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1 Introduction

Let k > 0 be the wave number, and let R% := R x (0,00) be the upper half plane, and let W :=
R x (0, h) be the waveguide in RZ. We denote by I', := R x {a} for a > 0. Let n € L>°(R%) be real
value, 27-periodic with respect to @1 (that is, n(z1 + 27, z2) = n(z1, z2) for all x = (z1,z2) € R?),
and equal to one for x5 > h. We assume that there exists a constant ng > 0 such that n > ng in ]Ri.
Let g € L™ (Ri) be real valued with the compact support supp ¢ in W. We denote by @Q := supp q.
In this paper, we consider the following scattering problem: For fixed y € Ri \ W, determine the
scattered field u® € H. (R?) such that

loc
Au® + k(1 + g)nu® = —k*qnu’ (-, y) in R, (1.1)

u® =0 on Iy, (1.2)

Here, the incident field u’ is given by u‘(z,y) = Gy (z,y), where G, is the Dirichlet Green’s function
in the upper half plane Ri for A + k?n, that is,

Gn(z,y) == G(z,y) + @°(2,y), (1.3)

where G(z,y) := ®(z,y) — Px(z,y*) is the Dirichlet Green’s function in R? for A + k2, and
y* = (y1, —y2) is the reflected point of y at R x {0}. Here, ®x(x,y) is the fundamental solution to
Helmholtz equation in R?, that is,

l
p(w.y) = pHy Kz ). = £, (14)

where H(gl) is the Hankel function of the first kind of order one. 4° is the scattered field of the
unperturbed problem by the incident field G(x,y), that is, @° vanishes for 9 = 0 and solves

AT + k*na® = k*(1 — n)G(-,y) in R3. (1.5)

If we impose a suitable radiation condition introduced in [8], the unperturbed solution @° is uniquely
determined. Later, we will explain the exact definition of this radiation condition (see Definition
2.4).

In order to show the well-posedness of the perturbed scattering problem (1.1)—(1.2), we make
the following assumption.



Assumption 1.1. We assume that k? is not the point spectrum of (#A mn H&(Ri), that is,

I+q)n
every v € HY(R2) which satisfies
Av+Ek*(1+¢)nv =0 in R?, (1.6)

v=0on Iy, (1.7)

has to vanish for xq > 0.

If we assume that ¢ and n satisfy in addition that 0 ((1 + q)n) > 0 in W, then v which satisfies

(1.6)—(1.7) vanishes, that is, under this assumption all of k2 is not the point spectrum of WA

(see Section 6). Our aim in this paper is to show the following theorem.

Theorem 1.2. Let Assumptions 1.1 and 2.1 hold and let k > 0 be regular in the sense of Definition
2.3 and let f € L*(R%) such that suppf = Q. Then, there exists a unique solution v € H} (R?)
such that

Au+k*(1+¢)nu = f in R%, (1.8)

u =0 on Iy, (1.9)

and u satisfies the radiation condition in the sense of Definition 2.4.

Roughly speaking, the radiation condition of Definition 2.4 requires that we have a decomposition
of the solution u into u which decays in the direction of z1, and a finite combination u(? of
propagative modes which does not decay, but it exponentially decays in the direction of x».

This paper is organized as follows. In Section 2, we briefly recall a radiation condition introduced
in [8]. Under the radiation condition in the sense of Definition 2.4, we show the uniqueness of u(?)
and u( in Section 3 and 4, respectively. In Section 5, we show the existence of w. In Section 6, we
give an example of n and g with respect to Assumption 1.1.

2 A radiation condition

In Section 2, we briefly recall a radiation condition introduced in [8]. Let f € L*(R%) have the
compact support in W. First, we consider the following problem: Find v € H lloc(]RfL) such that

Au+ k*nu = f in R, (2.1)

u =20 on I'y. (2.2)

(2.1) is understood in the variational sense, that is,

J

for all p € H'(R?), with compact support. In such a problem, it is natural to impose the upward
propagating radiation condition, that is, u(-,h) € L>°(R) and

[Vu -V — anUE] dr = —/ fpdz, (2.3)
w

2
+

u(x) = 2/Fh u(y)(%g(;’y)ds(y) =0, z2 > h. (2.4)



However, even with this condition we can not expect the uniqueness of this problem. (see Example
2.3 of [8].) In order to introduce a suitable radiation condition, [8] discussed limiting absorption
solution of this problem, that is, the limit of the solution u. of Auc + (k + i€)?nuc = f as e — 0.
For the details of an introduction of this radiation condition, we refer to [5, 6, 7, 8].

Let us prepare for the exact definition of the radiation condition. First we recall that the Floquet
Bloch transform Tpe, : L*(R) — L?((0,2m) x (—1/2,1/2)) is defined by

Tper f(t, ) = fa(t) := Y f(t + 2rm)e (+2mm), (2.5)

meZ

for (t,a) € (0,27) x (—1/2,1/2). The inverse transform is given by

1/2 '
Tp_eig(t) = / g(t,a)eda, t € R. (2.6)
~1/2

By taking the Floquet Bloch transform with respect to ;1 in (2.1)—(2.2), we have for o € (—1/2,1/2]

Adig, + Qia% + (K*n — a?)iig = fa in (0,27) x (0, 00). (2.7)
1

U = 0 on (0,27) x {0}. (2.8)

By taking the Floquet Bloch transform with respect to x; in (2.4), 1, satisfies the Rayleigh expansion
of the form

= Z Uy () €MLY k2_(”+°‘)2($2_h), To > h, (2.9)

neL

where u,(a) := (2m)~! fo% U (1, h)e~ "1 dxy are the Fourier coefficients of u, (-, h), and

