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1 Introduction

This article is concerned with the following reaction-diffusion equation arising in
a population model:

Ou = dAu + u(m(z) — u) in  x (0, 00),
Bou :=00,u+ (1 —0)u=0  on I x (0,00), (1.1)
u(-,0) =uo(>0) in 2,

where  is a bounded domain in R" with smooth boundary 0Q; A := 7" | 9° /0]
is the usual Laplace operator; 0, denotes the directional derivative in the direction
of the outward unit normal vector v on 0€2; d > 0 and 0 < # < 1 are given
constants; m(z) is a nonnegative measurable function. In the research field of
reaction-diffusion equations in biological models, (1.1) is referred as the diffusive
logistic equation in which the unknown function u(z,t) represents the population
density of a species at location x in the bounded habitat 2 and time ¢ > 0. The
diffusion coefficient d > 0 represents the degree of random movement of each
individual of the species. The nonnegative function m(x) can be interpreted as
the amount of resources (feed) for the species at location x € Q. In the boundary
condition, the homogeneous Dirichlet type is corresponding to 8 = 0, where the
habitat ) is assumed to be surrounded by a hostile environment for the species;
the homogeneous Neumann type is corresponding to # = 1, where the flux of u
across the boundary is assumed to be zero; the Robin type is corresponding to
0 < 0 < 1, where the flux of u across the boundary is assumed to be proportional

*This article is a summary of works [3, 4] by Jumpei Inoue (Waseda University) and a joint
work with him [5].



to u. Throughout this article, we assume that the resource function m(x) belongs
to the following functional class:

LEQ):={meL*(): m>0 aec. inQ, |m|e>0},

where || - ||, denotes the usual LP(£2) norm for p € [1, 00]. Concerning (1.1), the
global well-posedness and the long-time behavior of solutions are known as follows
(e.g., [2, Sections 1.6.5-1.6.7], [7, Chapter 5] and [10, Theorem 3.6]):

Lemma 1.1. If uy € LT(2) N C(Q) satisfies Bou = 0 on 0N, then (1.1) admits
a unique solution u(xz,t) in the class u € C* 2" (Q x (0,00)) N C(Q x [0, 00))
with any v € (0,1). Furthermore, as t — oo, u(x,t) converges to the mazximal
nonnegative steady-state u*(x) uniformly in Q.

Therefore, the profile of the maximal solution to the following nonlinear elliptic
equation can approximate the spatial configuration of the species after a long time.

{dAu +u(m(z) —u) =0, uw>0 in €,

(1.2)
Bou =0 on 0.

It is easily checked that all nontrivial nonnegative solutions are positive solutions
by the strong maximum principle and all weak solutions can be in class W%?(Q)
for any p > 1. By the Sobolev embedding theorem, such solutions are in class
C'(Q) for any v € (0,1). Furthermore, the global bifurcation structure of
positive solutions of (1.2) is known. For the sake of the expression of the structure,
we introduce the following eigenvalue problem with weight:

—A¢p = Im(x)p in , Byp =0 on 0. (1.3)

It is well-known that all eigenvalues of (1.3) consist of a monotone increasing
sequence {\;(m,0)}52, C [0,00) with \;(m,#) — oo as j — oo, and moreover,
the least eigenvalue A;(m, @) can be characterized by the following variational
formula (e.g., [2, Theorem 2.4]):

IVol3 + 15° Joo &°
PEHL(R), 670 Jo m(z)¢?

min IVéll3
2
seHL(Q), 020 [, m(T)¢

if § € (0, 1],
/\1(m,9) =
if 6 =0.

It is possible to verify that, for each fixed m € L3°(Q), Ai(m,#) is a monotone
decreasing continuous function with respect to 6 € (0, 1) with A\;(m, 1) = 0. Here
we define dy(m, 6) := 1/X;(m, ), and hence, d;(m, 0) is monotone increasing with
respect to 0 € (0,1) with dy(m,1) = oco. It is known that d;(m,6) gives the
threshold for the existence/nonexistence of positive solutions of (1.2) (e.g., [2,
Corollary 3.14)):
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Figure 1: Bifurcation diagram

Lemma 1.2. For each m € L3°(2), the set of all positive solutions of (1.2) forms
a simple curve parameterized by d € (0,d;(m,0)) as follows

I'(m, 0) = {(d,ugme) € (0,dr(m,0)) x C"(Q) },

where the map (0,dy(m,0)) > d = Ugme € C*TV(Q) is continuous and satisfics
limg o ud,m,g(i) = m(x) for each (x,0) € Q x [0,1] and limg 74, (m.0) Udme = 0
uniformly in Q for each 6 € [0, 1).

