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Abstract

‘We construct fundamental solutions to Schrédinger equations on com-
pact Riemannian manifolds. We employ a time-slicing approximation,
which is a mathematically rigorous method of defining the Feynman path
integral. Our time-slicing approximation converges to a fundamental so-
lution to the Schrodinger equation modified by the scalar curvature. The
coefficient of the scalar curvature in the modified Schrédinger equation
depends on the choice of the amplitude which appears in the definition of
the time-slicing approximation.

1 Introduction

1.1 Feynman path integrals on curved spaces

We consider the Schrédinger equation

z%u(t) = Hyu(t), u(0)= wuog, (1.1)

on an oriented compact Riemannian manifold (M, g) with the Hamiltonian

1
Hyi=—30, +V + AR,

where

e /A, is the Laplacian associated with the metric g,
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e V € C*°(M;R) is the potential,
e R e C(M) is the scalar curvature of (M, g), and
e \(=0,1/6,1/12) € R is a real parameter.

Since H, is essentially self-adjoint on L2(M,g) (we also denote its closure by
H)), the Schrédinger propagator e~ exists. The aim of this paper is to
represent e~ “*Hx by the Feynman path integral [3]. In the paper [3], Feynman
states that the time-development of the quantum system is represented as the
“integral”

K(t,s,z,y) ::/ ") Dy, (1.2)

Qt,s.m,y

where
e O 5.4 is a space of all paths v which satisfy v(s) = y and v(¢t) = z,
e S(v) is an action of ~.

Concerning the formal expression (1.2), the following two problems arise.

(1) What is the mathematical definition of the “integral” (1.2)?

(2) Does K(t,z,y) := K(t,0,z,y) correspond to the fundamental solution
e~ ®Hx of the Schrodinger equation (1.1)?

Here we briefly describe our approach to the above questions in this paper.
On the question (1), it is already known that one cannot realize the “integral”
(1.2) as the Lebesgue integration by constructing a suitable measure on the space
Q¢ 5.2y [1]. An alternative method of the definition of (1.2) is the time-slicing
approximation. In the time-slicing approximation, we regard (1.2) as a limit of
oscillatory integrals on finite dimensional spaces, and we do not try to construct
any measure on the space €4 ,. This method is introduced in Feynman’s
original paper [3]. In this paper, we employ the time-slicing approximation for
the definition of (1.2).

On the question (2), the amplitude function which appears in the defini-
tion of the time-slicing approximation affects the form of the Schrédinger equa-
tion (1.1). In the formal expression (1.2), the information of amplitudes is
included in the “measure” D~. In this paper, the Schrédinger equations with
A =0,1/6,1/12 are derived by the time-slicing approximation with the natu-
ral choices of the amplitudes. We remark that this change of the Schrédinger
equations does not occur on the flat space (R = 0) such as the Euclidean spaces.

1.2 Mathematical setting

In this Subsection, we describe our mathematical formulation of the problem
in the previous Subsection. Let (M, g) is an n-dimensional oriented compact



Riemannian manifold. For a sufficiently small 7 > 0, we consider a short-time
approximate solution E(7) of the form

1

B(r)ula) = s [ x(emalrn )=V uty) vl ().

Here vol, is the volume form associated with the metric g and the other functions

S(r,x,y), x(x,y) and a(7,z,y) are defined as follows.

S(T,x,y): action along the lowest energy classical path. Taking local
coordinates (x1,...,x,), we define g* : TX M x T*M — R by

n

g (&m) =D g (@)Em
j k=1
where (gjk(:zr))?’kzl is the inverse matrix of (g;x(z))},—; defined by g =
> i1 9ik(®)dzjdry and & = Y77 | Eidry and n = Y7 nidr;. We also de-
fine [£]2. := g*(&,&). As the corresponding classical mechanics, we consider the
Hamiltonian

H(z, &) := %|§ Z* + V(x)

for (z,§) € T*M. Let m : T*M — M be the natural projection. We call
x(t) : [0,7] = M a classical path from y to z in time 7 if 2(¢) = 7(z(t), £(¢)) for
some (z(t),&(t)) : [0,7] = T*M which satisfies the Hamilton equation

E(t) = a—gj(w(t)af(t))a E(t) = —8—%@@)75(75))- (1.3)

If 2(t) = w(x(t),&(t)) is the classical path, then the energy E = H(x(t),&(t))
is a constant. We call z(t) a classical path with the lowest energy from y to
x in time 7 if x(¢) has the smallest F among all classical paths satisfying the
boundary condition z(0) =y, z(7) = x.

For the definition of the action function S(7,x,y), we employ the following
theorem.

