Discrete cubical homotopy groups and real $K(\pi,1)$ spaces

Hélène Barcelo Simons Laufer Mathematical Sciences Institute, Berkeley (formerly Mathematical Sciences Research Institute, MSRI)

Women in Mathematics – RIMS, Kyoto University Sept. 7-9, 2022

In Brief

- Discrete cubical homotopy theory is a homotopy theory in the category of simple graphs
- New invariants associated to Γ (finite simple graph) are groups $A_n(\Gamma, \nu)$ which are discrete analogues of $\Pi_n(X, x)$.
- ► Key concept: $\Gamma \rightarrow X_{\Gamma}$ top. space constructed as a cubical complex conjectured (2006) to be:

$$A_n(\Gamma, \nu) \stackrel{?}{\cong} \Pi_n(X_{\Gamma}, x)$$

- ➤ 2006: Proved for all *n* by Babson, B., de Longueville, Laubenbacher conditional on the existence a cubical approximation theorem
- 2022: Proved by Carranza and Kapulkin using categorification, circumventing need of an approximation theorem

Origins and Developments

- ▶ Built on Atkin works (1972-1976): on modeling of social and technological networks using simplicial complexes
- ▶ Formalized: Kramer, Laubenbacher (1998, n=1); B., K., L., Weaver (2001, all n): $A_n^q(\Delta, \sigma_0)$, a bi-graded family of groups
- ▶ Cubicalized: Babson, B., de Longueville, Laubenbacher (2006): $A_n^G(\Gamma)$
- Generalized to metric spaces: B., Capraro, White (2014); Delabie, Khukhro (2020)
- ► Homologized: B. Capraro, White (2014)
- ► Further Developed: Babson, B., Greene, Jarrah, Lutz, McConville, Welker (2015-)
- Categorified: Carranza, Kapulkin (2022, preprint)

Discrete (Cubical) Homotopy Theory for Graphs

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White)

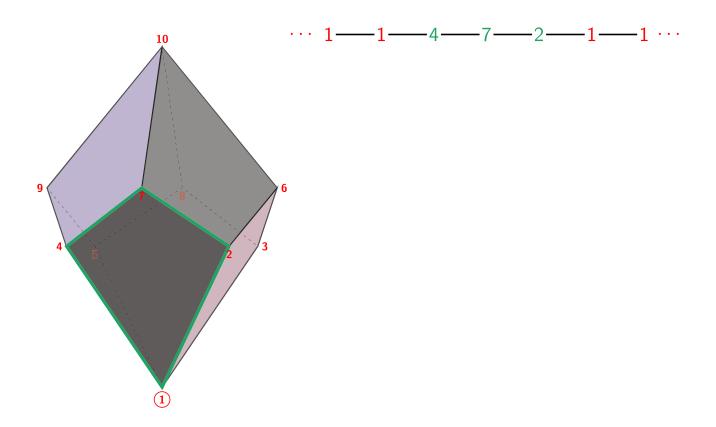
Definitions

- 1. Γ graph (Δ simplicial complex; X metric space) v_0 distinguished vertex (σ_0 ; x_0) \mathbb{Z}^n infinite lattice (usual metric)
- 2. $\mathcal{A}_n(\Gamma, v_0)$ set of graph homs $f: \mathbb{Z}^n \to V(\Gamma)$, with finite support: if $d(\vec{a}, \vec{b}) = 1$ in \mathbb{Z}^n then $d(f(\vec{a}), f(\vec{b})) = 0$ or 1, with $f(\vec{i}) = v_0$ almost everywhere
- 3. f,g are discrete homotopic if there exist $h \in \mathcal{A}_{n+1}(\Gamma, v_0)$ and $k, \ell \in \mathbb{N}$ such that for all $\vec{i} \in \mathbb{Z}^n$,

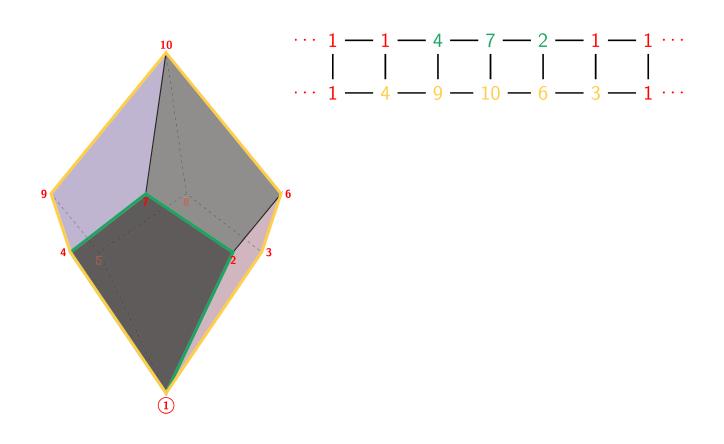
$$h(\vec{i}, k) = f(\vec{i})$$
$$h(\vec{i}, \ell) = g(\vec{i})$$