Hence, Lemma 1.2 asserts that, if § € [0,1) (except for the Neumann type),
the set I'(m, @) of all positive solutions to (1.2) forms a bifurcation curve, which
bifurcates from the trivial solution at d = d;(m, f) and extends in the direction
d < di(m,0). Then, the necessary and sufficient range of d for the existence of
positive solutions is 0 < d < dy(m, 0), and moreover, for each d € (0,d;(m,0)),
the positive solution is uniquely determined by g, ¢(x). Combining Lemmas 1.1

and 1.2, one can see that, for any ug € L(Q) N C(Q) with Byu = 0 on 01, the
solution u(z,t) of (1.1) satisfies

lim u
t—o00

(2.1) Ugme(r)  uniformly for x € Q if d € (0,d1(m,0)),
x? - . 2
uniformly for x € Q if d € [d;(m, §), 00),

where it is noted that the latter case is empty if = 1 (see Figure 1). Therefore,
it can be said that ug ., ¢ gives important information on the population density
of the species after a long time. In this sense, many mathematicians have studied
qualitative properties of 44, ¢ from various viewpoints.

Among other things, this article focuses on the following optimal problem.



Problem. Evaluate S(€2,0) := sup luamolls

d€(0,d1 (m,0)),meLT(Q) ]2

This problem was proposed by Ni (e.g., [1, Abstract], [6, (8.36)]) especially for the
Neumann problem (6 = 1). From a viewpoint of the biological model, this problem
asks for the maximum (or supremum) of the total population of the species relative
to the total amount of feed. From another viewpoint of the nonlinear PDEs, this
problem asks whether there exists a constant C' such that

|tamollrr) < Cllmllpiq) for any d € (0,di(m,0)) and m € LT(S2), (1.4)

and moreover, if such a C' exists, the best possible constant, denoted by S(€2, ),
is naturally required. For the one-dimensional Neumann case where Q = (a,b)
with # = 1, Bai, He and Li [1] gave the following answer:

Theorem 1.3 ([1]). It holds that S((a,b),1) = 3 for any —oo < a < b < oc.
Furthermore, this supremum is not achieved by any solution of (1.2) with ) =
(a,b) and 6 = 1.

Subsequently, in papers by Inoue [3, 4], Inoue and the author [5], it was shown
that, in the one-dimensional case, the supremum is still equal to 3 for any other
boundary condition, whereas, in the multi-dimensional case, there is no constant
C' that satisfies (1.4). Precisely stated, the following result was obtained:

Theorem 1.4 ([3, 4, 5]). The following properties hold true:

(i) S((a,b),0) =3 for any —oco < a <b < oo and 0 € [0,1). Furthermore, this
supremum is not achieved by any solution of (1.2) with Q = (a,b);

(i) S(2,0) = oo for any bounded domain € C R™ with n > 2 and 0 € [0, 1].

The purpose of this article is to express a mathematical motivation of the
studies on Problem and introduce some ideas in the proof of Theorem 1.4.

2 Neumann boundary condition

2.1 Effect of heterogeneity of resources on the biomass

This section concerns with (1.2) in the Neumann boundary condition case where
0 = 1. We should begin with a mathematical observation by Lou [8], which led to
the global consideration of (1.2) with § = 1. His observation gave the following
fine proof the fact that heterogeneity of resources can increase the total population
of the species when the homogeneous Neumann boundary condition is imposed:



Let u be any positive solution of (1.2) with § = 1. Dividing the elliptic
equation of (1.2) with # = 1 by u and integrating the resulting expression over €,
one can get

Au
d/ —dx + ||m||; — ||u|ls = 0. (2.1)
o Uu
Applying the integration by parts to the first term, one can see
A 1 Vull? || Vul?
/—udx: Zo,udS + || = ||| =0
Q u o0 U u 9 u 2

due to the Neumann boundary condition. Therefore, we know that
|m|ly < |lull1, or equivalently,

and the equality holds if and only if m(x) is a positive constant over 2. That is
to say, the heterogeneity of m(x) can increase the total population of the species.