Theorem 1.1. There exist a small § > 0 and a small neighborhood N of the
diagonal
diagM = {(z,2) e M x M | x € M}

such that for any (7,z,y) € (0,8) X N, there exists a unique classical path
xz%(z,y) € M with the lowest energy from y to x in time T.

Then we define the function S(7,z,y) as follows.

Definition 1.2. Fix a small § > 0 and a small neighborhood A as in Theorem
1.1. For (1,z,y) € (0,0) x N, we take the unique classical path 27 (z,y) as in
Theorem 1.1 and define

S(ra) = | ' (%

2
-
dx]

(z,y)
ds p

- v<x:<z,y>>) ds.



x(z,y): cutoff function. In order to restrict (x,y) to A/, we introduce a
cutoff function x(z,y) € C°(M x M) supported in N. For technical reasons,
we require the properties Y = 1 near diag M and 0 < y < 1 everywhere.

a(T,z,y): amplitude. In this paper, we consider three amplitude functions.

The first one is

a(t,z,y) := 7'_"/2,

which is same as in the case of Euclidean spaces.
The second choice is the square root of the Morette-Van Vleck determinant:

The Morette-Van Vleck determinant D(7,x,y) is defined as
D(T? Z, y) = gb(x)_1/2gb' (y)_1/2 det(f[)mayS(T, Z, y))

by local coordinates with the positive orientation, where g,(z) and g, (t) are
positive functions defined by the relation vol,(z) = g,(z)'/2dx1 A - -+ A dz,, and
voly(y) = g,/ (y)/?dyy A --- Ady,. D(t,,y) is independent of the choice of the
local coordinates with the positive orientation around x and y.

The third choice is the square root of Morette-Van Vleck determinant with
an auxiliary term:

a(r,z,y) = D(7,2,9)" (1 —iar (7, 2,9)).
Here a1 (T, z,y) is the solution to the transport equation

0 1
% + g( gradmsv gradzal) = 7§D_1/2AmD1/2; aq (Oa €T, y) =0. (14)

Fix a fixed time ¢t > 0. We call a multiple A := (7y,...,7n) with 7; > 0 and
T1 + -+ 7y =t a partition of ¢t. The size of the partition A = (71,...,7n) is
defined as |A| := maxi<j<n 7j. For a partition A = (r,...,75) of t > 0, we
define the time-slicing approximation £(A) as an iteration of the operators

5(A) = E(TN) cee E(Tl).

Our main theorem states that the time-slicing approximation converges to the
fundamental solution to the Schrédinger equation (1.1).

Theorem 1.3. Let a(r,z,y) = 7-"/2, DY/2 DY?(1 —iay). In the case of a =
7="2 we further assume that the Ricci curvature of (M, g) is positive definite.
For each amplitude, we set X € R in the modified Schrédinger equation (1.1) as

1/6  ifa=7""/2
A=1<1/12 ifa= D2
0 if a = DY?(1 —iay).



Then, for any T > 0 and € € (0,1/2], there exists a constant C' > 0 such that
the estimate _
IE(A) = e | e 12 < CJAJ? (1.5)

holds for all t € (0,T] and partition A of t.
Here Ht¢ = H'(M) is the Sobolev space on the compact manifold M of
order 1 +¢.

The case of a = D'/? is proved in [6] and the other cases are in preparation.
In this paper, we describe an outline of the proof of Theorem 1.3 from Section
2. We can refer to [6] for the detail of the proof.

Remark. In the case of a = 77"/2, the positive Ricci curvature condition is just

a sufficient condition and not a necessary condition. For example, the inequality
(1.5) holds on the flat tori. In general, Theorem 1.3 with a = 7"/ is applicable
if the inequality

™D(r,z,y) >1-Ct

holds for all (7,z,y) € (0,8) x M. Since D(7,z,y) is expanded as

n 1 S
™D(r,z,y) =1+ G Z Rij(y)wiz; + O(|z)® +7) (1.6)

i,j=1

in normal coordinates centered at y where R;;(y) is the Ricci curvature tensor
at y, the inequality (1.6) holds if (M, g) has the positive Ricci curvature.

Here we refer to the previous studies of the time-slicing approximations. On
the Euclidean spaces, for example, Fujiwara [5] and Kumano-go [9] studied the
time-slicing approximation in the case of at most quadratically increasing poten-
tial and proved that the time-slicing approximation converges to the fundamen-
tal solution to the Schrodinger equation. Ichinose [7] dealt with polynomially
growing potentials and proved the convergence to the fundamental solution in
the strong operator topology on the L? space.

On the other hand, there are only a few mathematical studies of the time-
slicing approximation on manifolds. Miyanishi [10, 11] studied the case of free
particles on compact manifolds with a suitable symmetry. There are some stud-
ies of the imaginary-time path integrals, that is, roughly speaking, construction
of the heat kernel. Inoue and Maeda [8] constructed the imaginary-time path
integral for the free particle and the derived the heat equation modified by
the scalar curvature. Fine and Sawin [4] constructed the imaginary-time path
integrals for the supersymmetric quantum mechanics.