4. $A_n(\Gamma, \nu_0)$ - set of equivalence classes of maps in $A_n(\Gamma, \nu_0)$ Note: translation preserves discrete homotopy

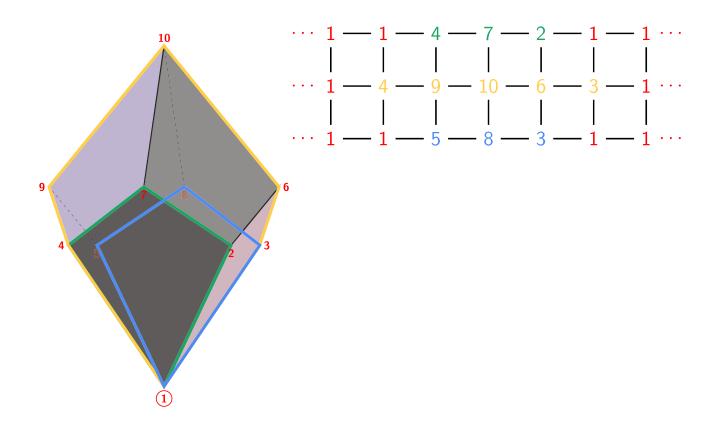
A Discrete Homotopy of Graph Homomorphisms – Step 1



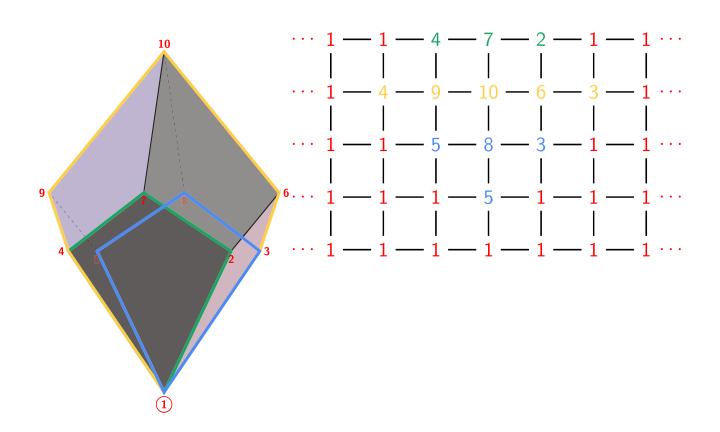
A Discrete Homotopy of Graph Homomorphisms – Step 2



A Discrete Homotopy of Graph Homomorphims – Step 3



A Discrete Homotopy of Graph Homomorphims – Step 4



Discrete Homotopy Theory for Graphs

Group Structure

▶ Multiplication: for $f, g \in A_n(\Gamma, v_0)$ of radius M, N,

$$f g(\vec{i}) = \begin{cases} f(\vec{i}) & i_1 \leq M \\ g(i_1 - (M + N), i_2, \dots i_n) & i_1 > M \end{cases}$$

- ightharpoonup n = 1 concatenation of loops based at v_0
- n = 2

Discrete Homotopy Theory for Graphs

Group Structure

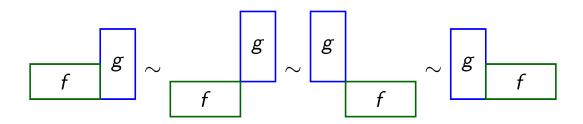
- ▶ Identity: $e(\vec{i}) = v_0 \quad \forall \vec{i} \in \mathbb{Z}^n$
- ▶ Inverses: $f^{-1}(\vec{i}) = f(-i_1, ..., i_n) \quad \forall \vec{i} \in \mathbb{Z}^n$

Example (n = 2)