VE?—(n+a)? =iy/(n+a)?-k2ifn+a>k.
We denote by Cg := (0,27) x (0, R) for R € (0, 0], and H;GT(CR) the subspace of the 27-periodic

function in H'(Cg). We also denote by Hj ,.,.(Cr) := {u € Hp,,(Cr) : u =0 on (0,2m) x {0}} that
is equipped with H!(Cr) norm. The space H&per(CR) has the inner product of the form

(U, v)y = / Vu - Vodz + 21 Y v/n? + lugty, (2.10)
Ch,

nez
where u,, = fo u(w1, R)e~™*1dz;. The problem (2.7)—(2.9) is equivalent to the following
operator equatlon (see section 3 in [8]),
lio — Kofia = fo in H} e, (Ch), (2.11)

where the operator Ko : H 0, (Ch) = H{ e, (Ch) is defined by

v ou
Ka x  — ] = UV 2 _ k2 v
(Kqu,v) /Ch [za <u8x1 v8x1> + (o =k n)uv} dx
+ 2mi Z unUn (Vk? = (n + a)? n?+1)
I al<k
+ 27 E un%(\/n2 +1-+(n+a)2—k2). (2.12)
[n+a|>k



For several a € (—1/2,1/2], the uniqueness of this problem fails. We call these a exceptional values
if the operator I — K, fails to be injective. For the difficulty of treatment of « such that |a+1| = k for
some [ € Z in an periodic scattering problem, we set Ay, := {a € (—1/2,1/2] : Il € Z s.t. |a+I| = k},
and make the following assumption:

Assumption 2.1. For every a € Ay, I — K, has to be injective.
The following properties of exceptional values was shown in Lemmas 4.2 and 5.6 of [§].

Lemma 2.2. Let Assumption 2.1 hold. Then, there exists only finitely many exceptional values
a € (—1/2,1/2]. Furthermore, if a is an exceptional value, then so is —«. Therefore, the set of
exceptional values can be described by {o; : j € J} where some J C 7Z is finite and a_j = —oj for
J € J. For each exceptional value oj we define

A¢+ 2ia; 5 + (k*n — a?)¢ = 0 in R3,
Xj={¢p€HL(RL): ¢=0forzy =0, ¢ is 2r—periodic for z1,
¢ satisfies the Rayleigh expansion (2.9)

Then, X; are finite dimensional. We set m; = dimX;. Furthermore, ¢ € X; is evanescent, that is,
there exists ¢ > 0 and § > 0 such that |p(x)|, |[Vé(x)| < ce 12l for all x € RZ.

Next, we consider the following eigenvalue problem in X;: Determine d € R and ¢ € X; such
that

/ —i% + ¢ | Ydx = dk/ nopde, (2.13)
Coo 8131 Coo
for all 1 € X;. We denote by the eigenvalues d; ; and the eigenfunction ¢; ; of this problem, that is,
00 Pdz = dy jk od 2.14
—1 P + ozj@,j Ydx = 1,7 n¢l,j¢ €, ( : )
Coo xl [e'e)

for every I = 1,...,m; and j € J. We normalize the eigenfunction {¢;; : | = 1,...,m;} such that

k/c n¢l,j¢17/7jdx = (5“/, (215)

for all 1,1'. We will assume that the wave number k > 0 is regular in the following sense.
Definition 2.3. k£ > 0 is regularif d; ; # 0 for alll = 1,...m; and j € J.
Now we are ready to define the radiation condition.

Definition 2.4. Let Assumptions 2.1 hold, and let £ > 0 be regular in the sense of Definition 2.3.

We set )

1 2 (/2 gint

W) = 5 [1 + W/ ”t"dt] , 11 €R. (2.16)
0

Then, u € H ZIOC(]R?F) satisfies the radiation condition if u satisfies the upward propagating radiation
condition (2.4), and has a decomposition in the form u = u(®) + u(?) where u € H' (R x
(0,R)) for all R >0, and u(® € L>(R2) has the following form

ul? (z) = ¢+($1)Z Z arj () +¢_($1)Z Z i (z) (2.17)

jeJ dl,j>0 jeJ dl’j<0

M |IR{><(O,R)

where some a;; € C, and {d; ;, ¢ ; : | =1,...,m;} are normalized eigenvalues and eigenfunctions of
the problem (2.8).



Remark 2.5. We can replace ¢+ by any smooth functions ¢+ such that lzpi(xl) — ot (z1)| — 0,

and

%wi(m) dzy ¢i(:c1)‘ — 0 as |z1] — oo because (2.12) is of the form

u®@ (@) = 0 (@)Y Y adig@) o @)Y Y agn(e

JE€J dy ;>0 J€J dp ;<0
+ (¥ (@) —Waxl)) S agtni@) + (0 @) =0 @) Y ao@),  (218)
j€J dp ;>0 J€J dy ;<0

where the second term in the right-hand side of (2.13) is a H!-function, which is the role of u®),
The following was shown in Theorems 2.2, 6.6, and 6.8 of [8].

Theorem 2.6. Let Assumptions 2.1 hold and let k > 0 be regular in the sense of Definition 2.3. For
every f € Lz(Ri) with the compact support in W, there exists a unique solution uyii € H' (]Ri) of
the problem (2.1)-(2.2) replacing k by k+ie. Furthermore, uji converge as e — +0 in H} (Ri) to

loc

some u € HL (R%) which satisfy (2.1)-(2.2) and the radiation condition in the sense of Definition
2.4. Furthermore, the solution u of this problem is uniquely determined.

Finally in this section, we will show the following integral representation.

