy. \tag{3.18}$$

We have to estimate the second term in right hand side. The following lemma was shown in Lemma 4.12 of [1].

Lemma 3.3. Assume that $\varphi \in L^2_{loc}(\mathbb{R})$ such that

$$\sup_{A>0} \left\{ (1+A^2)^{-\epsilon} \int_{-A}^{A} |\varphi(t)|^2 dt \right\} < \infty, \tag{3.19}$$

for some $\epsilon > 0$. Then, for every $\alpha \in [0, \frac{1}{2} - \epsilon)$ there exists a constant C > 0 and a sequence $\{A_m\}_{m \in \mathbb{N}}$ such that $A_m \to \infty$ as $m \to \infty$ and

$$\int_{K_{A_m}} |\varphi(t)|^2 dt \le CA_m^{-\alpha}, \ m \in \mathbb{N}, \tag{3.20}$$

where $K_A := K_A^+ \cup K_A^-$, $K_A^+ := (-A^+, A^+) \setminus (-A, A)$, $K_A^- := (-A, A) \setminus (-A^-, A^-)$, and $A^{\pm} := A \pm A^{1/2}$ for $A \in [1, \infty)$.

Applying Lemma 3.3 to $\varphi = \left(\int_0^h \left|u^{(1)}(\cdot,y_2)\right|^2 dy_2\right)^{1/2} \in L^2(\mathbb{R})$, there exists a sequence $\{N_m\}_{m\in\mathbb{N}}$ such that $N_m \to \infty$ as $m \to \infty$ and

$$\int_{K_{N_m}} \int_0^h |u^{(1)}(y_1, y_2)|^2 dy_1 dy_2 \le CN_m^{-1/4}, \ m \in \mathbb{N}.$$
(3.21)

Then, by the Cauchy Schwarz inequality we have

$$\int_{W} \frac{|u^{(1)}(y)|}{(1+|N-y_{1}|)^{3/2}} dy = \left(\int_{-N_{m}^{-}}^{N_{m}^{-}} + \int_{K_{N_{m}}} + \int_{\mathbb{R}\setminus[-N_{m}^{+},N_{m}^{+}]}\right) \int_{0}^{h} \frac{|u^{(1)}(y)|}{(1+|N_{m}-y_{1}|)^{3/2}} dy \\
\leq C \left(\int_{-N_{m}^{-}}^{N_{m}^{-}} \frac{dy_{1}}{(1+|N_{m}-|y_{1}|)^{3}}\right)^{1/2} + C \left(\int_{K_{N_{m}}} \int_{0}^{h} |u^{(1)}(y_{1},y_{2})|^{2} dy_{1} dy_{2}\right)^{1/2} \\
+ C \left(\int_{\mathbb{R}\setminus[-N_{m}^{+},N_{m}^{+}]}^{dy_{1}} \frac{dy_{1}}{(1+|y_{1}|-N_{m})^{3}}\right)^{1/2} \\
\leq C \left(\int_{0}^{N_{m}^{-}} \frac{dy_{1}}{(1+N_{m}-y_{1})^{3}}\right)^{1/2} + CN_{m}^{-1/8} + C \left(\int_{N_{m}^{+}}^{\infty} \frac{dy_{1}}{(1+y_{1}-N_{m})^{3}}\right)^{1/2} \\
\leq CN_{m}^{-1/8}. \tag{3.22}$$

With (3.18) we have for $m \in \mathbb{N}$.

$$|u^{(1)}(N_m, x_2)|, \left|\frac{\partial u^{(1)}}{\partial x_1}(N_m, x_2)\right| \le C \frac{\phi(N_m)}{N_m^{1/8}}.$$
 (3.23)

Therefore, by (3.8) we have

$$|J_{+}(N_{m})| \leq C(\phi(N_{m}) - R) \frac{\phi(N_{m})^{2}}{N_{m}^{1/4}} + C(\phi(N_{m}) - R) \frac{\phi(N_{m})}{N_{m}^{1/8}}$$

$$\leq C(\phi(N_{m}) - R) \frac{\phi(N_{m})^{2}}{N_{m}^{1/8}} \leq C \frac{\phi(N_{m})^{3}}{N_{m}^{1/8}}.$$
(3.24)

Since $\phi(N) = N^s$, if we choose $s \in (0,1)$ such that $3s < \frac{1}{8}$, that is, $0 < s < \frac{1}{24}$ the right hand side in (3.24) converges to zero as $m \to \infty$. Therefore, $\limsup_{N \to \infty} J_+(N) \ge 0$. By the same argument

of J_+ , we can show that $\limsup_{N\to\infty} J_-(N) \geq 0$, which yields Step 2.

Next, we discuss the last term in (3.6). By the same argument in Lemma 3.2 that we apply Green's representation theorem in $x_2 > h$ and use the Dirichlet Green's function G_h of $\mathbb{R}^2_{x_2 > h} (:= \mathbb{R} \times (h, \infty))$ instead of G, $u^{(1)}$ can also be of another integral representation for $x_2 > h$

$$u^{(1)}(x) = \int_{y_2 > h} \sigma(y) G_h(x, y) dy + 2 \int_{\Gamma_h} u^{(1)}(y) \frac{\partial \Phi_k(x, y)}{\partial y_2} ds(y)$$

=: $v^1(x) + v^2(x)$, (3.25)

where G_h is defined by $G_h(x,y) := \Phi_k(x,y) - \Phi_k(x,y_h^*)$ where $y_h^* = (y_1,2h-y_2)$. We define approximation $u_N^{(1)}$ of $u_N^{(1)}$ by

$$u_N^{(1)}(x) := \int_{y_2>0} \chi_{\phi(N)-1}(y_2)\sigma(y)G(x,y)dy + 2\int_{\Gamma_h} \chi_N(y_1)u^{(1)}(y)\frac{\partial \Phi_k(x,y)}{\partial y_2}ds(y)$$

$$=: v_N^1(x) + v_N^2(x), \quad x_2 > h,$$
(3.26)

where χ_a is defined by for a > 0,

$$\chi_a(t) := \begin{cases} 1 & \text{for } |t| \le a \\ 0 & \text{for } |t| > a. \end{cases}$$
 (3.27)