Discrete Homotopy Theory for Graphs

Theorem

 $A_n(\Gamma, v_0)$ is an abelian group $\forall n \geq 2$



Discrete Homotopy Theory for Graphs

Examples

$$A_{1}\left(\begin{array}{c} v_{0} & v_{1} \\ \hline \end{array}, v_{0}\right) = 1$$

$$A_{1}\left(\begin{array}{c} v_{2} \\ \hline \end{array}, v_{0}\right) = 1$$

$$A_{1}\left(\begin{array}{c} v_{3} & v_{2} \\ \hline \end{array}, v_{0}\right) = 1$$

$$A_{1}\left(\begin{array}{c} v_{3} & v_{2} \\ \hline \end{array}, v_{0}\right) = 1$$

$$A_{1}\left(\begin{array}{c} v_{3} & v_{2} \\ \hline \end{array}, v_{0}\right) \cong \mathbb{Z}$$

$$A_{1}\left(\begin{array}{c} v_{3} \\ \hline \end{array}, v_{0}\right) \cong \mathbb{Z}$$

$$A_1(\Gamma, \nu_0) \cong \pi_1(\Gamma, \nu_0)/N(3, 4 \text{ cycles}) \cong \pi_1(X_{\Gamma}, \nu_0)$$

 $(X_{\Gamma} \text{ a 2-dim cell complex: attach 2-cells to } \triangle \text{ and } \square \text{ of } \Gamma)$

Discrete Homotopy Theory: from simplices to graphs

$$ightharpoonup A_n^q(\Delta, \sigma_0) \cong A_n(\Gamma_{\Delta}^q, \sigma_0)$$

q connected chains of simplices, $\sigma_0 - \sigma_1 - \sigma_2 - \cdots - \sigma_m$ where $\dim(\sigma_i \cap \sigma_{i+1}) \geq q$

 Γ^q_Δ vertices = all maximal simplices of Δ of dim $\geq q$

$$(\sigma, \sigma') \in E(\Gamma_{\Delta}^q) \iff \dim(\sigma \cap \sigma') \ge q$$

Is it a Good Analogy to Classical Homotopy?

- 1. If Γ is connected, $A_n(\Gamma, v_0)$ independent of v_0
- 2. Siefert-van Kampen: if

$$\Gamma = \Gamma_1 \cup \Gamma_2$$
; Γ_i connected; $v_0 \in \Gamma_1 \cap \Gamma_2$; $\Gamma_1 \cap \Gamma_2$ connected \triangle , \square lie in one of the Γ_i

then

$$A_1(\Gamma, v_0) \cong A_1(\Gamma_1, v_0) * A_1(\Gamma_2, v_0) / \mathcal{N}([\ell] * [\ell]^{-1})$$

for ℓ a loop in $\Gamma_1 \cap \Gamma_2$

- 3. Relative discrete homotopy theory and long exact sequences
- 4. Associated discrete homology theory.

Discrete Homology Theory for Graphs

(B., Capraro, White)

- 1. Discrete *n*-dim cube $Q_n = \{(a_1, \ldots, a_n) \mid a_i = 0 \text{ or } 1\}$
- 2. Singular *n*-cube $\sigma: Q_n \to \Gamma$ graph homomorphism
- 3. $\mathcal{L}_n(\Gamma) :=$ free abelian group generated by all singular *n*-cubes σ
 - lacktriangleright in items in front and back faces of σ are singular (n-1)-cubes
 - ▶ Degenerate singular *n*-cube: if $\exists i$ s.t. *i*-front=*i*-back
 - $D_n(\Gamma)$:= free abelian group generated by all degenerate singular *n*-cubes
- 4. $C_n(\Gamma) := \mathcal{L}_n(\Gamma)/D_n(\Gamma)$; *n*-chains
- 5. Boundary operators ∂_n for each $n \geq 1$

$$\partial_n(\sigma) = \sum_{i=1}^n (-1)^i ig(A_i^n(\sigma) - B_i^n(\sigma) ig)$$

6. The discrete homology groups of Γ :

$$DH_n(\Gamma) = \operatorname{Ker}(\partial_n)/\operatorname{Im}(\partial_{n+1})$$

Discrete Homology Theory for Graphs

Examples

$$DH_n(-) = 0 \quad \forall n \ge 1$$
 $DH_n(\triangle) = 0 \quad \forall n \ge 1$ $DH_n(\square) = 0 \quad \forall n \ge 1$ $DH_1(\square) = \mathbb{Z} \quad \forall n \ge 2$, is trivial $DH_1(\nearrow) = 0$ $DH_2(\nearrow) = \mathbb{Z}$ $DH_3(\nearrow) = 0$

Definition

If $\Gamma' \subseteq \Gamma$, then $\partial_n(C_n(\Gamma')) \subseteq C_{n-1}(\Gamma')$ and there are maps

$$\partial_n : C_n(\Gamma, \Gamma') = C_n(\Gamma)/C_n(\Gamma') \to C_{n-1}(\Gamma, \Gamma')$$

The *relative homology* groups of (Γ, Γ') :

$$DH_n(\Gamma, \Gamma') = \text{Ker}(\partial_n)/\text{Im}(\partial_{n+1})$$

How to Judge if Homology Theory is Good?