Lemma 2.7. Let f € L*(R%) have a compact support in W, and let u be a solution of (2.1)-(2.2)
which satisfying the radiation condition in the sense of Definition 2.4. Then, u has an integral
representation of the form

uw) =1 | (nl) = Vu)Gle)y — [ @Gy 7B (219)
w
Proof of Lemma 2.7. Let € > 0 be small enough and let u. € H 1(Ri) be a solution of the problem
(2.1)—(2.2) replacing k by k + ie, that is, u. satisfies
Auc + (k +i€)*nue. = f in RY, (2.20)
ue = 0 on I'y. (2.21)

Let Ge(,y) be the Dirichlet Green’s function in the upper half plane R? for A + (k + i€)®. Let
S Ri be always fixed such that x9 > R. Let » > 0 be large enough such that = € B,.(0) where
B,(0) C R? be a open ball with center 0 and radius » > 0. By Green’s representation theorem in
B,(0) NR2 we have

Oue 0
we) = [ G 06 )

_ / [Auc(y) + (k +ie)*uc(y)]
B (0)NRZ%.

Oue 0
= s L @G0 )
e +

£ it [ () D) Gl )y

(@, 9)]ds(y)

e(z,y)dy

—(w,9)]ds(y)

e F WG (222)

5



Since ue € H'(R%), the first term of the right hand side converges to zero as r — co. Therefore, as
r — oo we have for z € R%

wle) = (k40 [ (00) = D) Gelrn)dy = [ )Gola iy (2.23)
We will show that (2.23) converges as e — 0 to
u@) = # [ (o) = e Glady— [ f0)G )y (2.24)
Indeed, by the argument in (3.8) and (3.9) of [2], G¢(z,y) is of the estimation
T2Yy2
Gz, y)| <C—22 1yl >1, 2.25
Gelo)| < O o=l > (2.25)

where above C' is independent of € > 0. Then, by Lebesgue dominated convergence theorem we
have the second integral in (2.23) converges as € — 0 to one in (2.24). So, we will consider the
convergence of the first integral in (2.23).

By the beginning of the proof of Theorem 6.6 in [8], u. can be of the form u. = ugl) +u£2> where

(2)

ugl) converges to u(!) in HY(W), and u¢”’ is of the form for x € W

1/2 wca:l

Zzylu/ " mda 1,5(), (2.26)

jeJ =1

which converges pointwise to u(?) (x). Here, y; ; € C is some constant. From the convergence of ugl)

in H'(W) we obtain that [;;,(n(y) — 1)u£1)(y)G€(x, y)dy converges [i;-(n(y) — Du® (y)G(z,y)dy as
e— 0.
By the argument of (b) in Lemma 6.1 of [8] we have

1/2 eioa:m
VY1 je(m1) i= / ——da

12 1€ — dj ja
|di,51/(2€) (t d x1/2 tsint
_ 3 cos <s:131/|2 Lil) g —2idl,j/ %dt, (2.27)
|dl,J| /20 L1+t o e +dit

which implies that for all ;1 € R
sint

oo gt lz1]/2
’¢l,j,e(x1)| < C</_OO 112 +/O p dt)

[ee] dt 1 |z1]+1 1
C —dt dt —dt
(Lot [ [ )
C (14 log(|z1| + 1)), (2.28)
where above C' is independent of € > 0. Then, we have that for y € W

|(n(y) — Dul? (y)Ge(z,y)| < C(1+log(lya| + 1))

1+ | — y|3/2
where above C' is independent of y and e. Then, right hand side of (2.29) is an integrable func-
tion in W with respect to y. Then, by Lebesgue dominated convergence theorem fw(n(y) —
1)u£2)(y)GE(:p,y)dy converges to [, (n(y) — Du® (y)G(z,y)dy as € — 0. Therefore, (2.24) has
been shown. O

sint

IN

IN

: (2.29)



3 Uniqueness of u?

In Section 3, we will show the uniqueness of u(?) in Theorem 1.2.

Lemma 3.1. Let Assumptions 2.1 hold and let k > 0 be regular in the sense of Definition 2.3. If
€ H} (R%) such that

loc

Au+ k*(1+ ¢)nu =0, in Ri, (3.1)
u =0 on Iy, (3.2)
and u satisfies the radiation condition in the sense of Definition 2.4, then u® =0 in R%r.

Proof of Lemma 3.1. By the definition of the radiation condition, u is of the form u = v +u?)
where u() € H'(R x (0, R)) for all R > 0, and u® € L>®(R2) has the form

w—'— (1 Z Z alJ@J +'¢ T Z Z al,j¢l,j (3'3)

JET dy ;>0 jeJ dy ;<0

|]R><(O,R)

where some q;; € C, and {d; j,¢;; : | = 1,...,m;} are normalized eigenvalues and eigenfunctions
of the problem (2.13). Here, by Remark 2.5 the function ¢ is chosen as a smooth function such
that 9™ (xz1) = 1 for 1 > n and ¥ (1) = 0 for 1 < —n, and ¥~ := 1 — ™ where > 0 is some
positive number.

Stepl (Green’s theorem in Qy): We set Qn := (=N, N) x (0,¢(N)) where )(N) := N*5. Later
we will choose a appropriate s € (0,1). Let R > h be large and always fixed, and let N be large

enough such that ¢(N) > R. We denote by 1%, := {N} x (0, R), Ii(]f,v) = {£N} x (R, p(N)),
and gy v = (=N, N) x {¢(N)}. (see the figure below.) We set [y := It u Iigf,v).

