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In Brief

» Discrete cubical homotopy theory is a homotopy theory in the
category of simple graphs

» Key invariants associated to I (finite simple graph) are groups
An(T, v) which are discrete analogues of IM,(X, x).

» Key concept: [ — Xr top. space constructed as a cubical
complex conjectured (2006) to be:

?
An(lv) = N,(Xr, x)

» 2006: Proved for all n by Babson, B., de Longueville,
Laubenbacher conditional on the existence a cubical
approximation theorem

» 2022: Proved by Carranza and Kapulkin using categorification,

circumventing need of an approximation theorem



Origins and Developments

» Built on Atkin works (1972-1976): on modeling of social and
technological networks using simplicial complexes

> . Kramer, Laubenbacher (1998, n = 1); B., K,
L.,Weaver (2001, all n): A3(A,09), a bi-graded family of
groups

» Cubicalized: Babson, B., de Longueville, Laubenbacher
(2006): AS(T)

> to metric spaces: B., Capraro, White (2014);
Delabie, Khukhro (2020)

» Homologized: B. Capraro, White (2014)

> - Babson, B., Greene, Jarrah, Lutz,
McConville, Welker (2015-)

» Categorified: Carranza, Kapulkin (2022, preprint)

Discrete (Cubical) Homotopy Theory for Graphs

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White)

Definitions

1. T - graph (A simplicial complex; X metric space)
vo - distinguished vertex (oo; x0)
Z" - infinite lattice (usual metric)

2. An(T', w) - set of graph homs f: Z" — V/(I'), with finite support:

if d(3,b) =1 in Z" then d(f(3), f(b)) = 0 or 1, with
f(I') = vp almost everywhere

3. f, g are discrete homotopic if there exist h € A,1(I, w) and k, £ € N

such that for all i € Z", B B
h(i', k) = f(i)

i

h(i,0) = g(i)

4. An(l', vo) - set of equivalence classes of maps in A,(I", v)
Note: translation preserves discrete homotopy



A Discrete Homotopy of Graph Homomorphisms — Step 1

A Discrete Homotopy of Graph Homomorphisms — Step 2




A Discrete Homotopy of Graph Homomorphims — Step 3

A Discrete Homotopy of Graph Homomorphims — Step 4




Discrete Homotopy Theory for Graphs

Group Structure
» Multiplication: for f, g € A,(I, vp) of radius M, N,

g(il—(M—l—N),iQ,...in) n>M

» n =1 concatenation of loops based at vy
> n=2
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Discrete Homotopy Theory for Graphs

Group Structure
> Identity: e(i)=vy VieZ"
> Inverses: f1(i) = f(—it,...,in) VieZ"

Example (n = 2)
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Discrete Homotopy Theory for Graphs

Theorem

An(T, vo) is an abelian group ¥ n > 2

Discrete Homotopy Theory for Graphs

Examples

A1<u,V0>:1

V2 Vg —— V] —— Vo —

al AL )= NN
Vo % Vo — Vg — Vo — W
Vo V3 Vo

V3 V2
Ay (

vod—bvi o
V2 o =Y — VY — Vo —
Al( ‘@Vl ,Vo) gZ
Vg Vo
Al( w){vo) ~1

Al(l’, Vo) = 7T1(|_, Vo)/N(3, 4 cycles) = 7T1(Xr, Vo)

(Xr a 2-dim cell complex: attach 2-cells to A and O of ')



Discrete Homotopy Theory: from simplices to graphs

> Ag(Aa 00) g An(rZ7 UO)

g connected chains of simplices, 09 —01 — 0y — -+ — o
where dim(o; Noj11) > g

A vertices = all maximal simplices of A of dim> g

(0,0') € E(T}) < dim(cNo’)>gq

Is it a Good Analogy to Classical Homotopy?