- 1. Hurewicz Theorem: $DH_1(\Gamma) \cong A_1^{ab}(\Gamma)$
- 2. Discrete version of Mayer-Vietoris sequence
- 3. Eilenberg-Steenrod axioms:
 - ► Homotopy: If

$$f,g:(\Gamma,\Gamma_1)\to(\Gamma',\Gamma_1')$$

are discrete homotopic maps then their induced maps on homology are the same

Excision:

$$DH_*(\Gamma_2, \Gamma_1 \cap \Gamma_2) \cong DH_*(\Gamma, \Gamma_1)$$

if $\Gamma = \Gamma_1 \cup \Gamma_2$ is a discrete cover

Dimension:

$$DH_n(\bullet,\emptyset) = \{0\} \quad \forall n \geq 1$$

Long exact sequence:

$$\cdots \rightarrow DH_n(\Gamma') \hookrightarrow DH_n(\Gamma) \hookrightarrow DH_n(\Gamma, \Gamma') \xrightarrow{\partial_*} DH_{n-1}(\Gamma') \cdots$$

How to Judge if Homology Theory is Good?

- C. Which groups can we obtain?
 - For a fine enough rectangulation R of a compact, metrizable, smooth, path-connected manifold M, let Γ_R be the natural graph associated to R. Then

$$\pi_1(M) \cong A_1(\Gamma_R)$$

$$\Downarrow$$
 (+ suspension)

► For each finitely generated abelian group G and $\bar{n} \in \mathbb{N}$, there is a finite connected simple graph Γ such that

$$DH_n(\Gamma) = \begin{cases} G & \text{if } n = \overline{n} \\ 0 & \text{if } n \leq \overline{n} \end{cases}$$

ightharpoonup There is a graph S^n such that

$$DH_k(S^n) = \begin{cases} \mathbb{Z} & \text{if } k = n \\ 0 & \text{if } k \neq n \end{cases}$$

Applications (n = 1)

- Maurer (1971): Characterize matroid basis graphs: (connected), interval and positioning conditions and A₁(Γ) ≅ 1 ⇔ Γ is a matroid basis graph No (M. 1973), unless Γ contains at least one vertex with finitely many neighbours (2015 Chapolin et al.)
- Lovász (1977): Homology theory for spanning trees of a graph
 arborescence complex
- ▶ Malle (1983): Net homotopy of graphs; String groups are $A_1(\Gamma)$ and $A_1(\Gamma) \cong 1 \iff$ each cycle has a pseudoplanar net.
- Laubenbacher et al. (2004): Time Series Analysis of data from agent-base computer simulations. Trivial A_1 correlates with high fitness of agents.

Applications (n = 1)

▶ B. Seavers, White (2011):

$$A_1^{n-k+1}(\mathbb{R} ext{-Coxeter comp W})\cong \pi_1ig(M(k ext{-parabolic arr. W})ig)$$

generalizing Brieskorn's results for C-hyperbolic arrangements.

A. Khukhro, T. Delabie (2020)

$$A_1^r(Cay(G/N, \overline{S}), e) \cong N.$$

Uses r-Lipschitz maps, Cayley graph of a finitely generated group G = < S >, N a normal subgroup of G. The discrete fundamental group of a Cayley graph detects the normal subgroup used to build it.

Unexpected Application of Discrete Homotopy Theory

Complex $K(\pi, 1)$ Spaces

$$\mathcal{A}_{n,2}^{\mathbb{C}}$$
 braid arrangement: $\{\vec{z} \in \mathbb{C}^n \mid z_i = z_i\}, i < j$

$$M(\mathcal{A}_{n,2}^{\mathbb{C}})$$
 is $K(\pi,1)$ (Fadell-Neuwirth 1962)

$$\pi_1(M(\mathcal{A}_{n,2}^{\mathbb{C}}))\cong$$
 pure braid gp. (Fox-Fadell 1963)

$$M(\mathcal{A}_{n,2}^{\mathbb{C}}(W))$$
 is $K(\pi,1)$ (Deligne 1972)

Real $K(\pi,1)$ Spaces

$$\mathcal{A}_{n,3}^{\mathbb{R}}$$
 3-equal subspace arr: $\{\vec{x} \in \mathbb{R}^n \mid x_i = x_j = x_k\}, \ i < j < k$

$$M(\mathcal{A}_{n,3}^{\mathbb{R}})$$
 is $K(\pi,1)$ (Khovanov 1996)

$$\pi_1(M(\mathcal{A}_{n,3}^{\mathbb{R}}))\cong$$
 pure triplet gp. (Khovanov 1996)

$$M(\mathcal{A}_{n,3}^{\mathbb{R}}(W))$$
 are $K(\pi,1)$ Davis-Januszkiewicz-Scott 2008)