By Green’s first theorem in Qy and v =0 on (—N, N) x {0}, we have

{—k:2(1—|—q)n|u|2+|Vu|2}dx:/ (@Au + |Vl de
QN N

= uauds—/ uads+/ ua—ds
8$1 82?1 Fd)(N),N 3$2

- )] — o2
_ /uma“ ds _/ @2 4
Iy 8.7,'1 I_N 81’1

—9y,@D - 9u2) — 9y
+ / u(l)au ds—I—/ u(l)au ds+/ u(z)au ds
In 6301 Iy 61’1 In 8$1

— oy — a2 — 9y
- / MO / MOLA / 2@ g
I_N 8$1 I_N 8$1 I_N 3331




By the same argument in Theorem 4.6 of [7] and Lemma 6.3 of [8], we can show that
—u® —u®
/ u(2) Ou ds —/ u(2) Ou ds
Iy 8x1 I_n 81’1
- ouM —ou® —ou®
+ / u(l)au ds +/ u® Ou ds +/ u(2)8u7ds
I]I\:;t 81‘1 [ﬁ 6.131 II}\} 8.’1?1
—ouD —ou® —ou®
— / u(l)au ds / u Ou ds / u(®) Ou ds
IIEN 61'1 I§N 81‘1 I}jN 6$1

1 7 8¢l/,j
= w2 X az,jazf,j/%(msbma dz

J€J dyjidy ;>0

1 _ 5¢l ,

jeJ dl,jadl’,j<0

and the first and second term in the right hand side converge as N — oo to 2’; dies 2, 450 lar ;% dy.;
ik

and —52> i) di.;<0 laz j|>d; j respectively. Therefore, taking an imaginary part in (3.4) yields
that
1 o — 0y ;
0=1Im [27_( Z Z al7jal/7j/c ¢l7j 8:[)1 dx
JE€J dy jdy ;>0 B(N)
1 — Oy ;
/LYY / i,
2T 7 dyjdy ;<0 Co) Oz
9 —=oull)
+ Im/ ut ds+Im/ ds+Im W@ s
o) 6951 8:c1 ) Ory
—u®
- m/ ds - Im/ ds —Im W@ g
¢<N) 0xy 7o) 0xy
_N
0
+ Im Tt ds + o(1). (3.6)
Py 072
We set
78 (2)
= :I:Im/ ds + Im/ u®) ds + Im/ ds, (3.7)
(N) x &( N) x @ N) a;l

and we will show that limsupn_,o0J+(N) > 0.



Step2 (limsupN_ooJ+(N) > 0): By the Cauchy Schwarz inequality we have

d(N) 1/2 (N | 9o (D)
FRISTE ( / OW.an)fdes) ([ 5
R L1
1/2 PN | 9o (2) 2
N 332)| d:l?g) (/ (N,CL'Q) dl‘Q
R 81‘1

(- )
+ ( N x2)| dxz) v </:(N) 8;;) (N, z2) 2dx2> v
(- )

12 7 r6(N)| 9y, (1) 2
N 332)| d:t?g) (/ (N, .%‘2) d$2
R

+

8:31

(N) 1/2
+ C(¢(N) - R>1/2</:N!u“><N,x2>12dx2>

SN | V) 2 \1/2
+ C(qb(N)_R)l/?(/R aa“xl dx2> . (3.8)

In order to estimate vV, we will show the following lemma.

(N, z9)

Lemma 3.2. uY) has an integral representation of the form

uM(z) = / . o(y)G(x,y)dy + k* /W (n(y)(1 +q(y) — 1)uP (y)G(z, y)dy

;R /Q n(@)aw)u® WG, y)dy, 2 >0, (3.9
where o := Au? + k2nu(?.

Proof of Lemma 3.2. First, we will consider an integral representation of u(?). Let N > 0 be large
enough. By Green’s representation theorem in (=N, N) x (0, N'/*), we have

9 ou?
2) _ / @, 1 0G o )
u' (z u G .. . .
) (—N,N)x{N1/4}[ (y)ayg( y) = Gla,y) s ()] ds(y)

oG ou®
_ (2)
+ U G(x, ds
</{N}x(o,N1/4) /{N}X(O,N1/4)>[ (y)ayl( v~ C@y) oy (y)] )

[o(y) + k(1 — n(y)u® (y)]| Gz, y)dy. (3.10)

- /(N,N)x(o,N1/4)
By Lemma 3.1 of [2], the Dirichlet Green’s function G(x,y) is of the estimation

T2Yy2
G, 9,6 < O o=yl > 1 (3.11)
By Lemma 2.2 we have that |u(?) }M‘ < ce 02l for all x € R?, and some ¢, d > 0. Then,
we obtain
oG ou?
@ (y)=— -G —(y)|d
u T,y T,y y)jas\y
/(NN)X{N1/4} 8y2( ) (@9) Y2 ()] ds(v)
—§N1/4 —§N1/4
zoNe
< <=
< C/N|N1/4—:v|3/2dy2_C|N1/4—x2|3/2' (3.12)

9



Furthermore,

oG ou?
@) () == e
U T, T, S
L oo W G ) = Gl G =] as)
N1/4 1/2
Z2Y2 o N
C — == _ 3.13
/ TN o S YT e (3.13)
Therefore, as N — oo in (3.10) we get
= [ owGEudy+ & [ ) - Du )G iy (3.14)
yo> w
By Lemma 2.7, we have (substitute —k%qnu for f in (2.19))
) =K [ (o) = )uGle iy + 82 [ alymu()Gte. . (3.15)
Combining (3.14) with (3.15) we have
uW@) = —u?(z) +#° /W(n(y) - 1)U(y)G(w7y)dy+kQ/QQ(y)n(y)U(y)G(:v,y)dy
= [ oGy~ [ (nl) - 10 )G )iy
y2>0 w
K [ ) = )Gy | awnt)un)lv)dy
= [, Gty + 1 [ (n)1+ aw) = Du D 0) G )y
+
+ k2/Qn(y)fJ(y)u(2) (y)G(z,y)dy. (3.16)
Therefore, Lemma 3.2 has been shown. [
We set u®(z) := doicd 2ad, <00, P (). Then, by a simple calculation we can show
Eyty) Y (y1) Ou'(y) Y (y1) _ d (y1) Ou” (y)
= 7U 42 +2 : 3.17
o) a " ) dy, Oy " ) dy, Oy (3.17)
which implies that supp o C (—n,7n) x (0,00). By Lemma 3.2 we have for R < z9 < ¢(N)
dut) P(N)
W(N N.z)| < / _OWN)y2_
U » L2) 1, x oy Y
[ut (N, 2)] ( 2) nn)x()oo| ()||N_17|3/2
P(N)h / S(N)[ul? (y)|
+ C/ dy+C —d
OO = g N
N) / u)(y)]
< C C dy. 3.18
< O+ 0o [ v 19

We have to estimate the second term in right hand side. The following lemma was shown in Lemma
4.12 of [1].