2 Reduction to stability and consistency

We reduce the proof of the main theorem (Theorem 1.3) to the analysis of the
asymptotic behavior of the short-time approximate solution E(7) as 7 — +0.



Lemma 2.1. Under the same assumption in Theorem 1.3, the following state-
ments hold.

(i) (Stability) There exists a constant C > 0 such that the inequality
IB(T)|L2msre < €7
holds for sufficiently small T > 0.
(ii) (Consistency) For any € € (0,1/2] and A € R as in Theorem 1.3, there
exists a constant C > 0 such that the inequality

.0

zEE(T)u — Hy\E(T)u L
holds for sufficiently small 7 > 0 and u € C*>°(M).

We prove Theorem 1.3 by the above Lemma 2.1.

< CTEHUHHHa

Proof of Theorem 1.3. Take an arbitrary u € C°°(M) and set

G(T)u := {ZaTE(T)u —HEmu 10 <r <1,

2.1
0 if 7 =0. (21)

Then 7 — G(7)u is continuous in the L? topology at 7 = 0 by the consistency.
Thus we can apply the Duhamel principle and obtain

E(r)u—e ™y = z/ e TG (o) u do.
0
Hence we have the inequality
-
IE(r)u — e 2 < / 1G(oYull 2 do < Cr™+Jul v
0

We introduce an operator P := (i + Hy)~(1t9)/2_ Since P and e~"7H
commute, we obtain

|E(A)P — ™ P, s

N
<Y N E(rw) -+ E(7j41) (B(r;) — e T pe 0t s s
=0 ta

unitarity

stability consistency

N
<Y llwrtnaorite < O|Af
=0

for any partition A = (71,...,7n5) of t € (0, T]. O
Theorem 1.3 and the stability in Lemma 2.1 implies the convergence in strong

topology:

Corollary 2.2. For each u € L?*(M), we have

lim £(A)u = e~y
|A]—0

in the L? topology.



3 Classical mechanics

First we briefly describe the proof of Theorem 1.1, which states the unique
existence of the classical path with the lowest energy.

Proof of Theorem 1.1. We introduce a scaling

O, :T*M = T*M, ©O,(z,&) = (z,7 ).
Then (x(t),&(t)) satisfies the Hamilton equation (1.3) if and only if
(Z(s),&(8)) := O,-(x(7s),£(7s)) satisfies the Hamilton equation

dt; . O0H; _ |
) = FEHE).60)),
z2(0) =y, Z(1)==x.

where H-(x,§) := |£]2/2+72V (x). Note that the problem (3.1) is extended nat-
urally in the case of 7 < 0. If 7 = 0, then there exists a unique solution to (3.1)
with the lowest energy for sufficiently close z and y by the existence of geodesi-
cally convex neighborhoods. For small |7| < 1, we consider the Hamiltonian
flow (7% (y,n), D% (y,n)) with respect to the Hamiltonian H,:
q;j _ aH" —T =T p;j _ 6H7' =T =T
dS (S) - (‘)f_] (QS5pS)’ dS (S) - 6(EJ (q57p5)7
a(y.m) =y, Doly,m) =n.
We can apply the inverse function theorem at each point on

{0} x {(y,0) e T"M |y € M}

d;
ds

_0H,

a0 €09))

(s) =

(3.1)

(3.2)

to the function

(7,9,m) — (7, a1 (¥, 1), y)-
Thus, we denote the inverse function of the above function by (7, n(7,z,v),y)
and set

(a2 (z,y), p%(z, ) = @ (v, (7, 2,9)),Ps (v, n(7, 2,Y))),

and we obtain the solution (¢7(z,y),pl(z,y)) to the Hamilton equation (3.1).
O

The action S(7,z,y) defined in Definition 1.2 has following asymptotic be-
havior as 7 — +0.

Theorem 3.1. We set ®(7,x,y) := 75(7, z,y) for (1,2,y) € (0,6)xN. Then ®
is extended to a smooth function in (—6,8) x N'. Moreover, as T — 0, ®(7,z,v)
has the following asymptotic behavior

1
O(1,2,y) = §d(x,y)2 +0(7?)
where d stands for the distance function associated with the Riemannian metric
g.

Remark. ®(7,z,y) is equal to the action along the lowest energy classical path
with respect to the scaled Hamiltonian H, from y to z in time 1.



