Phase space Feynman path integrals of parabolic type

Naoto Kumano-go* * 3

Kogakuin University

Abstract

This paper is a rough survey based on the talk at RIMS about the joint works with Prof. A. S.
Vasudeva Murthy and Prof. Keiya Uchida. This survey introduces our results for the phase space path
integrals of higher-order parabolic type on R? ([10][13][14]) and on the torus T¢ with T = R/(27Z) ([15]).

1 Introduction to phase space path integral on R? ([10])

We begin with an introduction to the phase space path integral on R,
Let T > 0, m > 0, and 2 € R?. Let U(T,0) be the fundamental solution for the m-th-order parabolic
equation on RY, i.e.,
(aT + H(T,x, —iax))U(T, 0)u(z) =0, U(0,0)u(x) = v(z). (1.1)
By the Fourier transform with respect to 2o € R? and & € R?, we can write

d
1 )

v(z) = — / e’(z_m)'gov(:ro)dwodﬁoj
27'[' R2d

and the pseudo-differential operator H (T, z, —id,) on R? is defined by

d
H(T,z, —id,)v(x) = <i> / e/ @=20) 80 H (T 1, £0)v(z0)dxodéo (1.2)
2w R2d
with a function H(T,xz,&y) (cf. [9]). We consider a function U(T,0,x,&p) such that
1\* ,
U0 = (57) [ e OUT0m &)l (13)
27 R2d
As an approximation of U(T,0)v(x), we use the operator I(T,0) given by
d
I(T,0)v(x) = <i> / ei(@=0)0= J At o)dty, (10 )dxodEy . (1.4)
2w R2d

Let Ayo : T =Ty > Ty > - > Ty > Ty = 0 be an arbitrary division of the interval [0,T] into

subintervals. Connecting the solution U(T,0)v(x), we have

U(T,0)v(z) = U(T,T,)U(Ty, Ty-1) - U(Tz, T1)U(11,0)v(x) . (1.5)
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Let t; =T; —T;_ for j = 1,2,...,J,J + 1 and [Apg| = 1<I;133(+1tj' Set 41 = . Let z; € R? and

& eRyfor j=1,2,...,J. When |Apg| — 0, as an approximation of U (T}, Tj_1)v(x;), we use

d T
1 O O S (e e
I(E»Tj—l)v(:rj) = (%) /I;d ei(mg xi_1)-E—1 ij71 H(t,.rgaf]—l)dtv(:rj_l)dxj_ldfj_l.

In [10], under a suitable condition, we get

UT,0)v(z) = lim I(T,T;)[(Ty,Ty-1)---I(T2,11)I(T1,0)v(z)

|Ar,0|—0
. LN r S gy 16— fi) | Htasgy ) L
:|Ail,£r\l—>o <%) /dee(i]]) ! v(xo)jl;[()dmjdfj. (1.6)
By (1.3) and (1.6), we obtain
' @@l S (0,2, &)
dJ S i e (T s J
S € I s e | (ETC R

(even when x = z). According Feynman’s idea in [5], we introduce a position path ¢ : [0,7] — R? with

q(T;) = x; and a momentum path p : [0,7) — R? with p(7}) = &;. Then we can formally write (1.7) as

ele=m) (T, 0,2,&) = / e aP)D(q, p), (1.8)
4(T)=2.p(0)=€0,4(0)=z0

where

6(¢,p) = / p(t)-da(t)+i [ H(t,q(t), p(t))dt (1.9)
[0,7) [0,7)

is the action for the paths (g, p) and the path integral [ ~ D(q,p) is a sum over all the paths (g, p) with
q(T) = =, q(0) = 29 and p(0) = &. The expression (1.7) is called the time slicing approximation of the
phase space path integral (1.8) on R%.