10



Lemma 3.3. Assume that ¢ € L} (R) such that

A

SHPA>0{(1 + AQ)G/

p(t)Pdt} < oo, (3.19)
—A

for some € > 0. Then, for every a € [0,1 — €) there exists a constant C > 0 and a sequence
{Ap }men such that A, — oo as m — 0o and

/ lp(t)2dt < CA,Y, meN, (3.20)
Ka,,

where Kq == KT UKy, K} = (—AT,AT)\ (—A,A4), K; = (-4, A)\ (A7, A7), and A* :=
A+ AY2 for A€ [1,00).

Applying Lemma 3.3 to ¢ = (foh}u(l)(~, yg)‘Qdyg)l/2 € L?(R), there exists a sequence { N, }men
such that N,,, — oo as m — oo and

h
/ / lu™ (y1, y2) |2 dyrdys < CN;Y4, m e N. (3.21)
Kn,, J0

Then, by the Cauchy Schwarz inequality we have

1) N, h (1)
/ [utM (y)] dy = (/ +/ +/ )/ [utt ()] —dy
w (L4 [N =yi]) ~Ne JKn,,  IR=NENG Joo (T [N — i)
N dy 1/2 h W ) 1/2
< C +C / / ,y2)[Pdy1d >
(/N;l (1+ Ny, — |y1|)3> ( ion Jo [ut (1, y2)["dy1dy2
d 1/2
+ C(/ Y1 3>
R\~ N (L4 [y = Nin)

N, dy, 1/2 00 dy 1/2
< C / > +CNm1/8+C</ )
( 0 (1+Nm_yl)3 N (1+yl_Nm)3

< CN;'V8. (3.22)

With (3.18) we have for m € N,

(1)
M (N, 2], Ou ) (Nm, z2)| < Cgb](vjyg). (3.23)
Therefore, by (3.8) we have
Np,)? N,
L)l < COW) — B 4 o(o(N,) — ) 20
N,/ N,
N, 2 Ny, 3
< C(4(Nm) - R) ¢§v1 ) O¢§Vl ) (3.24)

Since ¢(N) = N*, if we choose s € (0, 1) such that 3s < %, that is, 0 < s < i the right hand side
in (3.24) converges to zero as m — 0o. Therefore, limsupn_yo0J/+(IN) > 0. By the same argument
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of J4, we can show that limsupn_scoJ—(N) > 0, which yields Step 2.

Next, we discuss the last term in (3.6). By the same argument in Lemma 3.2 that we apply Green’s

representation theorem in xo > h and use the Dirichlet Green’s function G}, of Rz ~n(:=Rx(h,00))
instead of G, u") can also be of another integral representation for 3 > h
0Py (z,
uW(z) = / o (y)Gn(z, y)dy + 2/ u(y) 220
ya>h T, 0y
= vl(z) +v*(z), (3.25)
where G}, is defined by Gp(z,y) = P(z,y) — Pi(z,y;) where y; = (y1,2h — y2). We define
approximation ug\lf) of u) by
OPi(z,y
W) =[x a2 [ o i)
y2>0 Ty Y2
= oh(z) +o¥(z), x> h, (3.26)
where x, is defined by for a > 0,
1 forft|<a
Xalt) = { 0  for |t| > a. (3.27)

By Lemma 3.4 of [4] and Lemma 2.1 of [3] we can show that vk and v% satisfy the upward

(1)

propagating radiation condition, which implies that so does uy,
ug\l,) we can show that u(l)( S O(N) —

—0 (1)
Im ulDEN s > 0,
o) 2
Combining (3.6) with (3.28) we have
—— oD
0> —Im DN g
Loy Oy
1 _ — Oy,
= Im 72 Z alJal/’j/C ¢l,] 8 Jd.ﬁl’:
jeJ dijdy ;>0 B(N) i
[ 1 . — 0y ]
— Im ?Z Z (117]'(1[/’]'/0 ¢l,j 6,’1}1 dx +J+(N) +J7(N
L™ jed dyj,dy ;<0 B(N) i
——5uD
+ Im u% —Im ug\l,) UN s+ o(1)
Doy 072 ooy 072

We observe the last term

ou
Im ua— — Im u
Lyvy,n 902 Loy

12

. Furthermore, by the definition of
1) € L2(R) N L>®(R). Then, by Lemma 6.1 of [4] we have that

(3.28)

(3.29)

(3.30)



where

- (1)
e ou

Lyvy, N

_ 9,2
M(N):=Im o

Cony,w

L(N) :=Im

Z2

ds +Im u(2)

Loy, N
By Lemma 3.2 we can show |u (z1, $(N))], |8g;;) (1
A ()], 155 (@,
N
/

Oxo
N
/—N
/N
—-N

Z2

2.2 we have |u(

IM(N)| < [u® (21, p(N))]
[u® (21, p(N)))|

[ul? (@1, 9(N))]

+

VARVAY

CNG(N)e W),

which implies that M (N)

Step3 (limsupN_ooL(IN) > 0): First, we observe that

——uM)

[L(N))] ulh) ——

IN

Im
Ly(ny,N T2
(1)
"o —Ouy

T2

Im
Lyny-N

oL,
LD ou

Im
Lo \Tg(v),n

Au)

<
0o

N
JINEER ]

-N
N
-/,

+ / | xlv
R\(—N,N)

[u® (21, §(N)) = u (21, 6

|‘6uN

ds — Im

(91'2
C(N@(N)e W) 4 Ne=206(N))

ds — Im

ds — Im

o

(71, (N

Lo

78'&(1)

ds + Im
X2

P(N))| < Co(N

ou®
0xo
ou
61'2
ou®

(z1,6(N))
d(N))

(LITl,

(z1,6(N))

1
7LU§V) ds

u®
Loy, N

Lyny-N

N
——d
N 8902 5

N))‘ds.