2.2 The one-dimensional case

In this subsection, we introduce the outline of the proof of Theorem 1.3 by Bai,
He and Li [1].

Proof of Theorem 1.3. Owing to a suitable scaling, we may choose Q = (a,b)
arbitrarily for the study of S((a,b),1). Then we consider the following Neumann
problem of a nonlinear ODE:

{du”+u m(z) —u)=0, u>0 0<z<1), (2.2)

u'(0) = /(1) = 0,

where the prime symbol represents the derivative by x. As mentioned in Lemma
1.2, there exists a unique solution g, 1(z) to (2.2) for any (d,m) € (0,00) X
L(0,1). For simplicity, we restrict ourselves to the case where m(x) is a non-
increasing and non-constant function over (0,1). It is easily checked that the
corresponding solution u(z) := ug,1(z) is monotone decreasing for z € (0,1).
Following the usual energy procedure, one multiplies (2.2) by u’ and integrates
the resulting expression over (z,1) to get

, 2u(x)®  2u(1)? ! ,
(= 280 28 [ty ul) o) (23)
At the same time, we recall (2.1) to note
1 du’(x)z
/O () dz + [|m||; = ||ull; = 0. (2.4)



Then, by substituting (2.3) into the first term of (2.4), one can see

ot~ 12y [* (40 a +2/ 2 [ i =o

(2.5)
Then it follows that ||m||; — [|u||1/3 > 0, thereby, ||u||1/||m|1 < 3. It was shown
in [1] that this estimate holds true even unless m(x) is non-increasing, that is,

<3 for any (d,m) € (0,00) x LT(0,1). (2.6)

The core idea of the proof of Theorem 1.3 by [1] is to find that the bracket
term in (2.5) tends to zero as € — +0 in the setting

1/e (0<x<e),

0 (e<z<1). 27)

1
d= \/EJ m(x) = EII[O,E) = {

Actually, the first term of the bracket vanishes as e — +0 since the solution u. ()
to (2.2) with (2.7) satisfies lim._, ¢ u. — 0 uniformly in any compact subset of
(0,1]. Furthermore, the second term of the bracket in (2.5)

7= 1 | y) u(y) o (y) dy

also vanishes as follows: Since u.(y) < u.(x) for any y € (x,¢), hence one use the
Schwarz inequality to get

= /01 U:(Iiy / ue(y) Lu;(y)ldy < 5/06 yz—gz;' dy < JE(/S(%)ZCL@)%.

Substituting (2.4) into the integrand, one can find

1

e a{ [ (4)) < - )

V(7

where the last inequality is due to (2.6). The proof of Theorem 1.3 is complete. [

1 2
) —0 ase— 40,

For the solutions {u.}.~o found by [1] we see that |u.l|; 3 as ¢ — +0
because ||m.||; =1 for any € € (0,1).

Concerning more detailed information on {u.}, Inoue [3] obtained the following
asymptotic profiles as € — 40:



Theorem 2.1 ([3]). Let u(x) be the solution of (2.2) with (2.7). Then, for any
fized k > 0, u.(x) satisfies the following properties:

o1 ) 3
(i) EI—I)IEO\/EUE(O> = El_lfﬂo\/gue(g) -9
1 2
(i) lim “i/(f) — 23 ( / dz ) :
e— I NG
o - - 58
(i) lim, VEu.(e+ kyE) = Gy for eachy > 0
) ) €+k\£ 3
(v) Bim [ wlo)de=q7ap