By Lemma 3.4 of [4] and Lemma 2.1 of [3] we can show that v_N^1 and v_N^2 satisfy the upward propagating radiation condition, which implies that so does $u_N^{(1)}$. Furthermore, by the definition of $u_N^{(1)}$ we can show that $u_N^{(1)}(\cdot,\phi(N)-1)\in L^2(\mathbb{R})\cap L^\infty(\mathbb{R})$. Then, by Lemma 6.1 of [4] we have that

$$\operatorname{Im} \int_{\Gamma_{\phi(N)}} \overline{u_N^{(1)}} \frac{\partial u_N^{(1)}}{\partial x_2} ds \ge 0. \tag{3.28}$$

Combining (3.6) with (3.28) we have

$$0 \geq -\operatorname{Im} \int_{\Gamma_{\phi(N)}} \overline{u_N^{(1)}} \frac{\partial u_N^{(1)}}{\partial x_2} ds$$

$$= \operatorname{Im} \left[\frac{1}{2\pi} \sum_{j \in J} \sum_{d_{l,j}, d_{l',j} > 0} \overline{a_{l,j}} a_{l',j} \int_{C_{\phi(N)}} \overline{\phi_{l,j}} \frac{\partial \phi_{l,j}}{\partial x_1} dx \right]$$

$$- \operatorname{Im} \left[\frac{1}{2\pi} \sum_{j \in J} \sum_{d_{l,j}, d_{l',j} < 0} \overline{a_{l,j}} a_{l',j} \int_{C_{\phi(N)}} \overline{\phi_{l,j}} \frac{\partial \phi_{l,j}}{\partial x_1} dx \right] + J_+(N) + J_-(N)$$

$$+ \operatorname{Im} \int_{\Gamma_{\phi(N),N}} \overline{u} \frac{\partial u}{\partial x_2} - \operatorname{Im} \int_{\Gamma_{\phi(N)}} \overline{u_N^{(1)}} \frac{\partial u_N^{(1)}}{\partial x_2} ds + o(1). \tag{3.29}$$

We observe the last term

$$\operatorname{Im} \int_{\Gamma_{\phi(N),N}} \overline{u} \frac{\partial u}{\partial x_2} - \operatorname{Im} \int_{\Gamma_{\phi(N)}} \overline{u_N^{(1)}} \frac{\partial u_N^{(1)}}{\partial x_2} ds =: L(N) + M(N), \tag{3.30}$$

where

$$L(N) := \operatorname{Im} \int_{\Gamma_{\phi(N),N}} \overline{u^{(1)}} \frac{\partial u^{(1)}}{\partial x_2} ds - \operatorname{Im} \int_{\Gamma_{\phi(N)}} \overline{u_N^{(1)}} \frac{\partial u_N^{(1)}}{\partial x_2} ds, \tag{3.31}$$

$$M(N) := \operatorname{Im} \int_{\Gamma_{\phi(N),N}} \overline{u^{(1)}} \frac{\partial u^{(2)}}{\partial x_2} ds + \operatorname{Im} \int_{\Gamma_{\phi(N),N}} \overline{u^{(2)}} \frac{\partial u^{(1)}}{\partial x_2} ds + \operatorname{Im} \int_{\Gamma_{\phi(N),N}} \overline{u^{(2)}} \frac{\partial u^{(2)}}{\partial x_2} ds. \tag{3.32}$$

By Lemma 3.2 we can show $|u^{(1)}(x_1,\phi(N))|$, $|\frac{\partial u^{(1)}}{\partial x_2}(x_1,\phi(N))| \leq C\phi(N)$ for $x_1 \in \mathbb{R}$, and by Lemma 2.2 we have $|u^{(2)}(x_1,\phi(N))|$, $|\frac{\partial u^{(2)}}{\partial x_2}(x_1,\phi(N))| \leq Ce^{-\delta\phi(N)}$ for $x_1 \in \mathbb{R}$. Then, we have

$$|M(N)| \leq \int_{-N}^{N} |u^{(1)}(x_{1}, \phi(N))| \left| \frac{\partial u^{(2)}}{\partial x_{2}}(x_{1}, \phi(N)) \right| dx_{1}$$

$$+ \int_{-N}^{N} |u^{(2)}(x_{1}, \phi(N))| \left| \frac{\partial u^{(1)}}{\partial x_{2}}(x_{1}, \phi(N)) \right| dx_{1}$$

$$+ \int_{-N}^{N} |u^{(2)}(x_{1}, \phi(N))| \left| \frac{\partial u^{(2)}}{\partial x_{2}}(x_{1}, \phi(N)) \right| dx_{1}$$

$$\leq C(N\phi(N)e^{-\delta\phi(N)} + Ne^{-2\delta\phi(N)})$$

$$\leq CN\phi(N)e^{-\delta\phi(N)}, \qquad (3.33)$$

which implies that M(N) = o(1) as $N \to \infty$. Hence, we will show that $\limsup_{N\to\infty} L(N) \ge 0$. Step3 ($\limsup_{N\to\infty} L(N) \ge 0$): First, we observe that

$$|L(N)| \leq \left| \operatorname{Im} \int_{\Gamma_{\phi(N),N}} \overline{u^{(1)}} \frac{\partial u^{(1)}}{\partial x_2} ds - \operatorname{Im} \int_{\Gamma_{\phi(N),N}} \overline{u^{(1)}} \frac{\partial u_N^{(1)}}{\partial x_2} ds \right|$$

$$+ \left| \operatorname{Im} \int_{\Gamma_{\phi(N)},N} \overline{u^{(1)}} \frac{\partial u_N^{(1)}}{\partial x_2} ds - \operatorname{Im} \int_{\Gamma_{\phi(N),N}} \overline{u_N^{(1)}} \frac{\partial u_N^{(1)}}{\partial x_2} ds \right|$$

$$+ \left| \operatorname{Im} \int_{\Gamma_{\phi(N)} \setminus \Gamma_{\phi(N),N}} \overline{u_N^{(1)}} \frac{\partial u_N^{(1)}}{\partial x_2} ds \right|$$

$$\leq \int_{-N}^{N} |u^{(1)}(x_{1},\phi(N))| \left| \frac{\partial u^{(1)}}{\partial x_{2}}(x_{1},\phi(N)) - \frac{\partial u_{N}^{(1)}}{\partial x_{2}}(x_{1},\phi(N)) \right| ds
+ \int_{-N}^{N} |u^{(1)}(x_{1},\phi(N)) - u_{N}^{(1)}(x_{1},\phi(N))| \left| \frac{\partial u_{N}^{(1)}}{\partial x_{2}}(x_{1},\phi(N)) \right| ds
+ \int_{\mathbb{R}\setminus(-N,N)} |u_{N}^{(1)}(x_{1},\phi(N))| \left| \frac{\partial u_{N}^{(1)}}{\partial x_{2}}(x_{1},\phi(N)) \right| ds.$$
(3.34)