4 Proof of stability and consistency

4.1 Proof of stability

Proof of Lemma 2.1 (i). We consider the operator E(7)*E(7). Regarding 7 > 0
as the semiclassical parameter, we can prove that E(7)*E(7) is a semiclassical
T-pseudodifferential operator with the principal symbol

| 2

o(B(r)*B(r)) = U018, 9)

= Detr @i m). 9] (4.1)

Here g7 (y,7) is the projection of the Hamiltonian flow with respect to the scaled
Hamiltonian H, to the configuration space, which is defined in (3.2). b(T,z,y)
is defined as

b(r,z,y) == 7"2a(r 2, y)x(z,y) (= O(1) as T = +0)
and Dg(7,x,y) is defined as
Dg(r,x,y) :=7"D(1,2,Y).

Then we have
|o(E(T)"E(T)||Lo(r-m) <1+ CT

for all cases a = 7~™/2 (with the positive Ricci curvature condition) and a =
D'/2 DY2(1 —ia;). Thus the L>-boundedness theorem (see [2, Proposition
E.24] for example) of pseudodifferential operators implies

IE(T) E(T)||L2w L2 < |o(B(T) E(T)|| Lo (peary + O(1) <14 C7.

We roughly describe the derivation of the principal symbol (4.1). In local
coordinates, the integral kernel K (7,z,y) of E(7)*E(r) in the sense that

E(T)*E(T)’U,(LL‘) = - K(Tv T, y)u(y) dyl U dyn

is
K(r,z,y)

g(y)1/2 R i(—®(7,2,2)+®(7,2,y))/T 1/2
(27" b(r,z,2)b(T, 2, y)e g(2)"/7dzy - - - dzp,
T n

where g(y) is the volume density:

voly(y) = g(y)2dys - - A dys,

and ®(7,x,y) is defined in Theorem 3.1. We approximate the phase function
—O(7,z,x) + V(7,2,9) as

o
—q)(T,Z,l’) + (I)(T,Z,y) =N (‘T - y)7 n= _a_y(Tazvy) —I—O(|{IJ - yl)



We change the variables z — 7. Since ®(7, z,y) generates the Hamiltonian flow
(@i (y,m),P1(y;m)) in the sense that

—T _ 0P —T _ _@ —T
Pi(y,m) = g (7,1 (ysm),y), n= oy (7,71 (¥ 1), v),

we observe that the inverse function of z — —9,®(7, z, y) is approximately equal
to n — g} (y,n). Thus we have

1

K(Taﬂﬁay):W

/ p(r,2,m,y)e" ==/ dp
R’Vl
where

(T, 2,1,y)

= B ) T ). )
2

R2e
det 8I—8y(7’7 71 (y,m),y) + O(lz — y|)

-1

x 9(@ (y,m) ()2

Hence the principal symbol is

a(E(r)"E(T))(1,y,m) = p(T,4,1,9)
2

2 !
det ax—ay(ﬁ 7 (y.m),y)

= [b(7, 75 (y, m),y) I 9(@ (v, ) 2g(y)"/?

gy, ), )P

Do (1,77 (y,m),y)|

4.2 Proof of consistency

Proof of Lemma 2.1 (ii). We only consider the case of a = D'/? in this paper.
The proof in the case of @ = D'/2(1 — ia;) is similar to that of a = D'/2. On
the other hand, more detailed analysis is needed in the case of a = 77™/2.

Let G(7) be the operator defined by (2.1). We can decompose G(7) into the
sum of two operators

G(1) = G1(T) + 77 1Ga(T) (4.2)
where G1(7) and G5(7) locally satisfy

1

* T+ in-(z—
G,(1)*Gy(T)u(x) = @ /R D (T,Ty,m> e @Yy (y) dydn

with symbols p; (7, z,£) such that
e p1(0,y,0) =0 for all y € M and

® pa(7,y,m) = 0 near {0} x {(y,0) € T*M |y € M}.



The family of symbols {7~**p(7,y, 71)}o<r<1 and {772"*pa(7,y, 1) bocr<

are bounded in the class S35 (T*R?") and S’gf0+2 (T*R?") respectively where

S(TO(RQ") = {a € C>=(R?")

(©) " o2 0fala,€) € L°°<R2">} |

for all multiindices «, 3

with the seminorms

lalap = [ (&) ™ 020 alw, &) o (man).-

Thus, by the continuity of pseudodifferential operators on the Sobolev spaces,
we have

G ()" Ga(T) | e s e < O

and
G2 (7)*Go(T) | prse s g-1- < OT2+2

for some C' > 0 independent of 7 > 0. Thus we obtain
1G 1 () Fes L2 < ClGL(T)* Gi(T) e - < COT

and
G2 () Frse 2 < ClGa(7)* Ga(T) | prise g1 < OTH

Substituting them to (4.2), we obtain the desired estimate

1G(T) | H1+esp2 < CT. O
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