From the maximum principle, we know the fundamental property of any non-
constant solution u of (1.2) that 0 < u(z) < ||m||w for all z € Q. In Theorem 2.1,
the assertion (i) says that the maximum value of u., u.(0), is shown to remain
about 3/(24/¢) being much less than the maximum value 1/ of m. Furthermore,
it can be seen that the height of u remains approximately the same in the presence
range [0, €] of resources. The assertion (ii) says that the minimum value u.(1) of
us(x) is shown to be about C'\/e, where C' is the constant expressed in the right-
hand side. As mentioned above, the fundamental property implies that u. decays
to zero in any compact subset of (0,1] as ¢ — +0. The assertion (iii) shows that,
if the solution u. is scaled down in height by a factor of \/¢ and simultaneously
extended by a factor of k/\/e starting from x = &, then the scaling function
©:(y) := \Veu(e + k/ey) converges to the function 6/(ky + 2)? as ¢ — +0. The
assertion (iv) says that most of the total population 3 of w. is occupied in the
interval (g,e + kv/e) if € > 0 is small and k > 0 is large.

2.3 The multi-dimensional case

Next we consider (1.2) for the case where § =1 and Q = B} :={z € R" : |z| <
1} with n > 2. This subsection introduces our idea in [5] concerning the proof of

S(BY,1) =00 ifn>2. (2.8)
For the verification of (2.8). it suffices to show the following proposition with

1

me(z) == —1lpgn = {1/871 (|z] <e),

0 (e <z| <1). (29)

En



Proposition 2.2. If n > 2, there exist positive constants ¢; and co depending
only on n such that the solution u.(x) of

C1 )

Au—i—u mes(T)—u :07 u>0 mn Bn’

s (me(x) —u) : (2.10)

al/u =0 on 6B’f

satisfies
uE n 1

—” o) > ¢y (1 - -+ E| log€|> . (2.11)
lmell sy € °

By the fact that right-hand side of (2.11) tends to infinity as ¢ — +0, (2.8)
immediately follows. The idea of the proof of Proposition 2.2 is to construct an
L' unbounded sequence of sub-solutions.

Before stating the proof, we review the sub-super solution method. By the
uniqueness of solutions of (1.2), it suffices to consider the radial solution repre-
sented as v(r) := u(z) with r = |z|. Hence v(r) satisfies the following boundary
value problem of the following nonlinear ODE:

d@«@+”
V'(0) =0=6v(1)+ (1 —-0)v(1),

(1)) + o))~ o) =0 (07 <), (2.12)

where the prime symbol denotes the derivative by r and m(r) := m(z) with
r = |z|. Although this section is devoted to the case where § = 1, we summarize
the sub-super solution method in the general 6 case for the sake of the discussion
after this subsection, see also e.g., [9, Section 2].

Definition 2.1. Let v : [0,1] — R be continuous in [0,1] and of class C? in
(ag,a1) U (ar,az) U--- U (ay,any1) with ag = 0, ayr; = 1. Then v is called a
sub-solution of (2.12) if v satisfies the following conditions (i)-(iii):

() d(wr) "

(i) lim 2/(r) < lim o/(r) for each 1 <i < N;

ra; r\a;

n—1

y’('r’)) +u(r)(m(r) —v(r)) > 01in (a;, a;4q1) for 0 <i < N;

r

(it)) /(0) > 0 > 60/(1) + (1 — O)u(1).

If © belongs to to the same class as v and satisfies (i)-(iii) with reverse inequalities,
then 7 is called a super-solution of (2.12).

Lemma 2.3 (the sub-super solution method). If there exist a super-solution v(r)
and a sub-solution v(r) of (2.12) such thatv(r) < o(r) for all0 < r <1, then there
exists a solution v(r) of (2.12) such that v(r) < v(r) <v(r) for all 0 <r < 1.

8



Proof of Proposition 2.2. 1t is easy to check that v(r) = 1/e" is a super-solution
of (2.12) with # = 1. Our crucial task is to construct an L' unbounded sequence
of sub-solutions of (2.2) with # = 1. For any € € (0,1), we define v(r) := v_(r) by

g—ie‘(f)" 0<r<e),

o(r) = (2.13)
el (e<r<1)
erm

Then by a straightforward calculation, one can verify that

n—1
_czngn € 2 (0 <r< E)a
vi(r)=q 5
2
erntl (6 sT S 1)
and conr™? nr® in
- —1——)e & 0<r<e),
” e2n cn
i) = con(n +1)
2