2 Introduction to phase space path integral on T? ([15])

We would like to give an introduction to the phase space path integral in the torus T% because it is
similar to the introduction of the phase space path integral on R<.
Let T'> 0, m > 0, and z € T? with T = R/(27Z). Let U(T,0) be the fundamental solution for the

m-th-order paraboolic equation on the torus T¢, i.e.,
(aT + H(T,z, —iax))U(T, 0)u(z) =0, U(0,0)v(z) = v(x). (2.1)

By the Fourier series expansion with respect to zo € T¢ and & € Z%, we can write

(3 2

/ ei(x_":(’)'gov(l’o)d;ro,
&o€zd T

and the pseudo-differential operator on T is defined by

H(T, 2, —i0,)0(x) (i)d )

o7 /1;‘11 e’i(l‘—mo)'foH(T7 z, fo)v(l’o)dl’o
Eo€Z



with a function H(T,z,&y) (cf. [17]). We consider a function U(T,0,x,&y) such that
1
oo = () S [ e er o s (2.2
T &€z
As an approximation of the solution U(T,0)v(x), we use the operator I(T,0) given by

1o = (5)

/ et(@—m0)-€0 o~ Jo H(t,m,Eo)dtU(;po)d:BQ :
&€zl o

Let Ay : T =Ty > Ty > - > Ty > Ty = 0 be an arbitrary division of the interval [0,T] into

subintervals. Connecting the solution U (T, 0)v(x), we have
UT,0)v(x) =U,Ty)U(Ty,Ty-1)--U(T2,T1)U(T1,0)v(z).

Let t; = Tj —Tj_l for j =1,2,...,J,J+1 and |AT’0| m<a§(+1t Set £ 741 = x. Let z; € T and

¢ €74 for j =1,2,...,J. When |Ag | — 0, as an approximation of U (T}, Tj_1)v(z;), we use
1 J i— j— H i:&i—1)d
(T, Ti-1)v(z;) = <271-> Z / i(wj—xj-1)-&j—1— fT (t,zj,6-1)dt o(@j_1)dj_1.

_i€z4
In [1], under a suitable condition, we get

U, 0)u(w) = Jim | T To)I(Ty, Tyr) - (T2, TOI(T, O)v(a)

d(J+1) w1 (T o ,
1 Z > (i(zj—zj—1)-&5— .l . H(t,x;,£j_1)dt)
:Ahm 0<27T> /31:1 S JrSi—1 «U(SL'O) | | dl’j- (2.3)
s (£, €0)€Zd+DT T(d+1)J |

By (2.2) and (2.3), we obtain
ei(Ifmo)'ﬁoU(T’O7$7£0)

1 dJ
sinlz), 2

(&g, 61)€ZY

J+1
> (i(xj—mj_1)~§j_1—fT , H(tw5,85-1)dt)

/ e H da, (2.4)

TdJ

(even when x = ). According Feynman’s idea in [5], we introduce a position path ¢ : [0,7] — T¢ with

q(T;) = x; and a momentum path p : [0,7) — Z¢ with p(7};) = &;. Then we can formally write (2.4) as

UL, 0,2,60) = [ D (0,p). (2.5)

where

6(¢,p) = /[ WORTORSY B OYORIOIT

[0,7)
is the action for the paths (¢,p), and the path integral / ~ D% (q,p) is a ‘sum’ over all the paths (g,p)
with ¢(T') = z, ¢(0) = zo and p(0) = &.
3 Our results [13], [14] for phase space path integrals on R?

We go back to the phase space path integral on R%. In [13], [14] , using the time slicing approximation,

we proved the existence of the phase space path integrals

/ " @P) F(q, p)D(q, p) (3.1)
4(T)=2,p(0)=t0.a(0)=z0



of parabolic type with general functional F(g,p) as integrand. We can regard (1.8) as the case of (3.1)
with F'(¢,p) = 1. More precisely, we give two general sets Fgo, Fp of functionals such that for any
F(q,p) € Fo U Fp, the time slicing approximation of (3.1) converges uniformly on compact subsets with
respect to the final point x of position paths and to the initial point &y of momentum paths. Furthermore,
we prove some properties of the phase space path integrals similar to some properties of the standard
integrals.

