Harmonic transplantation and its applications to Sobolev embeddings, functional inequalities and PDEs

Megumi Sano* School of Engineering, Hiroshima University

1 Introduction

Let $\Omega \subset \mathbf{R}^N$ be a domain and $0 \in \Omega$. If the exponent p > 1 and the dimension $N \geq 2$ satisfy p < N, then the Hardy inequality (1) and the Sobolev inequality (2) hold for any $u \in \dot{W}_0^{1,p}(\Omega)$, where $\dot{W}_0^{1,p}(\Omega)$ is a completion of $C_c^{\infty}(\Omega)$ with respect to $\|\nabla \cdot\|_{L^p(\Omega)}$.

$$\left(\frac{N-p}{p}\right)^p \int_{\Omega} \frac{|u(x)|^p}{|x|^p} dx \le \int_{\Omega} |\nabla u(x)|^p dx,\tag{1}$$

$$S_{N,p}\left(\int_{\Omega} |u(x)|^{p^*} dx\right)^{\frac{p}{p^*}} \le \int_{\Omega} |\nabla u(x)|^p dx,\tag{2}$$

where
$$p^* = \frac{Np}{N-p}$$
, $S_{N,p} = \pi^{\frac{p}{2}} N \left(\frac{N-p}{p-1} \right)^{p-1} \left(\frac{\Gamma(\frac{N}{p}) \Gamma(N+1-\frac{N}{p})}{\Gamma(N) \Gamma(1+\frac{N}{2})} \right)^{\frac{p}{N}}$.

These two inequalities are fundamental and important. Also, these two inequalities appear in analyzing existence, non-existence and stability of solution to nonlinear partial differential equations and so on. Their best constants and their attainability are well-studied. The Sobolev inequality (2) denotes the embedding: $\dot{W}_0^{1,p} \hookrightarrow L^{p^*}$, and the Hardy inequality (1) denotes the embedding: $\dot{W}_0^{1,p} \hookrightarrow L^{p^*,p} (\subsetneq L^{p^*})$.

What about the critical case where p = N? Although $p^* \nearrow \infty$ as $p \nearrow N$, the embedding : $\dot{W}_0^{1,N} \hookrightarrow L^\infty$ does not hold. Furthermore, these two inequalities look degenerate, because their best constants $(\frac{N-p}{p})^p$, $S_{N,p}$ go to zero as $p \nearrow N$. In the next section, we give some relation between the subcritical (p < N) and the critical (p = N) Sobolev spaces via harmonic transplantation.

2 Harmonic transplantation and its applications

The harmonic transplantation is proposed by Hersch [1]. It is a generalization of the conformal transplantation and is a powerful tool for the construction of comparison functions or approximate solutions of variational problems. Here, we introduce a result in [6] as an

^{*}smegumi@hiroshima-u.ac.jp

application of harmonic transplantation, which is the equivalence between two norms of the subcritical Sobolev space $\dot{W}_0^{1,p}(\mathbf{R}^m)$ and the critical Sobolev space $\dot{W}_0^{1,N}(B^N)$ for radial functions. For other kinds of applications of the harmonic transplantation, see [4] §3.3.. Let $G_{\Omega,O}$ be p-Green's functions on Ω with the pole O. The following transformation and the equality are given for radial functions u, v in [6]:

$$u(|x|) = v(|y|)$$
, where $G_{\mathbf{R}^m, \mathcal{O}}(|x|) = G_{B^N, \mathcal{O}}(|y|)$, $p = N < m$,

$$\int_{\mathbf{R}^m} |\nabla u(x)|^p dx = \int_B |\nabla v(y)|^N dy$$

This equality helps us to investigate embeddings, functional inequalities and PDEs in the critical case where p = N. However, the harmonic transplantation is available only for radial functions. Therefore, we need further analysis of critical problems for non-radial functions. Recently, we have obtained some results about the embedding, the functional inequality and the PDE in the critical case where p = N. For the details, see [2, 3, 5].

Acknowledgement

The author was supported by JSPS KAKENHI Early-Career Scientists, No. JP19K14568. This work was (partly) supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

References

- [1] Hersch, J., Transplantation harmonique, transplantation par modules, et théorèmes isopérimétriques. (French. English summary), Comment. Math. Helv. 44 (1969), 354-366.
- [2] Machihara, S., Sano, M., On the compactness of the (non)radial Sobolev spaces, arXiv:2206.13775.
- [3] Sano, M., Extremal functions of generalized critical Hardy inequalities, J. Differential Equations 267 (2019), no. 4, 2594-2615.
- [4] Sano, M., Takahashi, F., Critical Hardy inequality on the half-space via the harmonic transplantation, Calc. Var. Partial Differential Equations 61 (2022), no. 4, Paper No. 158.
- [5] Sano, M., Takahashi, F., On eigenvalue problems involving the critical Hardy potential and Sobolev type inequalities with logarithmic weights in two dimensions, in preparation.
- [6] Sano, M., Takahashi, F., Scale invariance structures of the critical and the subcritical Hardy inequalities and their improvements, Calc. Var. Partial Differential Equations 56 (2017), no. 3, Paper No. 69, 14 pp.