1. If T is connected, A,(T", vo)independent of vy

2. Siefert-van Kampen: if
[ =T71UTly; I'; connected; vg € 1 N5 1 N[5 connected
A, O lie in one of the I';

then
AL(T,v0) = A1(T1, vo) * Ar(T2, vo)/N([€] * []71)

for £ aloopinl{NIls
3. Relative discrete homotopy theory and long exact sequences

4. Associated discrete homology theory.



Discrete Homology Theory for Graphs
(B., Capraro, White)
1. Discrete n-dim cube Q, = {(a1,...,an) | @i =0 or 1}
2. Singular n-cube o: Q, — I graph homomorphism
3. Ln(l) := free abelian group generated by all singular n-cubes o

» B front and back faces of o are singular (n — 1)-cubes

» Degenerate singular n-cube: if 3/ s.t. i-front=i/-back

» D,(I') := free abelian group generated by all degenerate
singular n-cubes

4. Cp(T) := L(T")/Dn(T); n-chains
5. Boundary operators 0, for each n > 1

n

On(o) = (—1)'(A(0) — B(0))

i=1
6. The discrete homology groups of I:

DH,(T) = Ker(8,)/Im(8p11)

Discrete Homology Theory for Graphs

Examples
DHN(-)=0 ¥Yn>1 DHy(A)=0 V¥n>1
DH,(O)=0 ¥Yn>1 DH( )=2Z V¥n>2, is trivial
DH1 (%) =0 DHy(™) =7
DH3(™) =0

Definition
If I" C T, then 9,(Ch(I")) C Cy—1(I"") and there are maps

On: Co(T,T) = Co(TN)/Ca(T") — Cog(T,T)
The relative homology groups of (I',I"):

DH,(T,T") = Ker(9,)/Im(0p+1)



How to Judge if Homology Theory is Good?
1. Hurewicz Theorem: DHy(I') = A2°(T)

2. Discrete version of Mayer-Vietoris sequence

3. Eilenberg-Steenrod axioms:
» Homotopy: If
fog: (M) — (T, 11)

are discrete homotopic maps then their induced maps on
homology are the same
» Excision:
DH,. (T2, T1NT,) =2 DH.(I',T4)

if [ =T;UTl> is a discrete cover
» Dimension:
DH,(e,0) = {0} Vn>1

» Long exact sequence:

<o+ = DHy(I") < DHy(T) < DHy(T,T') 25 DH,_1(I") - --

How to Judge if Homology Theory is Good?

C. Which groups can we obtain?

» For a fine enough rectangulation R of a compact, metrizable,
smooth, path-connected manifold M, let I be the natural
graph associated to R. Then

7T1(M) = Al(l’R)

I (+ suspension)

» For each finitely generated abelian group G and n € N, there is

a finite connected simple graph I such that
G ifn=n

DH,(T) = nn=n

0 iftn<n

» There is a graph S" such that

Z, if k=n

DH(S7) = {0 if k £ n



Applications (n = 1)

» Maurer (1971): Characterize matroid basis graphs:

(connected), interval and positioning conditions and
?

A1(T) =1 <= T is a matroid basis graph
No (M. 1973), unless ' contains at least one vertex with
finitely many neighbours (2015 Chapolin et al.)

» Lovasz (1977): Homology theory for spanning trees of a graph
— arborescence complex

» Malle (1983): Net homotopy of graphs; String groups are
A1(T) and A;(I') 2 1 <= each cycle has a pseudoplanar net.

» Laubenbacher et al. (2004): Time Series Analysis of data
from agent-base computer simulations. Trivial A1 correlates
with high fitness of agents.

Applications (n = 1)

» B. Seavers, White (2011):

AI~K+1(R-Coxeter comp W) = 71 (M(k-parabolic arr. W))

generalizing Brieskorn’s results for C-hyperbolic arrangements.

» A. Khukhro, T. Delabie (2020)

Al (Cay(G/N,S),e) = N.