By Lemma 2.2 σ has a exponential decay in y_2 . Then, we have for $x_1 \in \mathbb{R}$,

$$|v^{1}(x_{1},\phi(N))|, \left|\frac{\partial v^{1}}{\partial x_{2}}(x_{1},\phi(N))\right|, |v_{N}^{1}(x_{1},\phi(N))|, \left|\frac{\partial v_{N}^{1}}{\partial x_{2}}(x_{1},\phi(N))\right|$$

$$\leq C \int_{(-\eta,\eta)\times(0,\infty)} \frac{e^{-\delta y_{2}}\phi(N)y_{2}}{(1+|x_{1}-y_{1}|)^{3/2}} dy \leq C \frac{\phi(N)}{(1+|x_{1}|)^{3/2}}, \tag{3.35}$$

and

$$|v^{1}(x_{1},\phi(N)) - v_{N}^{1}(x_{1},\phi(N))|, \left| \frac{\partial v^{1}}{\partial x_{2}}(x_{1},\phi(N)) - \frac{\partial v_{N}^{1}}{\partial x_{2}}(x_{1},\phi(N)) \right|$$

$$\leq C \int_{(-\eta,\eta)\times(\phi(N)-1,\infty)} \frac{e^{-\delta y_{2}}\phi(N)y_{2}}{(1+|x_{1}-y_{1}|)^{3/2}} dy$$

$$\leq C \left(\int_{\phi(N)}^{\infty} e^{-\delta y_{2}} y_{2} dy_{2} \right) \frac{\phi(N)}{(1+|x_{1}|)^{3/2}} dy \leq \frac{e^{-\delta\phi(N)}\phi(N)}{(1+|x_{1}|)^{3/2}}.$$
(3.36)

Since the fundamental solution to Helmholtz equation $\Phi(x, y)$ is of the following estimation (see e.g., [2]) for $|x - y| \ge 1$

$$\left| \frac{\partial \Phi}{\partial y_2}(x, y) \right| \le C \frac{|x_2 - y_2|}{1 + |x - y|^{3/2}}, \quad \left| \frac{\partial^2 \Phi}{\partial x_2 \partial y_2}(x, y) \right| \le C \frac{|x_2 - y_2|^2}{1 + |x - y|^{3/2}}, \tag{3.37}$$

we can show that for $x_1 \in \mathbb{R}$

$$|v^{2}(x_{1},\phi(N))| \le C\phi(N)W_{\infty}(x_{1}), \quad |v_{N}^{2}(x_{1},\phi(N))| \le C\phi(N)W_{N}(x_{1}), \tag{3.38}$$

and

$$\left| \frac{\partial v^2}{\partial x_2}(x_1, \phi(N)) \right| \le C\phi(N)^2 W_{\infty}(x_1), \quad \left| \frac{\partial v_N^2}{\partial x_2}(x_1, \phi(N)) \right| \le C\phi(N)^2 W_N(x_1), \tag{3.39}$$

and

$$|v^{2}(x_{1},\phi(N)) - v_{N}^{2}(x_{1},\phi(N))| \le C\phi(N) (W_{\infty}(x_{1}) - W_{N}(x_{1})), \tag{3.40}$$

and

$$\left| \frac{\partial v^2}{\partial x_2}(x_1, \phi(N)) - \frac{\partial v_N^2}{\partial x_2}(x_1, \phi(N)) \right| \le C\phi(N)^2 (W_\infty(x_1) - W_N(x_1)), \tag{3.41}$$

where W_N is defined by for $N \in (0, \infty]$

$$W_N(x_1) := \int_{-N}^{N} \frac{|u^{(1)}(y_1, h)|}{(1 + |x_1 - y_1|)^{3/2}} dy_1, \quad x_1 \in \mathbb{R}.$$
(3.42)

Using (3.35)–(3.41), we continue to estimate (3.34). By the Cauchy Schwarz inequality we have

$$\begin{split} |L(N)| &\leq C \int_{-N}^{N} \Bigl\{ \frac{\phi(N)}{(1+|x_{1}|)^{3/2}} + \phi(N) W_{\infty}(x_{1}) \Bigr\} \\ &\qquad \qquad \times \Bigl\{ \frac{\phi(N) e^{-\sigma\phi(N)}}{(1+|x_{1}|)^{3/2}} + \phi(N)^{2} \bigl(W_{\infty}(x_{1}) - W_{N}(x_{1}) \bigr) \Bigr\} dx_{1} \\ &\qquad \qquad + \int_{-N}^{N} \Bigl\{ \frac{\phi(N) e^{-\sigma\phi(N)}}{(1+|x_{1}|)^{3/2}} + \phi(N) \bigl(W_{\infty}(x_{1}) - W_{N}(x_{1}) \bigr) \Bigr\} \\ &\qquad \qquad \times \Bigl\{ \frac{\phi(N)}{(1+|x_{1}|)^{3/2}} + \phi(N)^{2} W_{N}(x_{1}) \Bigr\} dx_{1} \\ &\qquad \qquad + \int_{\mathbb{R} \setminus (-N,N)} \Bigl\{ \frac{\phi(N)}{(1+|x_{1}|)^{3/2}} + \phi(N) W_{N}(x_{1}) \Bigr\} \Bigl\{ \frac{\phi(N)}{(1+|x_{1}|)^{3/2}} + \phi(N)^{2} W_{N}(x_{1}) \Bigr\} dx_{1} \end{split}$$