Remark 3.1 In this survey, we treat the phase space path integral of parabolic type. For the phase space
path intgral of Schrodinger type, there exist various approaches (cf. [18, §31]). For example, infinite-
dimensional oscillatory integrals (cf. [1, §10.5.3], [2], [16, §3.53]), Chernoff formula (cf. [20]), white noise
(cf. [3]), coherent states (cf. [4]), and Fourier integral operators (cf. [8], [7]). The approach of [11], [12]
for the Schrodinger type is similar to that of [13], [14] for the parabolic type.

4 Existence of phase space path integrals

Assumption 4.1 Let (§) = (1 + |§|2)1/2, 0<T<T<o0,0<d<p<1andm>0. Let H(t,x, &) be
a complez-valued C= -function of (z,€) € RY x R? satisfying the following:

(1) There exist positive constants ¢, C, R such that
0<c<ReH(tz,&) <CE™ for |¢| > R.

Here Re H(t,x,&) is the real part of H(t,x,&).

(2) For any multi-indices o and (3, agaéaH(t,x,g) is piecewise continuous with respect to t € [0,T] and

there exists a positive constant Co,5 such that

OO H(t,2,€)| [Re H(t,2,€) < Ca (€)1 =#1P1 for [¢| > R.

Let Aro: T =Ty >Ty>--->T1 >Ty=0. Let t; =15 — T;_1 and |Arp| = maxi<j<jyi1t;. Set
zy41 = 2. Let z; € R? and &; € RY. We define the position path ga,., = qar,(t, Ts41, 20, -, T1,T0)
by qar,(0) = zo, qar(t) = x5, Tj—1 <t < T; and the momentum path pa,, = par,(t, &, .-, &1,60)
by par,(t) = &-1, Tj—1 <t <Tj.

Definition 4.2 (Two spaces Q, P of piecewise constant paths)
(1) We write q € Q if q is piecewise constant and left-continuous, i.c., ¢ = qar,-
(2) We write p € P if p is piecewise constant and right-continuous, i.e., D = Pay,-

&(qaro>PAr,) and F(qar o, Par,) are the functions ¢a,., and Fa,., given by

J+1 J+1
d)(qAT,O7pAT,O) = Z/ PAryo - quT,O(t) +1 Z/ H(t7QAT,mpAT,o)dt
j=17T5-1,T;) j=17T5-1,T5)
J+1 J+1 .y
:Z(%—%—l)fj—ﬁ-iZ/ H(t,z;,&-1)dt,
j=1 j=1"Ti—1
= ¢AT,0($«7+17§e77$.77 ce 7617$17§07$0) 5
F(qAT,07pAT,0) = FAT’()(:L.J-&-17€J7'/-L‘J7 ... 75171’175071’)0) -



Definition 4.3 (Two sets Fg, Fp of functionals F(q,p)) Let F(q,p) be a functional of ¢ € Q and

p € P. For any Ar,o, we assume

F(QarosParo) = Fago(@s41.65,20, ..., &0, 1) € CF(RIZ/H3)),

(1) We write F(q.p) € Fo if F(q,p) satisfies Assumption 4.4 (1) below.
(2) We write F(q,p) € Fp if F(q,p) satisfies Assumption 4.4 (2) below.
J+1

Assumption 4.4 Let L >0 and u; > 0 with E 2 uj =U < oo depending Ar.