W (6 <r< 1),

and moreover, v € C*([0,e)U(e, 1])NC*(]0, 1]). To find a sufficient region of (c1, c2)
such that v(r) becomes a sub-solution, we derive the following lower estimate of
the left-hand side of the ODE corresponding to (2.9):

6:; (y”(r) + 2 ; 12’(7")) +u(r) < 1o Q(r))

gn
_ { _acnr™ (n 1 7””") _acn - e 6 ey }e—m
6311—2 en 6311—2 6211 6211
2cicon(n — 1)r"=2 ¢y _(ryn _(ryn
2 | G e ) [t
> ;TQn{ —2n(n—1)¢c; —ea + 1 }6_(§)n for any r € [0, ¢),
(2.14)
and
() + 2= Ly)) = ur)?
611—2 - r - -
Co an(n+1) cn(n—1) o
= — — 2.15
67’n+2 { 871—2 6n—2 67””_2 ( )

> 2 <2n01 — %> for any r € [e, 1].

9



1 c,=2nec,

0 \’Cl

c,=1-2n(n-1)¢,

Figure 2: Triangle T

Together with v'(0) = 0 and v/(1) = —cen/e < 0, we deduce that, if
0<cy <min{1,1—2n(n—1)c,2enc }, (2.16)
then v(r) is a sub-solution of (2.12) with # = 1 and satisfies v(r) < o(r) for

any r € (0,1). Here it is noted that the region of (¢, co) satisfying (2.16) is
corresponding to the interior of the triangle T° whose vertexes are

(0,0), (mﬂ)’ (2n(n+16—1)’n+z—1>

(see Figure 2). Therefore, if (¢1, ) € int (T), then Lemma 2.3 gives a solution
v(r) of (2.12) with 6 = 1 satisfying

vo(r) <wo(r) <o(r) for any r € [0,1]. (2.17)

Hence u(z) = v(r) with r = |z| is a positive solution of (3.9). By a straightforward
computation, one can verify that u_(z) := v_(r) with r = |z| satisfies

1
s :CZ<1__+2|10g5|). (2.18)
(& (&

Together with (2.17), we obtain (2.11). The proof of Proposition 2.2 is complete.
O

10



3 Dirichlet boundary condition

3.1 The one-dimensional case

Concerning the one-dimensional Dirichlet problem, this subsection introduces the
proof by Inoue [4] for the assertion (i) of Theorem 1.4 in the case 6 = 0:

Proposition 3.1 ([4]). It holds that S((a,b),0) = 3 for any —oco < a < b < c0.
Furthermore, this supremum is not achieved by any solution of (1.2) with 2 =
(a,b) and 6 = 0.

Proof. By the usual scaling argument, it suffices to show S((—1,1),0) = 3. Let
U = Ugme be the positive solution of (1.2) with (©2,6) = ((—1,1),0) in case
d € (0,d;(m,0)). Furthermore, let U := ug,,1 be the positive solution of (1.2)
with (£2,0) = ((—1,1),1). Then, the usual comparison argument using Lemma
2.3. enables us to verify that u(z) < U(x) for any x € [—1,1] and d € (0, d;(m, 0)).
Together with (2.6), one can see that

U
lulls _ UL

<3 for any (d,m) € (0,d;(m,0)) x L(—1,1).
lmfly fmlly 1 !

We consider (1.2) with

1
0= (—1,1), (9:0, d:\/g, m(a:) :g]l(—e,e)-

It is easy to check that any solution u(x) to this Dirichlet problem satisfies
u(z) = u(—=z) for any x € [—1,1]. Then it is convenient to consider the following
Neumann-Dirichlet problem over (0, 1):

{ﬁu” + u(i.(z

)—u)=0, u>0 0<x<1),
u'(0) = u(1) = 0, 8:1)

where m.(x) = 7'}y ). Obviously, for the completion of the proof, it is sufficient
to show that (3.1) has positive solutions u. for small £ > 0 and they satisfy

luc|ly 3 ase— +0. (3.2)
Let v.(z) be the positive solution of (3.1) with the boundary conditions replaced
by vL(0) = v.(1) = 0. It is clear that v.(z) is a super-solution of (3.1). In view of
the proof of Theorem 1.3, we recall that

lvellh 3 ase— +0. (3.3)