$$\leq C\phi(N)^{3} \int_{-N}^{N} W_{\infty}(x_{1}) \left(W_{\infty}(x_{1}) - W_{N}(x_{1})\right) dx_{1}
+ C\phi(N)^{3} \int_{-N}^{N} \frac{1}{(1+|x_{1}|)^{3/2}} \left(W_{\infty}(x_{1}) - W_{N}(x_{1})\right) dx_{1}
+ C\phi(N)^{2} \int_{\mathbb{R}\setminus(-N,N)} \frac{1}{(1+|x_{1}|)^{3}} dx_{1} + C\phi(N)^{2} \int_{\mathbb{R}\setminus(-N,N)} \frac{1}{(1+|x_{1}|)^{3/2}} W_{N}(x_{1}) dx_{1}
+ C\phi(N)^{3} \int_{\mathbb{R}\setminus(-N,N)} |W_{N}(x_{1})|^{2} dx_{1} + o(1)
\leq C\phi(N)^{3} \left\{ \left(\int_{-N}^{N} \left(W_{\infty}(x_{1}) - W_{N}(x_{1})\right)^{2} dx_{1} \right)^{1/2} + \left(\int_{\mathbb{R}\setminus(-N,N)} W_{N}(x_{1})^{2} dx_{1} \right)^{1/2} \right\}
+ o(1).$$
(3.43)

Finally, we will estimate $(W_{\infty}(x_1) - W_N(x_1))$ and $W_N(x_1)$. Since $u^{(1)}(\cdot, h) \in L^2(\mathbb{R})$, by Lemma 3.3 there exists a sequence $\{N_m\}_{m\in\mathbb{N}}$ such that $N_m \to \infty$ as $m \to \infty$ and

$$\int_{K_{N_m}} |u^{(1)}(y_1, h)|^2 dy_1 \le CN_m^{-\frac{1}{4}}, \ m \in \mathbb{N}, \tag{3.44}$$

where $K_A := K_A^+ \cup K_A^-$, $K_A^+ := (-A^+, A^+) \setminus (-A, A)$, $K_A^- := (-A, A) \setminus (-A^-, A^-)$, and $A^{\pm} := A \pm A^{1/2}$ for $A \in [1, \infty)$.

By the Cauchy Schwarz inequality we have for $|x_1| > N_m$,

$$\int_{-N_{m}^{-}}^{N_{m}^{-}} \frac{|u^{(1)}(y_{1},h)|}{(1+|x_{1}-y_{1}|)^{3/2}} dy_{1} \leq \left(\int_{-N_{m}^{-}}^{N_{m}^{-}} |u^{(1)}(y_{1},h)|^{2} dy_{1}\right)^{1/2} \left(\int_{-N_{m}^{-}}^{N_{m}^{-}} \frac{dy_{1}}{(1+|x_{1}|-y_{1})^{3}}\right)^{1/2} \leq \frac{C}{1-|x_{1}|-N_{m}^{-}},$$
(3.45)

and

$$\int_{K_{N_{m}^{-}}} \frac{|u^{(1)}(y_{1},h)|}{(1+|x_{1}-y_{1}|)^{3/2}} dy_{1} \leq \left(\int_{K_{N_{m}}} |u^{(1)}(y_{1},h)|^{2} dy_{1} \right)^{1/2} \left(\int_{K_{N_{m}}^{-}} \frac{dy_{1}}{(1+|x_{1}|-y_{1})^{3}} \right)^{1/2} \leq \frac{C}{N_{m}^{1/8}(1+|x_{1}|-N_{m})}.$$
(3.46)

Therefore, we obtain

$$\int_{\mathbb{R}\setminus(-N_m,N_m)} W_N(x_1)^2 dx_1
\leq C \int_{N_m}^{\infty} \frac{dx_1}{(1-|x_1|-N_m^-)^2} + \frac{C}{N_m^{1/4}} \int_{N_m}^{\infty} \frac{dx_1}{(1-|x_1|-N_m)^2}
\leq \frac{C}{1+N_m^{1/2}} + \frac{C}{N_m^{1/4}} \leq \frac{C}{N_m^{1/4}}.$$
(3.47)

By the Cauchy Schwarz inequality we have for $|x_1| < N_m$,

$$\int_{\mathbb{R}\setminus(-N_{m}^{+},N_{m}^{+})} \frac{|u^{(1)}(y_{1},h)|}{(1+|x_{1}-y_{1}|)^{3/2}} dy_{1}$$

$$\leq \left(\int_{\mathbb{R}\setminus(-N_{m}^{+},N_{m}^{+})} |u^{(1)}(y_{1},h)|^{2} dy_{1}\right)^{1/2} \left(\int_{\mathbb{R}\setminus(-N_{m}^{+},N_{m}^{+})} \frac{dy_{1}}{(1+y_{1}-|x_{1}|)^{3}}\right)^{1/2}$$

$$\leq \frac{C}{1+N_{m}^{+}-|x_{1}|}, \tag{3.48}$$

and

$$\int_{K_{N_m^+}} \frac{|u^{(1)}(y_1,h)|}{(1+|x_1-y_1|)^{3/2}} dy_1 \leq \left(\int_{K_{N_m}} |u^{(1)}(y_1,h)|^2 dy_1 \right)^{1/2} \left(\int_{K_{N_m}^+} \frac{dy_1}{(1+y_1-|x_1|)^3} \right)^{1/2} \leq \frac{C}{N_m^{1/8} (1+N_m-|x_1|)}.$$
(3.49)

Therefore, we obtain

$$\int_{-N_{m}}^{N_{m}} \left(W_{\infty}(x_{1}) - W_{N}(x_{1}) \right)^{2} dx_{1}$$

$$\leq C \int_{-N_{m}}^{N_{m}} \frac{dx_{1}}{(1 + N_{m}^{+} - |x_{1}|)^{2}} + \frac{C}{N_{m}^{1/4}} \int_{-N_{m}}^{N_{m}} \frac{dx_{1}}{(1 + N_{m} - |x_{1}|)^{2}}$$

$$\leq \frac{C}{1 + N_{m}^{1/2}} + \frac{C}{N_{m}^{1/4}} \leq \frac{C}{N_{m}^{1/4}}.$$
(3.50)

Therefore, Collecting (3.43), (3.47), and (3.50) we conclude that $|L(N_m)| \leq C \frac{\phi(N_m)^3}{N_m^{1/8}}$. Since $\phi(N) = N^s$, if we choose $s \in (0,1)$ such that $3s < \frac{1}{8}$, that is, $0 < s < \frac{1}{24}$, the term $\frac{\phi(N_m)^3}{N_m^{1/8}}$ converges to zero as $m \to \infty$. Therefore, $\limsup_{N \to \infty} L(N) \geq 0$, which yields Step 3.