(1) For any non-negative integers {1, {2, there exist positive constant Ag, ¢,, Be, 4, such that for any Arg

and any multi-indices |a;| < €1 and |5;-1| < £a,

J+1

H Gajagj 11 F(qAT,mpAT,o)
j=1
L
J+1 J+1 J+1
< Anes(Bee)™ | () + 3 (&) + (o) | I (et H )dlasl=pl6s al
j=1 j=1 j=1
and for any integer k with |ag| >0 and 1 <k < J+1,
J+1
H 8?; 8?]]_—11 F(qAT,()’pAT,O)
L
J+1 J+1 J+1
< A&»Zz (Bll,fz)J—Huk Z<-Tj> + Z<§j—l> + (zo) H ( mm(lﬂﬂ R H 5|°‘J| plBj—1l
j=1 =1 j=1,j#k

(2) For any non-negative integers {1, {2, there exist positive constant A¢, ¢,, Be, ¢, such that for any Ar g

and any multi-indices |a;| < 0y and |B;-1| < Lo,

J+1
H 8“786’8; 11 F(qATyoapAT,O)

J+1 J+1 L J+1
< Aél,fz(Bh,Zz)J-H Z<$J> + Z<§7_71> + (o) H ; mm(|ag| 1) H B 5|a3| plBi— 1|
j=1 j=1 j=1

and for any integer k with |Bx—1| >0 and 1 <k < J+1,

J+1 ;
B
H 631] 85]']—11 F(qAT,O’pAT,O)
j=1
L
J+1 J+1 J+1
S A£1,£2 (Bfl,gz)J""lwc Z<x3> + Z<§J—l> + <.’E0> H l’ﬂln(|a3| 1) H B 5|043\ plﬂg 1‘

=t =1 =137k



Theorem 1 (Existence of path integrals) For any F(q,p) € Fo U Fp,

/ ") F(q, p)D(q, p)
q(T)=x,p(0)=£0,q(0)=20

dJ J
. 1 i ,
=i (52) L e e Fla ) TT des ()

T A1 o]—=0
Aol =

converges uniformly on compact sets of (z,&, o) € R4 x RY x RY, i.e., the phase space path integral (77)

is well-defined. Here we treat the multiple integral of (7?) as an oscillatory integral.

Remark 4.5 We explain some hurdles in case we try to treat (4.1) mathematically. Even when F(q,p) =
1, each integral of the right hand side

J

+1 .
. 1\% > (i(xj_mj_l)'éj_l—f;;?_l H(t»l‘j»ij—l)dt) d
lim — ei=t H dz;d&;
|[A7,0|—0 2m R2dJ =1
does not converge absolutely. Furthermore, the number J of integrals tends to oo.

We explain the details of the convergence in Theorem 1.

Theorem 2 Let 0 <T < T < oo. For any F(q,p) € Fo U Fg, set

dJ J
, 1 ,
s st = (52 ) [ 40 sy pang) [T ety
' 27 R2dJ ’ ’ =1

Then, for any non-negative integers £y, Lo, there exist non-negative integers £y, £ and positive constants

C£1,£2; Céljz SUCh that

agafobAT,o(%ﬁoﬂJo)‘ < Ag; 0, Coy 0, () + (€0) + (o)) T (&)1 =218,

0205, (b (@, €0,70) = H(T,0,. €0, 70) )|
< Ay 0,Chy | Aol (T + T)({2) + (60) + o) (o) 11018

for any |a| < 1, |B] < Ly with b(T,0,2,80,20) = lim  ba, (2,80, 20).

IA’I\()‘—)O

5 We can produce many functionals F(q,p) € Fo, F(q,p) € Fp

Theorem 3 (Examaples of F(q,p) € FoUFp) Let L>0,0<d<p<1,0<t<T and0<T <
T <T.

(1) If |09B(t,7)| < Colx)E, then F(q) = B(t,q(t)) € Fo.
(2) If |0/ B(t.€)| < Cp{&)“~#191, then F(p) = B(t,p(t)) € Fp.

In particular, F(q,p) =1 € Fo N Fp.

®) 171208 Blt, O] < Cusl(@) + (), then Flap) = [ Bit.a(0), )it € For Fo.