11



We construct a sub-solution u,_(x) by shifting v.(z) downward to satisfy the Dirich-
let boundary condition and multiplying the shifted function by an undetermined
factor as follows:

u (7)== ke (ve(x) — v:(1)),

where k. will be determined later such that k. 1 as ¢ — 40, and u.(x) becomes
a sub-solution. Then it follows that

Fo(x) = veu!(x) + u. (z)(Me(z) — u.(z))
=k [Veu! + (ve(2) — v(1)) { e () — ke(ve(2) —v=(1)) }] -
Substituting /ev”(z) = —v.(z)(m.(x) — v.(z)) into the right-hand side, we have
Fe(x) = ke [02(1) { ke (2ve(2) — v:(1)) = fe(2) } + (1 = keJoe(2)?] . (3.4)

Since m.(z) = 1/e and v.(x) > v.(¢) for any x € [0,¢), then (3.4) implies

£

Foo) > b o) { e(20n(e) = 00) = T+ = Rte? | (39)

for any « € [0,¢). By (i) of Theorem 2.1, we see that
1
v:(e) = (g + 0(1)) 7 and v.(1) = (C+o(1))ve ase — +0,

where C' is the positive constant in the right-hand side of (ii) of Theorem 2.1.
Then we know from (3.5) that

F(z) > k{—c%m + (Z —|—0(1)) ! j"} as £ = 10

for any = € [0,¢). Then, if we determine k. as

1— k. =&l namely, k.=1-— gl/4
for sufficiently small € > 0, then k. /1 as ¢ — +0, and
F.(r) >0 for any z € [0,¢). (3.6)
Since m.(z) = 0 and v.(z) > v.(1) for any x € [g,1), then (3.4) implies
F.(z) > k(1 = k)v(1)> >0 for any z € [¢,1). (3.7)

It follows from (3.6) and (3.7) that u_(z) = (1 — e"/*)(v.(z) — v.(1)) is a sub-
solution of (3.1) if ¢ > 0 is sufficiently small. Therefore, Lemma 2.3 ensures a
solution u. of (3.1) such that u_(z) < u.(x) < v.(x) for any z € [0,1] if ¢ > 0 is
sufficiently small. With (3.3) and the definition of u_, we obtain (3.2). The proof
of Proposition 3.1 is complete. O

12



3.2 The multi-dimensional case

For the function v(r) by (2.13), we define w(r) by shifting v(r) downward to
satisfy the Dirichlet boundary condition at r = 1:

w(r) =uv(r) — % for r € [0, 1]. (3.8)

Proposition 3.2 ([4]). There ezist positive constants ¢; and ¢y depending only
on n such that, if € > 0 is sufficiently small, then u(x) = w(r) with r = |x| is a
sub-solution to

(&1

Au+u(me(z) —u) =0, u>0 in By,

gn-2 ' (3.9)
u=20 on 0BY7,

where m(x) is the function defined by (2.9).

Proof. We set m.(r) =€ "lj.). For any r € [0,¢), we know from (2.14) that

n—1

Gu(r) =tz () 4 ) ) ) ) — )
:;ig (y"(r) + 2= 1@’('/’)) +u(r) (gin - y(?”)) + C—; (29(7”) - C—2>

C o Cof 1 e
>672n{—2n(n—1)cl—02+1}e_(s) ——2<—+—2).

We note e~ ()" > e~! for any r € [0,¢). Hence, if 0 < ¢; < 1 — 2n(n — 1)¢; and
e > 0 is sufficiently small, then

Co

Ge(r) >

€€2n

{—Qn(n—l)cl—(14—%)02—1—1—5”} for r €[0,¢). (3.10)

On the other hand, for any r € [e, 1], we know form (2.15) that




Consequently, (3.10) and (3.11) enable us to deduce that, for any small § > 0, if
¢ is sufficiently small and

0<cy<min{l—0—2n(n—1)cy,2nec },

then G.(r) > 0 for any r € [0,1]. Hence, in such a situation, u(z) = w(r)
with 7 = |z| becomes a sub-solution of (3.9). The proof of Proposition 3.2 is
accomplished. O

Corollary 3.3 ([4]). If n > 2, then S(B},0) = oc.