(1)
—mOuy
Uy Do ds,

LCo(ny,N

L, ou
N (9%'2

(3.31)

)
ds.  (3.32)

x2

) for ;1 € R, and by Lemma
d(N))| < Ce—5¢(N) for 1 € R. Then, we have

da:l
dSUl

d(El

(3.33)

= 0(1) as N — oco. Hence, we will show that limsupnN_oc L(N) > 0.

Z2
(1)

(3.34)

By Lemma 2.2 ¢ has a exponential decay in yo. Then, we have for z; € R,

ovl

1 [
|U (xl’d)(N ax2

)l

<

<x1,¢<N>>', ol (a1, ()],

e W2(N)y,

13

|
(=n,m)%(0,00) (14 |z — y1|)3/2

vl

8172
P(IN)

(1+ |21])3/27

¥a1,6)

(3.35)



and
ovl (%}V

871132(1'1’ ¢(N)) - 81’2 (1'17 ¢(N))
< C/ 676y2¢(N)y2
B (= x(6(N)—1,00) (1 + |21 — y1[)3/2

R $(N) N ()
< C</¢(N)e yygdy2> T Y S T (3.36)

(v} (21, (V) = v (21, 6(N)),

dy

Since the fundamental solution to Helmholtz equation ®(x,y) is of the following estimation (see
e.g., [2]) for |z —y| > 1

o0 |2 — 2| >’ |22 — y2\2
we can show that for z1 € R
[0 (21, 3(N))| < CHN)Wao(z1), |05 (21, $(N))| < CH(N)Wi (1), (3.38)
and
o? 2 ok, 9
a@(:cl@(N))‘ < CH(N) Wos(21), am(xl,qﬁ(N))' < CH(N)" Wi (z1), (3.39)
and
[0 (21, p(N)) — v} (21, 6(N))| < CH(N) (Woeo(21) — Wi (1)), (3.40)
and
O 1 6(N)) — L 0y, (0| < CHN W) — Wiv(an) (3.41)
D2 1, s 1, < (1 N(Z1)), .
where Wy is defined by for N € (0, o0]
N
_ uD (y1, h)|
WN(ZL‘l) = /_N (1 n |x1 |)3/2dy1, r1 € R. (3.42)

Using (3.35)—(3.41), we continue to estimate (3.34). By the Cauchy Schwarz inequality we have

C/ +!x1\3/2+¢() =)}

—o0(N)
X{W + $(N)? (Wa(1) — Wir(1)) }dxl

(1 + |x1])3/2
N e—od(N)
g+ oo ten i

O(N O(N
! /R\(—N,N){(NrI(:ﬂll))?’/2 * ¢<N)WN($1)}{(1+I(961|))3/2 " ¢(N)2WN(x1)}d‘”1

14



=

S 3 Woo (561) — WN($1))d$1
3
* /N 1+|:c1 3/2(W (21) = Wi (1)) day
1

+ 2/ dx+CN2/ — Wy(xy)dz

. 1+rx1|>3 L CONY [y A e Y ()
- 3/ yWN x1))?dzy + o(1)

R\(—
<

3{

Finally, we will estimate (Wao(21) — W (21)) and Wy (21). Since uM (-, h) € L?(R), by Lemma 3.3
there exists a sequence { Ny, }men such that N, — oo as m — oo and

/_\

1/2 1/2
WN($1))2dQS1> + (/ WN(ZL‘l)del) }
R\(—N,N)

+o(1). (3.43)

/ [ (g1, ) 2y, < CNpt, m € N, (3.44)
Kn,,

where K4 :== Kf UK, K} = (—AT,A")\ (A, A), K = (A, A)\ (A7, A7), and 4% :=
A+ AY2 for A € [1,00).
By the Cauchy Schwarz inequality we have for |xi| > Ny,

Ny W (s R N 1/2 / N7 d 1/2
/ ’U (ylv )|3/2dy1 S </ ’u(l)(yhh)‘Qdyl) </ Y1 3)
Ny (L4 |z — ) -Ng Ny (L4 |z1| —w1)
C

, 3.45
1-— ]w1| — Nﬁ ( )
and
luM (y1, h)| (/ W ) >1/2 </ dyr >1/2
dyp < u(y1, h)|"dy
/KN (1 + |z — g [)32 Kn,, o, h) el Ky, (L+lz —y1)?
¢ (3.46)
Nl *(1+ [21] = Nm) '
Therefore, we obtain
/ WN($1)2d1'1
R\(= N ,Nm)
o dx C ee dxq
cof ey
Nm (1= z1] = Nn)? N4 N, (1= 21| = Nm)?
< (3.47)

1+N1/2 NYYTONYA

15



By the Cauchy Schwarz inequality we have for |z1| < Ny,

/ [u® (y1, h)|
R\(—N;h N (L4 |21 — )32

) 1/2 iy, 1/2
< u'Y (yy, h) Pdy > </ >
</R\(—N;§,N$) (o, )y R\(=No:,Nit) (I +y1 — [z1])?

C
<
1+Nm_ ’xl‘

lu® (y1, h)| </ ) ) >1/2 </ dyy )1/2
dyy < u® (yy, h)|2d
fo T i < P L) BV A e P

dy

(3.48)

and

N,
C
e . (3.49)
Nm (1 + Nm - |x1\)
Therefore, we obtain
N 9
/ (Woo(xl) — WN(xl)) d.’El
—Np,
Nm N
S C/ Ci:l/‘l + C / da:l
N L+ Ny = [z1])? - Nyt Jon,, (T N = [21])?
< ¢ ¢ ¢ (3.50)

14+ N2 NYY T ONYA

Therefore, Collecting (3.43), (3.47), and (3.50) we conclude that |L(N,)| < C E\JX%)S Since ¢(N) =

3
N*, if we choose s € (0,1) such that 3s < %, that is, 0 < s < i, the term ¢S\J,\§78) converges to zero

m

as m — o0o. Therefore, limsupn_,oo L(N) > 0, which yields Step 3.