(4) IF[020L B(t,2,€)| < Ca(&)%121=0181 then F(q,p) = elirrom BEaO2)d ¢ 7o 7,



Remark 5.1 To avoid the uncertain principle, we do not treat q(t) and p(t) at the same time t. We
have q(t) € Fo, p(t) & Fo and q(t) & Fp, p(t) € Fp. Ift # s, we can treat q(t) - p(s) as the product of

the two operators.

Definition 5.2 (Functional derivatives) For any q, ¢ € Q and any p, p' € P, we define the func-

tional derivatives along (¢',p') by

. F(q+0q,p+0p")— F(q.p)
D(q/,p/)F(q,p) = gl_If(lJ 7 .

Remark 5.3 Let A7 contain all times when q, q', p or p' breaks. Set q(1j) = z;, ¢'(1;) = af,
p(Tj-1) = &—1 and p'(Tj—1) = &y By (¢ +0q')(t) = x; + 0z on (Tj—1,T;], (p+0p')(t) = &—1 + 085 4

on [T;-1,T;), we have
F(q + Hq/ap+ Hp/) = FAT,()(:BJ-‘,-I + H$J+l7€J + Hgflv s 750 + H§67$0 + 91:/0) .

Therefore, we can treat Dy ,\F(q,p) as a function as follows.

J+1
D(q/,p/)F(q7p) = Z(aijAT,o)(wJ+l7€J7l’J7 oo 7507*7/‘0) ! l;
Jj=0
J
+ (anFAT.O)(:L‘J-i—lv§.77$.77"'7507:130)'5_;'
j=0

Thus, we have the linearity of functional derivatives

DC’(q’,p’)—‘rC”(q”,p”)F(q7p) = CID(q/,p/)F(q,p) —+ C/ID(q//’pN)F(q7p)

forq',q" € Q p,p" € Pand ., " € R. By Fa,, € C*RY ) we can treat the functional

deriwatives of higher order.

Theorem 4 (Algebra on Fg, Fp)

(1) For any F(q,p), G(¢,p) € Fo, any ¢ € Q, any p' € P, any d x d real matrix V and any d x d

real-regular matriz W, we have
F(q,p) + G(q,p) € Fo, F(q,p)G(q,p) € Fo,
Flg+d,p+7) € Fo, F(Vq,Wp) € Fo, Dy 4)F(q,p) € Fo.

(2) For any F(q,p), G(q,p) € Fp, any ¢ € Q, any p' € P, any d X d real matriz V and any d x d

real-regular matriz W, we have

F(q,p) +G(q,p) € Fp, F(q,p)G(q,p) € Fp,
Fg+d,p+p)eFp, F(Vq,Wp) € Fp, Dy q)F(q,p) € Fp.

Remark 5.4 The two sets Fo, Fp are closed under addition, multiplication, translation, real linear
transformation and functional differentiation. Applying Theorem 4 to Theorem 3, we can produce more
functionals F(q,p) € Fo U Fp. However, the part f[o,T) p(t) - dq(t) of ¢**@P) does not always have good
properties under these operations. Therefore, we must pay attention to which properties are valid in the

phase space path integrals.



6 Properties of phase space path integrals
We can interchange the order of the path integration and some integrations as follows.

Theorem 5 (Interchange of the order of path integrals and integrals)
Let L>0. Let0<d<p<1land0<T' <T"<T.