Proof. Obviously, u.(z) = 1/¢" is a super-solution of (3.9), and moreover, it
satisfies u.(x) < u.(x) for any x € B}, where u. is the sub-solution obtained in
Proposition 3.2. Thanks to Lemma 2.3, there exists a solution u. to (3.9) such
that u.(z) < u.(z) < u.(x) for any = € B}. Since u. = u, — ¢»/e, then (2.18)
gives ||uc||1/||me||s = oo. Therefore we obtain S(B},0) = oco. O

4 (General domains and boundary conditions

In this section, we prove (ii) of Theorem 1.4. In the study of S(£2,0) with general
domains and 6 € [0, 1], the following well-known parabolic version of the sub-super
solution method will play an important role:

Definition 4.1. If u € C’H%HTW(Q x (0,00)) NC(Q x [0,00)) (=: X) satisfies

{(M < dAu+u(m(z) — u) in €2 x (0, 00), (4.1)

Bou = 00,u+ (1 —0)u <0 on 0f) x (0, 00),

then u is called a sub-solution of (1.1). If w € X satisfies (4.1) with reverse
inequalities, then w is called a super-solution of (1.1).

Lemma 4.1 (the sub-super solution method). Suppose that u € X and uw € X
are a sub-solution and a super-solution of (1.1), respectively. Then, if u(z,0) <
(#)u(x,0) for all x € Q, then u(x,t) < u(x,t) for all (z,t) € Q x (0,00).

Proof of (i) of Theorem 1.4. We may assume 0 € 2 without loss of generality.
For any small € > 0, we consider the time-depending solution to a diffusive logistic
equation in a general bounded domain (2:

Oru = 5’22 Au+ u(me(z) — u) in 2 x (0,00),
Bou =0 on Q x (0,00), (4.2)
u(+,0) = uyg in Q,
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where m_(z) = e "1p1. We take any p > 0 such that B} := {z € R" : [z| < p}
satisfies EZ ={zeR": |z|] < p} C O Next we set a nonnegative initial data

uy € C(Q) such that suppuy = EZ. Then, Lemma 1.1 implies that the solution
ue(w,t) = uc(x, t;Q, 0) satisfies

tlim uc(w,t) = ul(xr) uniformly for z € Q, (4.3)
—00

where uf(z) = u’(x; Q,0) is the maximal nonnegative stationary solution of (4.2).
On the other hand, we consider solutions to the same parabolic equation with
the homogeneous Dirichlet boundary condition on 9B} x (0, c0):

Ow = 5 A+ vme(a) —v) i By x (0,50),
v =0 on JB} x (0, 00), (4.4)
v(+,0) = u in By,

where the initial data wug is taken same as that in (4.2). Similarly, Lemma 1.1
ensures the solution v.(z,t) = v.(z,t; B}, 0) satisfies

tlim Ve(z,t) = vZ(x) uniformly for x € FZ, (4.5)
—00

where v (x) = vZ(x; By, 0) is the maximal stationary solution of (4.4). In spite of
p # 1, one can verify

[l == / v (z; By,0)dr — 00 ase — +0 (4.6)
By
in the same manner as in the argument in the previous subsection.

Here we note that the solution wu.(x,t; 2, 0) of (4.2) satisfies u.(x,t) > 0 for
any (x,t) € 2 x (0,00) by the strong maximum principle. Hence u.(x,t) > 0 for
any (z,t) € OB} x (0,00), and thereby, u.(z,t) (restricted in EZ x (0,00)) is a
super-solution of (4.4). Then Lemma 4.1 implies that

ve(x,t) < uc(x,t) for any (z,t) € Ez x (0, 00).
Setting t — oo in the above inequality, we know from (4.3) and (4.5) that
vi(z) <wul(x) foranyz € Ez.

Together with (4.6), we set € — +0 in the above inequality to get
|uell1.0 = / ul(z;Q,0)de — oo as e — +0.
Q
This fact obviously completes the proof for (ii) of Theorem 1.4. O
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