By taking $\limsup_{N\to\infty}$ in (3.29) we have that

$$0 \geq \frac{k}{2\pi} \sum_{j \in J} \left[\sum_{d_{l,j} > 0} |a_{l,j}|^2 d_{l,j} - \sum_{d_{l,j} < 0} |a_{l,j}|^2 d_{l,j} \right]$$

$$+ \operatorname{limsup}_{N \to \infty} \left(J_+(N) + J_-(N) + L(N) \right).$$
(3.51)

By Steps 2 and 3 and choosing $0 < s < \frac{1}{24}$ the right hand side is non-negative. Therefore, $a_{l,j} = 0$ for all l, j, which yields $u^{(2)} = 0$. Lemma 3.1 has been shown, and in next section we will show the uniqueness of $u^{(1)}$.

4 Uniqueness of $u^{(1)}$

In Section 4, we will show the following lemma.

Lemma 4.1. If $u \in H^1_{loc}(\mathbb{R}^2_+)$ satisfies

- (i) $u \in H^1(\mathbb{R} \times (0, R))$ for all R > 0,
- (ii) $\Delta u + k^2(1+q)nu = 0$ in \mathbb{R}^2_+ ,
- (iii) u vanishes for $x_2 = 0$,
- (iv) There exists $\phi \in L^{\infty}(\Gamma_h) \cap H^{1/2}(\Gamma_h)$ with $u(x) = 2 \int_{\Gamma_h} \phi(y) \frac{\partial \Phi_k(x,y)}{\partial y_2} ds(y)$ for $x_2 > h$, then, $u \in H_0^1(\mathbb{R}^2_+)$.

If we can use Lemma 4.1, we have the uniqueness of the solution in Theorem 1.2.

Theorem 4.2. Let Assumptions 1.1 and 2.1 hold and let k > 0 be regular in the sense of Definition 2.3. If $u \in H^1_{loc}(\mathbb{R}^2_+)$ satisfies (3.1), (3.2), and the radiation condition in the sense of Definition 2.4, then u vanishes for $x_2 > 0$.

Proof of Theorem 4.2. Let $u \in H^1_{loc}(\mathbb{R}^2_+)$ satisfy (3.1), (3.2), and the radiation condition in the sense of Definition 2.4. By Lemma 3.1, $u^{(2)} = 0$ for $x_2 > 0$. Then, $u^{(1)}$ satisfies the assumptions (i)–(iv) of Lemma 4.1, which implies that $u^{(1)} \in H^1_0(\mathbb{R}^2_+)$. By Assumption 1.1, $u^{(1)}$ vanishes for $x_2 > 0$, which yields the uniqueness.

Finally in this section we will show Theorem 4.2.

Proof of Lemma 4.1. Let R > h be fixed. We set $\Omega_{N,R} := (-N,N) \times (0,R)$ where N > 0 is large enough. We denote by $I_{\pm N}^R := \{\pm N\} \times (0,R)$, $\Gamma_{R,N} := (-N,N) \times \{R\}$, and $\Gamma_R := (-\infty,\infty) \times \{R\}$. By Green's first theorem in $\Omega_{N,R}$ and assumptions (ii), (iii) we have

$$\int_{\Omega_{N,R}} \{-k^2(1+q)n|u|^2 + |\nabla u|^2\} dx = \int_{\Omega_{N,R}} \{\overline{u}\Delta u + |\nabla u|^2\} dx$$

$$= \int_{I_N^R} \overline{u}\frac{\partial u}{\partial x_1} ds - \int_{I_{-N}^R} \overline{u}\frac{\partial u}{\partial x_1} ds + \int_{\Gamma_{R,N}} \overline{u}\frac{\partial u}{\partial x_2} ds. \tag{4.1}$$

By the assumption (i), the first and second term in the right hands side of (4.1) go to zero as $N \to \infty$. Then, by taking an imaginary part and as $N \to \infty$ in (4.1) we have

$$\operatorname{Im} \int_{\Gamma_{R}} \overline{u} \frac{\partial u}{\partial x_{2}} ds = 0. \tag{4.2}$$

By considering the Floquet Bloch transform with respect to x_1 (see the notation of (2.5)), we can show that

$$\int_{\Gamma_R} \overline{u} \frac{\partial u}{\partial x_2} ds = \int_{-1/2}^{1/2} \int_0^{2\pi} \overline{\tilde{u}_\alpha}(x_1, R) \frac{\partial \tilde{u}_\alpha(x_1, R)}{\partial x_2} dx_1 d\alpha. \tag{4.3}$$

Since the upward propagating radiation condition is equivalent to the Rayleigh expansion by the Floquet Bloch transform (see the proof of Theorem 6.8 in [8]), we can show that

$$\tilde{u}_{\alpha}(x) = \sum_{n \in \mathbb{Z}} u_n(\alpha) e^{inx_1 + i\sqrt{k^2 - (n+\alpha)^2}(x_2 - h)}, \ x_2 > h, \tag{4.4}$$

where $u_n(\alpha) := (2\pi)^{-1} \int_0^{2\pi} u_{\alpha}(x_1, h) e^{-inx_1} dx_1$. From (4.2)–(4.4) we obtain that

$$0 = \operatorname{Im} \int_{-1/2}^{1/2} \int_{0}^{2\pi} \overline{\tilde{u}_{\alpha}}(x_{1}, R) \frac{\partial \tilde{u}_{\alpha}(x_{1}, R)}{\partial x_{2}} dx_{1} d\alpha$$
$$= \operatorname{Im} \sum_{n \in \mathbb{Z}} \int_{-1/2}^{1/2} 2\pi |u_{n}(\alpha)|^{2} i \sqrt{k^{2} - (n + \alpha)^{2}}, \tag{4.5}$$