Uses r-Lipschitz maps, Cayley graph of a finitely generated
group G =< S >, N a normal subgroup of G. The discrete
fundamental group of a Cayley graph detects the normal
subgroup used to build it.



Unexpected Application of Discrete Homotopy Theory

Complex K(m,1) Spaces Real K(m,1) Spaces
ACQ braid arrangement: AR3 3-equal subspace arr:
{ZEC”‘Z,—ZJ},I<_j {XER”|X,—XJ—X;<},I<_j<k
M(AS,) is K(m,1) M(AE3) is K(m,1)
(Fadell-Neuwirth 1962) (Khovanov 1996)
m1(M(AY 2)) = pure braid gp. w1 (M(A}3)) = pure triplet gp.
(Fox—FadeII 1963) (Khovanov 1996)
M(AG (W) is K(m,1) M(AR 3(W)) are K(m,1)
(Deligne 1972) Davis-Januszkiewicz-Scott

2008)

Unexpected Application of Discrete Homotopy Theory

Complex K(m,1) Spaces Real K(m,1) Spaces
A<,§72 braid arrangement: AI,§73 3-equal subspace arr:
{Z_'EC”‘Z,-:zj},i<j {)?E]R”|x,-:szxk},i<j<k
7T1(M(«4 2(W)) m1(M(A,3(W)) = Ker(¢)
= pure Artin group where AR3(W) is a 3-parabolic
= Ker(¢) subsp. arr. of type W
(Brieskorn 1971) (B-Severs-White 2009)
Theorem

A=K tL( Coxeter complex W) = 1 (M(AR «(W))) 3<k<n

Note: A7~ k+1_7r ~1for k>3



Essence of the Proof

1. Presentation of a Coxeter group (W, S) subject to
(i) s2=1forseS
(i) (st)?> =1 for s, t such that m(s,t) = 2
(iii) (st)®> =1 for s, t such that m(s,t) =3

2. Artin group: “W — (i)" i.e.
(st)®> =1, (st)® =1,

(W =S, represent the braid group )
3. Pure Artin gp: Ker(¢), where ¢: “W —(i)"— W by ¢(s;) = s;

1 (M(Ay ) = Ker(¢)

Essence of the Proof

4. 3-parabolic arrangement of type W, subspaces invariant under
the action of irreducible parabolic subgroups of rank 2 (closed
under conjugation).

5. Real-Artin group "W’ = (W — {(iii),(iv),...},S),” i.e.: keep
only:

(i) s>=1forseS
(i) (st)®> =1 for s, t such that m(s,t) =2 (W = S, represent the
triplet group (Khovanov))

6. ¢ W — W with ¢/(s) =s,Vse€ S

7T1(M(AI,§’3(W))) ~ Ker(¢') =2 A73"1(Coxeter complex W)



Essence of Proof

» The W-permutahedron is the Minkowski sum of unit line
segments | to hyperplanes of W
» |ts 2-skeleton has:

vertices w € W
edges (w, ws), where s is a simple reflection

2-faces are bounded by cycles (w, ws, wst, .. ., w(st)’"(s’t))
4-cycles (st)> =1 (s and t commute)
6-cycles (st)* =1
8-cycles (st)* =1

» The complement of the 3-parabolic subspace arrangement of
type W is homotopy equivalent to the space obtained from
the (dual) W-permutahedron by removing the faces bounded
by 6-cycles, 8-cycles,. ..

Unexpected Application of Discrete Homotopy Theory

» (Dual) Coxeter complex for S, is the permutahedron
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» (Dual) Coxeter complex for B,




Conclusion

We have replaced a group (m1) defined in terms of the topology of

a space with a group (A1) defined in terms of the combinatorial
structure of the space.

“The further a mathematical theory is developed, the more
harmoniously and uniformly does its construction proceed, and
unsuspected relations are disclosed between hitherto separated
branches of the science.” — David Hilbert

THANK YOU!



