Quasi-isometric embeddings from mapping class groups of nonorientable surfaces

Takuya Katayama

Department of Mathematics, Faculty of Science, Gakushuin University Erika Kuno

Department of Mathematics, Graduate School of Science, Osaka University

1 Introduction

Let $S = S_{g,p}^b$ be the connected orientable surface of genus g with b boundary components and p punctures, and $N = N_{g,p}^b$ the connected nonorientable surface of genus g with b boundary components and p punctures. In the case where b = 0 or p = 0, we drop the suffixes that denotes 0, excepting g, from $S_{g,p}^b$ and $N_{g,p}^b$. If we are not interested in whether a given surface is orientable or not, we denote the surface by F. The mapping class group Mod(F) of F is the group of isotopy classes of homeomorphisms on F which are orientation-preserving if F is orientable and preserve ∂F pointwise. For orientable surfaces S, if we consider also orientation-reversing homeomorphisms, then we call it the extended mapping class group and write $\text{Mod}^{\pm}(S)$. Quasi-isometry classification of finitely generated groups is a key issue in geometric group theory.

Definition 1.1. Let (X, d_X) and (Y, d_Y) be metric spaces. A map $f: X \to Y$ is a quasi-isometric embedding if there exist $\lambda_1 \geq 1$ and $\lambda_2 \geq 0$ such that

$$\frac{1}{k_1}d_X(x_1, x_2) - k_2 \le d_Y(f(x_1), f(x_2)) \le k_1 d_X(x_1, x_2) + k_2.$$

Furthermore, a quasi-isometric ambedding $f: X \to Y$ is a quasi-isometry if there exists $\lambda \geq 0$ such that for any $y \in Y$, there exists $x \in X$ such that $d_Y(y, f(x)) \leq \lambda$.

Let $j \colon S^{2b}_{g-1,2p} \to N^b_{g,p}$ be the orientation double covering of a nonorientable surface $N^b_{g,p}$ and $J \colon S^{2b}_{g-1,2p} \to S^{2b}_{g-1,2p}$ the deck transformation.

Lemma 1.2. ([2, Theorem 1], [7, Lemma 3], [5, Theorem 1.1]) For all but (g, p, b) = (1,0,0), (2,0,0), the orientation double covering j induces an injective homomorphism $\iota \colon \operatorname{Mod}(N_{g,p}^b) \hookrightarrow \operatorname{Mod}(S_{g-1,2p}^{2b})$. Moreover, the image of $\operatorname{Mod}(N_{g,p}^b)$ given by ι consists of the isotopy classes of orientation-preserving homeomorphisms of $S_{g-1,2p}^{2b}$ which commute with J.

2 Main result

In this section, we state the main theorem (Theorem 2.1). and give the idea of the proof of Theorem 2.1.

Theorem 2.1. For all but (g,p) = (2,0), the injective homomorphism $\iota \colon \operatorname{Mod}(N_{g,p}^b) \hookrightarrow \operatorname{Mod}(S_{g-1,2p}^{2b})$ is a quasi-isometric embedding.

To show Theorem 2.1, we use the following results.

Proposition 2.2. ([4], [6]) For any finite type orientable surface S, the mapping class group Mod(S) and the extended mapping class group $Mod^{\pm}(S)$ are semihyperbolic.

Proposition 2.3. ([1]) Let G be a semihyperbolic group. Then any centralizer H of G is quasi-isometrically embedded in G.

We can deduce Theorem 2.1 by the fact that $\operatorname{Mod}(N_{g,p})$ is realized as an index 2 subgroup of the centralizer of [J] in the extended mapping class group $\operatorname{Mod}^{\pm}(S_{g-1,2p})$, and Propositions 2.2 and 2.3.

Acknowledgments

The second author wishes to express her great appreciation to the organizers for giving her a chance to talk at Women in Mathematics, and supporting her a lot. The first author was supported by JSPS KAKENHI, Grant Number 20J01431. The secound author was supported by JST, ACT-X, Grant Number JPMJAX200D and by JSPS KAKENHI, Grant Number 21K13791.

References

- [1] J. M. Alonso and M. R. Bridson, *Semihyperbolic groups*, Proc. London Math. Soc. (3) **70** (1995), no. 1, 56–114.
- [2] J. S. Birman and D. R. J. Chillingworth, On the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc. 71 (1972), 437–448.
- [3] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.
- [4] M. G. Durham, Y. N. Minsky, A. Sisto, Stable cubulations, bicombings, and barycenters, to appear in Geom. Topol. (arXiv: 2009.13647.)
- [5] D. L. Gonçalves, and J. Guaschi, M. Maldonado, Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces, Confluentes Math. 10 (2018), no. 1, 41–61.
- [6] T. Haettel, N. Hoda, and H. Petyt, *The coarse Helly property, hierarchical hyperbolicity, and semihyperbolicity*, to appear in Geom. Topol. (arXiv:2009.14053.)
- [7] B. Szepietowski, *Embedding the braid group in mapping class groups*, Publ. Mat. **54** (2010), no. 2, 359–368.