Here, we denote by $k = n_0 + r$ where $n_0 \in \mathbb{N}_0$ and $r \in [-1/2, 1/2)$. Then by (4.5) we have

$$u_n(\alpha) = 0 \text{ for } |n| < n_0, \text{ a.e. } \alpha \in (-1/2, 1/2),$$

 $u_{n_0}(\alpha) = 0 \text{ for } \alpha \in (-1/2, r),$
 $u_{-n_0}(\alpha) = 0 \text{ for } \alpha \in (-r, 1/2).$ (4.6)

By (4.6) we have

$$\int_{-1/2}^{1/2} \int_{0}^{2\pi} \int_{R}^{\infty} |\tilde{u}_{\alpha}(x)|^{2} dx_{2} dx_{1} d\alpha$$

$$= 2\pi \int_{-1/2}^{1/2} \sum_{|n| > n_{0}} |u_{n}(\alpha)|^{2} \int_{R}^{\infty} e^{-\sqrt{(n+\alpha)^{2} - k^{2}}(x_{2} - h)} dx_{2} d\alpha$$

$$+ 2\pi \int_{r}^{1/2} |u_{n_{0}}(\alpha)|^{2} \int_{R}^{\infty} e^{-\sqrt{(n_{0} + \alpha)^{2} - k^{2}}(x_{2} - h)} dx_{2} d\alpha$$

$$+ 2\pi \int_{-1/2}^{-r} |u_{-n_{0}}(\alpha)|^{2} \int_{R}^{\infty} e^{-\sqrt{(-n_{0} + \alpha)^{2} - k^{2}}(x_{2} - h)} dx_{2} d\alpha$$

$$\leq 2\pi \sum_{|n| > n_{0}} \int_{-1/2}^{1/2} \frac{|u_{n}(\alpha)|^{2} e^{-\sqrt{(n+\alpha)^{2} - k^{2}}(R - h)}}{\sqrt{(n+\alpha)^{2} - k^{2}}} d\alpha$$

$$+ 2\pi \int_{r}^{1/2} \frac{|u_{n_{0}}(\alpha)|^{2} e^{-\sqrt{(-n_{0} + \alpha)^{2} - k^{2}}(R - h)}}{\sqrt{(n_{0} + \alpha)^{2} - k^{2}}} d\alpha$$

$$+ 2\pi \int_{-1/2}^{-r} \frac{|u_{-n_{0}}(\alpha)|^{2} e^{-\sqrt{(-n_{0} + \alpha)^{2} - k^{2}}(R - h)}}{\sqrt{(-n_{0} + \alpha)^{2} - k^{2}}} d\alpha$$

$$\leq C \sum_{|n| > n_{0}} \int_{-1/2}^{1/2} |u_{n}(\alpha)|^{2} d\alpha$$

$$+ C \int_{r}^{1/2} \frac{|u_{n_{0}}(\alpha)|^{2}}{\sqrt{\alpha - r}} d\alpha + C \int_{-1/2}^{-r} \frac{|u_{-n_{0}}(\alpha)|^{2}}{\sqrt{-\alpha - r}} d\alpha, \tag{4.7}$$

and

$$\int_{-1/2}^{1/2} \int_{0}^{2\pi} \int_{R}^{\infty} |\partial_{x_{1}} \tilde{u}_{\alpha}(x)|^{2} dx_{2} dx_{1} d\alpha$$

$$= 2\pi \sum_{|n| > n_{0}} \int_{-1/2}^{1/2} \frac{|u_{n}(\alpha)|^{2} n^{2} e^{-\sqrt{(n+\alpha)^{2} - k^{2}}(R-h)}}{\sqrt{(n+\alpha)^{2} - k^{2}}} d\alpha$$

$$+ 2\pi \int_{r}^{1/2} \frac{|u_{n_{0}}(\alpha)|^{2} n_{0}^{2} e^{-\sqrt{(n_{0}+\alpha)^{2} - k^{2}}(R-h)}}{\sqrt{(n_{0}+\alpha)^{2} - k^{2}}} d\alpha$$

$$+ 2\pi \int_{-1/2}^{-r} \frac{|u_{-n_{0}}(\alpha)|^{2} n_{0}^{2} e^{-\sqrt{(-n_{0}+\alpha)^{2} - k^{2}}(R-h)}}{\sqrt{(-n_{0}+\alpha)^{2} - k^{2}}} d\alpha$$

$$\leq C \sum_{|n| > n_{0}} \int_{-1/2}^{1/2} |u_{n}(\alpha)|^{2} d\alpha$$

$$+ C \int_{r}^{1/2} \frac{|u_{n_{0}}(\alpha)|^{2}}{\sqrt{\alpha - r}} d\alpha + C \int_{-1/2}^{-r} \frac{|u_{-n_{0}}(\alpha)|^{2}}{\sqrt{-\alpha - r}} d\alpha. \tag{4.8}$$

By the same argument in (4.8) we have

$$\int_{-1/2}^{1/2} \int_{0}^{2\pi} \int_{R}^{\infty} |\partial_{x_{2}} \tilde{u}_{\alpha}(x)|^{2} dx_{2} dx_{1} d\alpha \leq C \sum_{|n| > n_{0}} \int_{-1/2}^{1/2} |u_{n}(\alpha)|^{2} d\alpha
+ C \int_{r}^{1/2} \frac{|u_{n_{0}}(\alpha)|^{2}}{\sqrt{\alpha - r}} d\alpha + C \int_{-1/2}^{-r} \frac{|u_{-n_{0}}(\alpha)|^{2}}{\sqrt{-\alpha - r}} d\alpha.$$
(4.9)