Unexpected Application of Discrete Homotopy Theory

Complex $K(\pi, 1)$ Spaces

$$\mathcal{A}_{n,2}^{\mathbb{C}}$$
 braid arrangement: $\{ \vec{z} \in \mathbb{C}^n \mid z_i = z_j \}, \ i < j$

$$\pi_1(M(\mathcal{A}_{n,2}^{\mathbb{C}}(W)))$$

 \cong pure Artin group
 \cong Ker (ϕ)
(Brieskorn 1971)

Real $K(\pi,1)$ Spaces

$$\mathcal{A}_{n,3}^{\mathbb{R}}$$
 3-equal subspace arr: $\{\vec{x} \in \mathbb{R}^n \mid x_i = x_j = x_k\}, \ i < j < k$

$$\pi_1(M(\mathcal{A}_{n,3}^{\mathbb{R}}(W)) \cong \operatorname{Ker}(\phi')$$

where $\mathcal{A}_{n,3}^{\mathbb{R}}(W)$ is a 3-parabolic
subsp. arr. of type W
(B-Severs-White 2009)

Theorem

$$A_1^{n-k+1}(\textit{Coxeter complex }W)\cong \pi_1(M(\mathcal{A}_{n,k}^\mathbb{R}(W)))\quad 3\leq k\leq n$$

Note: $A_1^{n-k+1} \cong \pi_1 \cong 1$ for k > 3

Essence of the Proof

- 1. Presentation of a Coxeter group (W, S) subject to
 - (i) $s^2 = 1$ for $s \in S$
 - (ii) $(st)^2 = 1$ for s, t such that m(s, t) = 2
 - (iii) $(st)^3 = 1$ for s, t such that m(s, t) = 3
- 2. Artin group: "W (i)" i.e.

$$(st)^2 = 1,$$
 $(st)^3 = 1,$...

 $(W = S_n \text{ represent the braid group })$

3. Pure Artin gp: Ker(ϕ), where ϕ : "W - (i)" $\to W$ by $\phi(s_i) = s_i$

$$\pi_1(M(\mathcal{A}_{n,2}^\mathbb{C}))\cong \mathsf{Ker}(\phi)$$

Essence of the Proof

- 4. 3-parabolic arrangement of type W, subspaces invariant under the action of irreducible parabolic subgroups of rank 2 (closed under conjugation).
- 5. Real-Artin group " $W' = (W \{(iii),(iv),...\},S)$," i.e.: keep only:
 - (i) $s^2 = 1$ for $s \in S$
 - (ii) $(st)^2 = 1$ for s, t such that m(s, t) = 2 ($W = S_n$ represent the triplet group (Khovanov))
- 6. $\phi' : W' \to W$ with $\phi'(s) = s, \forall s \in S$

$$\pi_1(M(\mathcal{A}_{n,3}^\mathbb{R}(W)))\cong \operatorname{Ker}(\phi')\cong A_1^{n-3+1}(\operatorname{Coxeter\ complex\ } W)$$

Essence of Proof

- ▶ The W-permutahedron is the Minkowski sum of unit line segments \bot to hyperplanes of W
- Its 2-skeleton has:

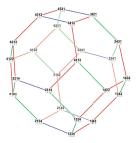
```
vertices w \in W edges (w, ws), where s is a simple reflection 2-faces are bounded by cycles (w, ws, wst, \dots, w(st)^{m(s,t)})
```

4-cycles
$$(st)^2 = 1$$
 (s and t commute)
6-cycles $(st)^3 = 1$
8-cycles $(st)^4 = 1$

➤ The complement of the 3-parabolic subspace arrangement of type *W* is homotopy equivalent to the space obtained from the (dual) *W*-permutahedron by removing the faces bounded by 6-cycles, 8-cycles,...

Unexpected Application of Discrete Homotopy Theory

 \triangleright (Dual) Coxeter complex for S_n is the permutahedron



 \triangleright (Dual) Coxeter complex for B_n

Conclusion

We have replaced a group (π_1) defined in terms of the topology of a space with a group (A_1) defined in terms of the combinatorial structure of the space.

"The further a mathematical theory is developed, the more harmoniously and uniformly does its construction proceed, and unsuspected relations are disclosed between hitherto separated branches of the science." — David Hilbert

THANK YOU!