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In the Euclidean space, the eikonal equation has important applications in various fields such as
geometric optics, electromagnetic theory and image processing. It is well known that the notion
of viscosity solutions provides a nice framework for the well-posedness of the eikonal equation and
more general fully nonlinear equations [CIL, BC].

In seeking to further develop various fields such as optimal transport, mean field games, topo-
logical networks etc., the study of eikonal equation and more general Hamilton-Jacobi equations
has been extended to a metric space (X,d). In particular, different approaches of defining the
solutions to the eikonal equation are introduced by Ambrosio and Feng [AF], Giga, Hamamuki,
and Nakayasu [GHN], and Gangbo and Swiech [GS].

Inspired by the work of Newcomb and Su [NS], Liu, Shanmugalingam and the author [LSZ]
propose a definition called Monge solution to the eikonal equation in a complete and rectifiably
connected metric space X. We show the equivalence between the Monge solution with the solution
introduced in [GHN] and [GS] and obtain the uniqueness and existence to the associated Dirichlet
boundary problem. These results also extend to a more general class of Hamilton-Jacobi equation.

In this short note, we focus on a simple example to explain the definition of Monge solution
intuitively. Consider eikonal equation

|Vul|(z) =1 in Q, (E)

where 2 = (—1,1) C R and u satisfying the boundary condition u(—1) = u(1) = 0.

One optimal control interpretation of the equation is the following: consider a point starting
from a position = € [—1, 1] and this points moves at a speed no faster than 1. Let u(x) be the least
time it takes for the point to exit the interval [—1, 1]. One can verify that u(x) satisfies the eikonal
equation and the solution should be the distance of the point 2 to the boundary {1, —1}, that is,

u(z) = inf {t 1 E(t) € {£1} with £(0) ==z, €| <1 a.e.} =1-— ||
Let z := £(t). We can also write down the dynamic programming principle as
w(z) =inf{u(z) +t:o—t<z<z+t} foranyze(—1,1),0<t<1.
If u is touched by ¢ € C' at o from above (u — 1 attains a maximum at x), then

P(x) =u(r) < ‘ir‘1<ft¢(:13 +5)+t <p(x) + ‘i?<ft Yz(z)s + 1+ o(t)

= 0< — | (z)[t+t+0(t) = |(x) < 1.

Likewise, we can also get that |, (x)| > 1 if u is touched by ¢ € C'* at - from below. The definition
of viscosity solution to (E) is given as:

e An upper semicontinuous function u is called a viscosity subsolution to (E) if |¢,(z)| < 1
for all ¢» € C1(Q) such that u — ¢ attains a maximum at = € €;

e A lower semicontinuous function u is called a viscosity supersolution to (E) if |iz(z)| > 1
for all ¢ € C*(Q) such that u — v attains a minimum at x € Q.

A function is called a viscosity soution to (E) if u is both a subsolution and a supersolution. The
unique viscosity solution to (E) satisfying the boundary condition u(—1) = u(1) = 0is u(z) = 1—|x|
for z € [-1,1]. As shown by the top curve in the picture below.
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The Euclidean definition of viscosity solution relies on a pointwise test using C'' functions which
are not available in general metric spaces. We are thus motivated to find a characterization of this
solution requiring less structure of the underlying space.

One may attempt to use the local Lipschitz constant (or local slope) of a function u defined as

|Vu|(z) = limsup M,
y—z d(CE, y)
and requires the solution to satisfy |Vu|(x) = 1 pointwise. However, as one can see from the
example listed above, there are infinitely many functions satisfying this condition, as indicated by
the different curves in the above picture. In other word, this definition of solution does not provide
the uniqueness.
Then we consider the subslope of a locally Lipschitz function defined as

’viu’(a:) = hmsup M‘
y—z d(CE, y)
Here, [a]- := max{—a,0}. Clearly, if u attains local minimum at zo € 2, then |V~ u|(zp) = 0. In
the above example, u(z) = 1 — |z| is the only function satisfying that |V~ u|(x) = 1 pointwise in
the domain. Based on this observation, we call a function the Monge solution to (E) if

|V~ ul|(z) = limsup [uly) — u(@)]-
y—z d($7 y)
One can show this definition is equivalent to classical viscosity solution in the Euclidean space.
Since this definition involves only the distance of the underlying space, it can be generalized to
metric spaces immediately.

=1 for all z € Q.
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