It is well known that the Floquet Bloch Transform is an isomorphism between $H^1(\mathbb{R}^2_+)$ and $L^2((-1/2,1/2)_{\alpha};H^1((0,2\pi)\times\mathbb{R})_x)$ (e.g., see Theorem 4 in [9]). Therefore, we obtain from (4.7)–(4.9)

$$||u||_{H^{1}(\mathbb{R}\times(R,\infty))}^{2}| \leq C \int_{-1/2}^{1/2} \int_{0}^{2\pi} \int_{R}^{\infty} |\tilde{u}_{\alpha}(x)|^{2} + |\partial_{x_{1}}\tilde{u}_{\alpha}(x)|^{2} + |\partial_{x_{2}}\tilde{u}_{\alpha}(x)|^{2} dx_{2} dx_{1} d\alpha$$

$$\leq C \sum_{|n|>n_{0}} \int_{-1/2}^{1/2} |u_{n}(\alpha)|^{2} d\alpha$$

$$+ C \int_{r}^{1/2} \frac{|u_{n_{0}}(\alpha)|^{2}}{\sqrt{\alpha - r}} d\alpha + C \int_{-1/2}^{-r} \frac{|u_{-n_{0}}(\alpha)|^{2}}{\sqrt{-\alpha - r}} d\alpha.$$

$$\leq C \int_{-1/2}^{1/2} \int_{0}^{2\pi} |\tilde{u}_{\alpha}(x_{1}, h)|^{2} dx_{1} d\alpha$$

$$+ C \int_{r}^{1/2} \frac{|u_{n_{0}}(\alpha)|^{2}}{\sqrt{\alpha - r}} d\alpha + C \int_{-1/2}^{-r} \frac{|u_{-n_{0}}(\alpha)|^{2}}{\sqrt{-\alpha - r}} d\alpha. \tag{4.10}$$

If we can show that

$$\exists \delta > 0 \text{ and } \exists C > 0 \text{ s.t. } |u_{\pm n_0}(\alpha)| \le C \text{ for all } \alpha \in (-\delta \pm r, \delta \pm r),$$
 (4.11)

then the right hands side of (4.10) is finite, which yields Lemma 4.1.

Finally, we will show (4.11). By the same argument in section 3 of [8] we have

$$(I - K_{\alpha})\tilde{u}_{\alpha} = f_{\alpha} \text{ in } H_{0,per}^{1}(C_{h}), \tag{4.12}$$

where the operator K_{α} is defined by (2.12) and $f_{\alpha} := -(T_{per}k^2nqu)(\cdot,\alpha)$. Since the function k^2nqu has a compact support, $\|f_{\alpha}\|_{H^1(C_h)}^2$ is bounded with respect to α . By Assumption 2.1 and the operator K_{α} is compact, $(I-K_{\alpha})$ is invertible if $\alpha \in A_k$. Since $\pm r \in A_k$, $(I-K_{\pm})$ is invertible. Since the exceptional values are finitely many (see Lemma 2.2), $(I-K_{\alpha})$ is also invertible if α is close to $\pm r$. Therefore, there exists $\delta > 0$ such that $(I-K_{\alpha})$ is invertible for all $\alpha \in (-\delta+r, \delta+r) \cup (-\delta-r, \delta-r)$.

The operator $(I - K_{\alpha})$ is of the form

$$(I - K_{\alpha}) = (I - K_{\pm r}) \Big(I - (I - K_{\pm r})^{-1} [I - K_{\pm r} - (I - K_{\alpha})] \Big) = (I - K_{\pm r}) (I - M_{\alpha}), \quad (4.13)$$

where $M_{\alpha} := (I - K_{\pm r})^{-1} (K_{\alpha} - K_{\pm r})$. Next, we will estimate $(K_{\alpha} - K_{\pm r})$. By the definition of K_{α} we have for all $v, w \in H_{0,per}^1(C_h)$,

$$\langle (K_{\alpha} - K_{\pm r})v, w \rangle_{*} = -\int_{C_{h}} \left[i(\alpha \mp r) \left(v \frac{\partial \overline{w}}{\partial x_{1}} - \overline{v} \frac{\partial \overline{w}}{\partial x_{1}} \right) + (\alpha^{2} - r^{2}) v \overline{w} \right] dx$$

$$+ 2\pi i \sum_{|n| \neq n_{0}} v_{n} \overline{w_{n}} \left(\sqrt{k^{2} - (n + \alpha)^{2}} - \sqrt{k^{2} - (n \pm r)^{2}} \right)$$

$$+ 2\pi i \sum_{|n| = n_{0}} v_{n} \overline{w_{n}} \left(\sqrt{k^{2} - (n + \alpha)^{2}} - \sqrt{k^{2} - (n \pm r)^{2}} \right).$$

$$(4.14)$$

Since

$$|\sqrt{k^{2} - (n+\alpha)^{2}} - \sqrt{k^{2} - (n\pm r)^{2}}| = \left| \frac{\pm 2nr + r^{2} - 2n\alpha - \alpha^{2}}{\sqrt{k^{2} - (n+\alpha)^{2}} + \sqrt{k^{2} - (n\pm r)^{2}}} \right|$$

$$\leq \begin{cases} \frac{|n||\alpha \pm r| + |r^{2} - \alpha^{2}|}{\sqrt{|k^{2} - (n\pm r)^{2}|}} & \text{for } |n| \neq n_{0} \\ \frac{|n||\alpha \pm r| + |r^{2} - \alpha^{2}|}{\sqrt{|r+\alpha||r-\alpha|}} & \text{for } |n| = n_{0}, \end{cases}$$

$$(4.15)$$

we have for all $\alpha \in (-\delta + r, \delta + r) \cup (-\delta - r, \delta - r)$

$$|\langle (K_{\alpha} - K_{\pm r})v, w \rangle_{*}| \leq C|\alpha \mp r| \|v\|_{H^{1}(C_{h})} \|w\|_{H^{1}(C_{h})}$$

$$+ C \sum_{|n| \neq n_{0}} |v_{n}| |w_{n}| \frac{|n| |\alpha \mp r|}{\sqrt{|k^{2} - (n \pm r)^{2}|}}$$

$$+ C \sum_{|n| = n_{0}} |v_{n}| |w_{n}| n_{0} \sqrt{|\alpha \mp r|}$$

$$\leq C \sqrt{|\alpha \mp r|} \|v\|_{H^{1}(C_{h})} \|w\|_{H^{1}(C_{h})}.$$

$$(4.16)$$

(we retake very small $\delta > 0$ if needed.) This implies that there is a constant number C > 0 which is independent of α such that $||K_{\alpha} - K_{\pm r}|| \leq C\sqrt{|\alpha \mp r|}$. Therefore, by the property of Neumann series, there is a small $\delta > 0$ such that for all $\alpha \in (-\delta + r, \delta + r) \cup (-\delta - r, \delta - r)$

$$(I - M_{\alpha})^{-1} = \sum_{n=0}^{\infty} M_{\alpha}^{n} \text{ and } ||M_{\alpha}|| \le 1/2.$$
 (4.17)