(1) Assume that for any multi-index o, 02 B(t,x) is continuous on [0,T] x R? and |02 B(t, z)| < Cqo(x)E.
Then, for any F(q,p) € Fg including F(q,p) = 1, we have

/ e'oar) / B(t,q(t))F(q,p)dtD(q, p)
q(T)=z.p(0)=€0,9(0) =20 [T, 17)

_ / / ¢4 B(t, g(t)) F(q, p)D(g, p)dt . (6.1)
[T, 1) Jq(T)=2,p(0)=E0,9(0)=z0

(2) Assume that for any multi-indez (3, 8?3(15, €) is continuous on [0, T|xR? and |8?B(t,§)| < Cp(g)k—rlfl,
Then, for any F(q,p) € Fp including F(q,p) = 1, we have

/ e'?(ar) / B(t,p(t))F(q, p)dtD(q, p)
4(T)=2,p(0)=£0,4(0) =20 (17, 17)

= / / e P B(t, p(t))F(q,p)D(q. p)dt . (6.2)
[17,17) J g(T)=2,p(0)=€0,4(0)=x0

Remark 6.1 On the left-hand sides of (6.1) and (6.2), we perform the path integration after the inte-
gration with respect to time t. On the right-hand side of (6.1) and (6.2), we perform the path integration

before the integration with respect to time t.
Remark 6.2 To avoid the uncertain principle, we do not treat q(t) and p(t) at the same time t.

We can interchange the order of the path integration and some limit operations, and have the perturbative

expansion as follows.

Theorem 6 (Perturbative expansion) Assume that for any multi-index o, 0XB(t,x) is continuous
on [0,T] x R and |09 B(t,z)| < Cy. Then we have

/ ei¢(f1ap)+f[T/,T”) B(ta‘I(t))dt'D(ng)
q(T)==, p(0)=£o0,q(0)=w0

S | [
n=0"T".T") [T7,73) (T7,72)

< [ e B, g(n)- - Blrs,a(r) Bl a(r))Dla.p)
a(T)=z,p(0)=£0,q(0)=x0

Theorem 7 (Orthogonal transformation w.r.t. paths) For any F(q,p) € Fo U Fp and any d x d

orthogonal matriz QQ, we have

/ Q190 F(Qq, Qp)D(q,p)
q(T)=x,p(0)=£0,q(0)=x0

= / P F(q, p)D(q, p) .- (6.3)
9(T)=Qz,p(0)=Q%0,3(0)=Qz0



Remark 6.3 On the left-hand side of (6.3), we perform the orthogonal transformation of all paths. On
the right-hand side of (6.3), we perform the orthogonal transformation of the endpoints.

Theorem 8 (Translation w.r.t. momentum paths) For any p’ € P, we have
G(q) = ¢ Jio,m) p’(t)dq(t) € Fo.

Furthermore, for any F(q,p) € Fo, we have
/ @) (g, p+ p/)D(q,p) = / e'* P F(q,p)D(g, p)- (6.4)
a(T)=x,p(0)=£0,q(0)=20 a(T)=z,p(0)=Eo+p’ (0),q(0)=z0

Remark 6.4 On the left-hand side of (6.4), we perform the translation of all paths with respect to the
momentum path. On the right-hand side of (6.4), we perform the translation of the endpoint with respect

to the momentum path.

Remark 6.5 The author has not proved that G(p) = e fio.my PO @) o Fp for any ¢ € Q. Therefore,
the author has not proved that for any F(q,p) € Fp,

/ e?ata P (g 4 ¢, p)D(g,p) = / @) F (g, p)D(q,p)
4(T)=2,p(0)=E0,a(0)=z0 a(T)=2-+¢/ (T),p(0)=€0,a(0)=z0+4' (0)

but which was given in the Schridinger case [11, Theorem 6 (2)].

Theorem 9 (Integration by parts formula w.r.t. momentum paths) Let 0(t) = 0. Then, for
any p' € P, we have Dy py¢(q,p) € Fg. Furthermore, for any F(q,p) € Fo and any p' € P with
p’'(0) = 0, we have

/ ¢4 (Do F) (4, p)Dlg p)
q(T)=x,p(0)=E0.q(0)=x0

—i [ I (Di0,16)(a,9)F (0, P)D(a. ). (6.5)
q(T)==,p(0)=£0,9(0)=z0

Remark 6.6 On the left-hand side of (6.5), we differentiate F(q,p) with respect to momentum paths.
On the right hand side of (6.5), we differentiate ¢**(9P) with respect to momentum paths.