By taking limsupn_,~ in (3.29) we have that

k 2 2
0 = .EJ[Z i dig = D iyl dz,j]
J

dl7j>0 dl,j<0
+ limsupy_ o <J+(N) +J_(N) + L(N)). (3.51)
By Steps 2 and 3 and choosing 0 < s < i the right hand side is non-negative. Therefore, a; ; = 0

for all [, j, which yields u(?) = 0. Lemma 3.1 has been shown, and in next section we will show the
uniqueness of u(). O

4 Uniqueness of u(!

In Section 4, we will show the following lemma.
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Lemma 4.1. If u € H. (R2) satisfies

loc
(i) v € HYR x (0,R)) for all R >0,
(ii) Au+k*(1+4 ¢)nu =0 in R?,
(iii) u vanishes for xo =0,

(iv) There exists ¢ € L>®(Ty) N HY2(Ty,) with u(z) = =2Jp, ¢ a‘bgiyiy)ds( ) for xo > h,

then, u € Hj(R%).
If we can use Lemma 4.1, we have the uniqueness of the solution in Theorem 1.2.

Theorem 4.2. Let Assumptions 1.1 and 2.1 hold and let k > 0 be regular in the sense of Definition
2.3. Ifu € H. (R?%) satisfies (3.1), (5.2), and the radiation condition in the sense of Definition
2.4, then u vanishes for xo > 0.

Proof of Theorem 4.2. Let u € H} (R%) satisfy (3.1), (3.2), and the radiation condition in the
sense of Definition 2.4. By Lemma 3.1, u(?) = 0 for 2 > 0. Then, u(!) satisfies the assumptions
(i)-(iv) of Lemma 4.1, which implies that u") € H}(R%). By Assumption 1.1, u") vanishes for
22 > 0, which yields the uniqueness. O

Finally in this section we will show Theorem 4.2.

Proof of Lemma 4.1. Let R > h be fixed. We set Qn g := (=N, N) x (0, R) where N > 0 is large
enough. We denote by Iy := {N} x (0, R), Tr n := (=N, N) x {R}, and I'g := (—00, 00) x {R}.
By Green’s first theorem in Qy r and assumptions (ii), (iii) we have

/ {—k:2(1+q)n\u|2+|Vu2}da;:/ (@hu + |Vl de
QN,R

QN,R
= u%ds —/ uads—i—/ u%ds (4.1)
83?1 If 81‘1 Tr,N 8%‘2

By the assumption (i), the first and second term in the right hands side of (4.1) go to zero as
N — co. Then, by taking an imaginary part and as N — oo in (4.1) we have

m [ 7% = 0. (4.2)
rp 02

By considering the Floquet Bloch transform with respect to x; (see the notation of (2.5)), we can

show that 2 2
4 8ua(a:1,R)
—ds = o(z1, R)————"—=dr1d. 4.3
/ uaxg ds = /1/2/ talen, R O0xo e (43)

Since the upward propagating radiation condition is equivalent to the Rayleigh expansion by the
Floquet Bloch transform (see the proof of Theorem 6.8 in [8]), we can show that

= " up(a)emm VR e @) gy s, (4.4)

ne’l
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where u,(a) := (2m)~! fo% U (71, h)e” ™1 dzy. From (4.2)—(4.4) we obtain that

12 ron
0 = Im/ / Uo (71, R au()‘(acl’R)al 1da

1/2 Oy
1/2
= Im) 27 |un () [2i/k2 — (n + a)2, (4.5)
1
neL"” /2

Here, we denote by k = ng + r where ng € Ny and r € [-1/2,1/2). Then by (4.5) we have
up(a) =0 for |n| < ng, a.e. a€(—1/2,1/2),

Ung () =0 for a € (—1/2,7),
U_py(a) =0 for a € (—r,1/2). (4.6)

1/2 2 poo
/ / / |tie (2)|?dzodzy da
—1/2

1/2
_ 271'/ Z |un |2/ —v/(n+a)2—k2(zo— h)deda

1/2

By (4.6) we have

|n|>ng

1/2 00
+ 27(/ \Uno(Oé)P/ e—\/(no+a)2_k2(:c2—h)dx2da
r R
+ 27r/ ‘uno(a)|2/ e—\/(—no+a)2_k2(x2—h)dx2da
R

—-1/2

1/2 2 -1/ (n+a)2—k2(R—h)
<oy [ eI,
[n|>no —1/2 (77,4-0[) —k
N 27T/1/2 |un0(a)|2€7\/(noJra)?,k?(th)da
r (no + a)? — k2
o /r ]u,no(a)Pe*\/W(R*h) o
1/2 V(=no +a)? — k2
< C Z / |un () Pda
[n|>no 1/2
+ 0/1/2 ung (@) +c/_r [4—no da, (4.7)
Oé—’l“ 1/2 —OZ—T’
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and

/2 rom
/1/2/0 R
) /1/2 ’un(a)|2n26_‘/(n+0‘)2_k2(R_h)
™

~1/2 (n+ «a)? — k?