By the Cauchy Schwarz inequality, the boundedness of trace operator, and (4.17) we have

$$|u_{\pm n_0}(\alpha)| \leq \int_0^{2\pi} |\tilde{u}_{\alpha}(x_1, h)| dx_1 \leq C \|\tilde{u}_{\alpha}\|_{H^1(C_h)}$$

$$= C \|(I - M_{\alpha})^{-1} (I - K_{\pm r})^{-1} f_{\alpha}\|_{H^1(C_h)}$$

$$\leq C \|(I - M_{\alpha})^{-1}\| \|(I - K_{\pm r})^{-1} f_{\alpha}\|$$

$$\leq C \sum_{n=0}^{\infty} \|M_{\alpha}\|^n < C \sum_{n=0}^{\infty} (1/2)^j < \infty,$$
(4.18)

where constant number C > 0 is independent of α . Therefore, we have shown (4.11).

5 Existence

In previous sections we discussed the uniqueness of Theorem 1.2. In Section 5, we will show the existence. Let Assumptions 1.1 and 2.1 hold and let k > 0 be regular in the sense of Definition 2.3. Let $f \in L^2(\mathbb{R}^2_+)$ such that $\operatorname{supp} f = Q$. We define the solution operator $S: L^2(Q) \to L^2(Q)$ by $Sg := v|_Q$ where v satisfies the radiation condition and

$$\Delta v + k^2 n v = g, \text{ in } \mathbb{R}^2_+, \tag{5.1}$$

$$v = 0 \text{ on } \Gamma_0. \tag{5.2}$$

Remark that by Theorem 2.6 we can define such a operator S, and S is a compact operator since the restriction to Q of the solution v is in $H^1(Q)$. We define the multiplication operator $M: L^2(Q) \to L^2(Q)$ by $Mh := k^2 nqh$. We will show the following lemma.

Lemma 5.1. $I_{L^2(Q)} + SM$ is invertible.

Proof of Lemma 5.1. By the definition of operators S and M we have $SMg = v|_Q$ where v is a radiating solution of (5.1)–(5.2) replacing g by k^2nqg . If we assume that $(I_{L^2(Q)} + SM)g = 0$, then $g = -v|_Q$, which implies that v satisfies $\Delta v + k^2n(1+q)v = 0$ in \mathbb{R}^2_+ . By the uniqueness we have v = 0 in \mathbb{R}^2_+ , which implies that $I_{L^2(Q)} + SM$ is injective. Since the operator SM is compact, by Fredholm theory we conclude that $I_{L^2(Q)} + SM$ is invertible.

We define u as the solution of

$$\Delta u + k^2 n u = f - M(I_{L^2(Q)} + SM)^{-1} Sf, \text{ in } \mathbb{R}^2_+.$$
 (5.3)

satisfying the radiation condition and u = 0 on Γ_0 . Since

$$u|_{Q} = S(f - M(I_{L^{2}(Q)} + SM)^{-1}Sf)$$

$$= (I_{L^{2}(Q)} + SM)(I_{L^{2}(Q)} + SM)^{-1}Sf - SM(I_{L^{2}(Q)} + SM)^{-1}Sf$$

$$= (I_{L^{2}(Q)} + SM)^{-1}Sf,$$
(5.4)

we have that

$$\Delta u + k^2 n u = f - k^2 n q u, \text{ in } \mathbb{R}^2_+, \tag{5.5}$$

and u is a radiating solution of (1.8)–(1.9). Therefore, Theorem 1.2 has been shown.

References

- [1] S. N. Chandler-Wilde, The impedance boundary value problem for the Helmholtz equation in a half-plane, Math. Methods Appl. Sci. 20, (1997), no. 10, 813–840.
- [2] S. N. Chandler-Wilde, R. R. Christopher, Scattering by rough surfaces: the Dirichlet problem for the Helmholtz equation in a non-locally perturbed half-plane, Math. Methods Appl. Sci. 19, (1996), no. 12, 959–976.
- [3] S. N. Chandler-Wilde, B. Zhang, A uniqueness result for scattering by infinite rough surfaces, SIAM J. Appl. Math. 58, (1998), no. 6, 1774–1790.
- [4] S. N. Chandler-Wilde, B. Zhang, Electromagnetic scattering by an inhomogeneous conducting or dielectric layer on a perfectly conducting plate, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, (1998), no. 1970, 519–542.
- [5] A. Kirsch, Scattering by a periodic tube in \mathbb{R}^3 : part i. The limiting absorption principle, Inverse Prob., **35**, (2019), 104004.
- [6] A. Kirsch, Scattering by a periodic tube in \mathbb{R}^3 : part ii. A radiation condition, Inverse Prob., **35**, (2019), 104005.
- [7] A. Kirsch, A. Lechleiter, A radiation condition arising from the limiting absorption principle for a closed full- or half-waveguide problem, Math. Methods Appl. Sci. 41, (2018), no. 10, 3955–3975.
- [8] A. Kirsch, A. Lechleiter, The limiting absorption principle and a radiation condition for the scattering by a periodic layer, SIAM J. Math. Anal. **50**, (2018), no. 3, 2536–2565.
- [9] A. Lechleiter, The Floquet-Bloch transform and scattering from locally perturbed periodic surfaces, J. Math. Anal. Appl. 446, (2017), no. 1, 605–627.

Department of Mathematics

Hokkaido University

Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan

Email: takashi.furuya0101@gmail.com