7 Outline for Proof of Theorem 1

We explain the outline for the proof of Theorem 1.

To prove the convergence of the multiple (oscillatory) integral

dJ S
1 )
li - Z¢(qAT,0’pAT,0)F dé.do. -
‘ATl-rlOT‘l_}O (277) /]R2dJ c (qATmpAT,o)jl;[l §jdx; (7.1)
we have only to add many assumptions to F(qa; s PAr,) = Far(Tr41,87,27,...,80,%0) so that (7.1)

converges, and to define two sets Fgo, Fp by these assumptions. Do not consider other things. Then Fp,
Fp will be larger as sets and contain at least one example F(g,p) = 1. Add assumptions closed under
addtion and multiplication. Then Fg, Fp will be closed under addition and multiplication. Our proof
consists of the following 3 steps:

1. Control (7.1) by C” as J — co. Here we use H. Kumano-go-Taniguchi-Tsutsumi’s idea ([19], [9]).



2. Control (7.1) by C independent of J — oo (|Arg| — 0). Here we use Fujiwara’s idea ([6]).
3. Add assumptions so that (7.1) converges as |Aro| — 0.

For the properties of the path integrals, we have only to prove the properties that we can prove.

7.1 Do the same thing over and over again

The oscillatory integral is defined by the integration by parts. For the multiple oscillatory integrals
in [19], [9], H. Kumano-go-Taniguchi-Tsutsumi did the integration by parts over and over again and
obtained a sharper result. We use this idea.

Let
J+1

= (w5 —m1) &1, a=

j=1

-y H(t,3;,&;_1)dt
e 2371 (T _1,T;) (t,z5,65-1) FAT,()-

1—itp- O, 1y,

R N = T with Mt = ¥, Nyl = e, e

Using the differential operators M; =
repeat the integration by parts.

1\% J 1\% J
_ i de.de, = [ — LAY dr.dE.
<27T> /deJe aH K §J (27‘1’) /de]e “ H i gj’
j=1 j=1

where a® = (N5)¢-- - (N5){(N?)E(M;)Y -+ (M3)¥ (My)" a with the adjoint operators M}, N of M,
Nj;. Generally speaking, we can not control the multiple oscillatory integral of (7.1) by C7 as J — oo.
However, if we assume the following, we can control the multiple integral of (7.1) by C”7 as J — oo.
Assumption 7.1 For any non-negative integers {1, {2, there exist positive constants Ag, ¢,, Be, 0, such

that for any multi-indices |a;| < €1 and |B;—1| < L2,

J+1
Hagfag__f FAT.o(xJ-'rlafJa---7501,50,1’0)
j=1
L
J+1 J+1 Je1
< Ayt (Bl’,l,ég)J—H Z<.T]> + Z<§j—1> + (zo) H <§j_1>5‘aj|—9\,3j—1\' (7.2)
Jj=1 7j=1 j=1

Example 7.2 Let F(q,p) = elom) Bla®p@)dt |8§‘8§B(t,az,§)| < G p()01d=PIBI Then Fa,., =
J+1 ) ) . .

ei=t Jiry_y oy Btws &i-n)dt H;’;Fll oJimy_1myy Bz &-n)dt satisfies the inequalities of (7.2), (7.3), (7.4)

with L =0 and uj = t;.

7.2 Do simple things

For the multiple integrals in [6], Fujiwara did only simple integrals that appear as main terms in the
calculations of the multiple integral. He skipped many complicated integrals that appear as remainder
terms. Carrying out this rule until the end, he forced all the many complicated integrals of remainder

terms on H. Kumano-go-Taniguchi-Tsutsumi’s estimate. We use this idea.
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Let 2m — (p—6)N < 0. The asymptotic expansion of pseudo-differential operator with double symbol

a(zz,€1,21,&0) is written by

—1 lay]
> %(8?113?1161)(502750,502,50) +rn(z2,&0), |rn(z2,8)| < Cla.
|| <N ’

The main term a(zo, &y, x2,&p) are obtained by setting & = & and 1 = x5 in a(xe,&1,21,&p). We also
note the key lemma below.