[n|>no

/ |0, e (2)|? dody dav

da

da

) /1/2 ’uno(a)’2n36_‘/(n0+0‘)2_k2(R_h)
T
r (

no +Oé)2 — k2

do

| [ung(0) e~ V0T R
™

—-1/2

V=T

12 ’uno - ‘u—no
+ C d +C
-1/2 —Oé - ’I“

By the same argument in (4.8) we have

1/2  p2r
Oz, g (x)|*drodrida < C / un(@)|*da
/1/2/ / 19 | 2 Z 1/2| |

1/2
e /

It is well known that the Floquet Bloch Transform is an isomorphism between H'(R%) and

L?((=1/2,1/2)a; H*((0,27) x R);) (e.g., see Theorem 4 in [9]). Therefore, we obtain from (4.7)-

(4.9)

el (o (roocyy <
<
+
<
+

If we can show that
356 > 0 and

[n|>ng

[ty (@ d+0/ [ung(@P

a—r

1/2 —Oé—T‘

1/2 o
C/ / / 2)? + |0p, lia (%) + |Or, la (2) *dz2dz da
~1/2
D> / un() d
[n|>no 1/2
1/2 lu T |ue
C o d C/ o d
/ Va—r ot 12 m -
1/2 o
C/ / \tie (1, h) |2dz1da
1/2
1/2 .
c/ [ung(@)P +C/ [no (P
04—7“ 1/2 —a—r
3C >0 s.t. |uap, ()] < C for all o€ (=d£r,d£r),
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then the right hands side of (4.10) is finite, which yields Lemma 4.1.
Finally, we will show (4.11). By the same argument in section 3 of [8] we have

(I — Ko)iig = fo in H&per(Ch), (4.12)

where the operator K, is defined by (2.12) and fo := —(Tperk*nqu)(-, «). Since the function k*nqu

has a compact support, || fa||§{1(ch) is bounded with respect to . By Assumption 2.1 and the

operator K, is compact, (I — K,) is invertible if &« € Ay. Since £r € Ay, (I —K4) is invertible. Since

the exceptional values are finitely many (see Lemma 2.2), (I—K,) is also invertible if « is close to £7.

Therefore, there exists 6 > 0 such that (I — K, ) is invertible for all « € (—=d+r,0+7r)U(=d—r,0—7).
The operator (I — K,) is of the form

(I - Ko) = (I — Ki») (I (I Ky) I~ Kay— (I Ka)]> = (- Ky)(I— M), (4.13)

where M, := (I — K+,) (K4 — K+,). Next, we will estimate (K, — K+,). By the definition of K,
we have for all v,w € Hg,.,.(Ch),

(Ko — Kip)v,w)e = — /Ch {i(a Fr) (Ug:l - v?gﬁi) + (a? — 7“2)’[)’11}:| dx
+ 27 Z U (V2 — (n+ )2 — k2 — (n£7)?)
In]|#no
+ 27 Z 0y (VE2 — (n+ )2 — k2 — (n£7)2).
In|=no
(4.14)
Since )
+2 -2 —
|\/k:2—(n+0z)2—\/k2 e |_’ nr+r?—2na —«
\/k:2 n+ ) +\/k2— (n+1)?
|n\|air|+\r27a2| f
- oIl #m (4.15)
— |n\|o¢:|:r|+\r2—oc2| '

|r+aljr—al for ‘n‘ = 10,
we have for all o € (=0 +r,0+r)U (=0 —7,0 — 1)

(Ko = Kir)v, w)s]

IA

ClaF rlllvll g e, vl gre,)

n|la Fr

p k% = (n £ )7
+ C D |vnllwnlnoy/]a F 7]
In|=no

IN

CVlaF rivll g e, lwollge,) - (4.16)

(we retake very small § > 0 if needed.) This implies that there is a constant number C' > 0 which

is independent of a such that [|[K, — Ki,| < C+/|aF r|. Therefore, by the property of Neumann
series, there is a small § > 0 such that for all o« € (=0 +r,0 +r)U (=0 —r,0 — r)

(I — M) ZM” and ||M,| < 1/2. (4.17)
n=0
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By the Cauchy Schwarz inequality, the boundedness of trace operator, and (4.17) we have

2m
(@) < [ aar Wi < Clalna,
= Cl|(I = Ma)™' (I = Kir) ™ fall g o)
< O = Ma) M| = Kir) ™ o]
< O [IMy]" < C) (1/2) < o, (4.18)
n=0 n=0
where constant number C' > 0 is independent of «. Therefore, we have shown (4.11). O]

5 Existence

In previous sections we discussed the uniqueness of Theorem 1.2. In Section 5, we will show the
existence. Let Assumptions 1.1 and 2.1 hold and let & > 0 be regular in the sense of Definition
2.3. Let f € L*(R?%) such that suppf = Q. We define the solution operator S : L*(Q) — L*(Q) by
Sg = U| 0 where v satisfies the radiation condition and

Av + k*nv = g, in Ri, (5.1)

v =0 on Iy. (5.2)

Remark that by Theorem 2.6 we can define such a operator S, and S is a compact operator
since the restriction to Q of the solution v is in H'(Q). We define the multiplication operator
M : L*(Q) — L*(Q) by Mh := k?>ngh. We will show the following lemma.

Lemma 5.1. I;2(q) + SM is invertible.

Proof of Lemma 5.1. By the definition of operators S and M we have SMg = ’U‘Q where v is a
radiating solution of (5.1)—(5.2) replacing g by k?nqg. If we assume that (Ir2(q) +SM)g = 0, then
g= —’U‘Q, which implies that v satisfies Av + k?n(1 + ¢)v = 0 in Ri. By the uniqueness we have

v =0 in Ri, which implies that I72(q) + SM is injective. Since the operator SM is compact, by
Fredholm theory we conclude that I72(q) + SM is invertible. O

We define u as the solution of
Au+ k*nu = f — M(I2g) + SM)™'Sf, in RY. (5.3)
satisfying the radiation condition and u = 0 on I'g. Since
ulg = S(f =Mz + SM)~LSf)
= (I12(Q) + SM)(Ir2q) + SM)7'Sf = SM(I2q) + SM)~'Sf
= Iz +SM)7'Sf, (5.4)

we have that
Au+ k*nu = f — k*nqu, in R?, (5.5)

and u is a radiating solution of (1.8)—(1.9). Therefore, Theorem 1.2 has been shown.
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