Lemma 7.3 If & = & and 1 = x4, we have
a1, 1,,0(T2, T2, 20) = q1y.0(T2,%0),  P13,17.0(60,60) = P13.,0(&0)s

Fr, 1, 0(x2, &0, %2, €0, %0) = F(qm,, 10,0, P1%,71,0) = F (47,0, 07,0) = Fr3,0(22, &0, %0) -

If we assume the following for any At as the inequality of Assumption 4.4 (1) for F(q,p) € Fg and use
Xt = T < 00, then we can control the multiple integral of (7.1) by C indepent of J — oo.

Assumption 7.4 For any non-negative integers {1, {2, there exist positive constants Ag, ¢,, Be, 0, Such

that for any multi-indices |a;| < €1 and |B;—1| < L2,

J+1

Hagjag]__ll FAT’O(CUJ-‘,-D&J?'"7x17§07x0)
j=1
L
J+1 J+1 J+1 J+1
< A ty(Bey o) Z D> (&) + (o) | [T ) 0P 1‘”H )lesl=elfial = (7.3)
=1 =1 j=1
Remark 7.5

1. If J =0, Pro(z1,&,x0) is controlled by (Be, ¢,)".
2. If J =1, Prp o(w2,&1, 21, &0, 0) is controlled by (B, 4,).

3. If J =2, Frmr, 1, .0(73,82,79,&1,71,&0, T0) is controlled by (B, 4,)>.

7.3 Consider multiple integrals by paths.

To prove the convergence, we have only to make a Cauchy sequence. To make a Cauchy sequence, we

//// jljld@df‘j-
/ / / / H dﬁadxjnﬂld@dx].

j=N+1

compare two multiple integrals:

and

Two integrands of two multiple integrals are different in the numbers of variables. However we can

compare the two integrand using the lemma below.
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Lemma 7.6 Set :E; =TN+1, 5; =&,-1,J=mn,---,N. Then we have

FAT.O(xJ+17€J7 .. 'axN+17§?V>x§)V7 cee 75?1737%7571—17 cee 7'1717507'1:0)
= F(qAT,O’pAT,O) = F(q(AT,TNH,ATn_l,o)’p(AT.TNH,ATn_l,o))
= Farg,,an, 0 @41,85: - 28418015+ -+, 71, €0, o) -

Add the parameter u; > 0 with Zj:ll u; = U < oo depending Ar g and for any |og| >0 (1 <k < J)

and assume the following as the second inequality of Assumption 4.4 (1) for F(q,p) € F. Then the
multiple integral of (7.1) converges as |Ap | — 0.

Assumption 7.7 Let L > 0. Let u; > 0 with Zj:ll uj; = U < oo depending Aro. For any non-negative
integers £1, la, there exist positive constant Ag, ¢,, Bey e, such that for any Aro and any multi-indices
|aj| < Ela |ﬁj—l| < €27 and |Oék| >0 (1 < k < '])7

J+1

a; aBi-1 . o T
Hal‘;agjj—l Fago(@rt1,67, -5 21,80, 0)
Jj=1

J+1 J+1 L
< Ay oy (Bey )" run | D () + Y (&o1) + (wo)
j=1 j=1
J+1 . J+1
% H (tj)mm(lﬂjflhl) H<€j_1>5|aj|—p|3j,1\ . (7.4)
J=1#k =1

Remark 7.8 Measure theory considers the base. However, integration theory considers the area, i.e., the
product of the base and the height. This assumption implies that, if the difference of two paths is small,
the difference O, Fa, , of the two heights is controlled by wi, with Z;H'll u; =U < o0.
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