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1 Introduction

Let © C R" be a domain and 0 € Q. If the exponent p > 1 and the dimension N > 2
satisfy p < N, then the Hardy inequality (1) and the Sobolev inequality (2) hold for any
u € WyP(Q), where Wol’p(Q) is a completion of C2°(€Q) with respect to |V - ||1r(q).
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where p* =

These two inequalities are fundamental and important. Also, these two inequalities appear
in analyzing existence, non-existence and stability of solution to nonlinear partial differen-
tial equations and so on. Their best constants and their attainability are well-studied. The
Sobolev inequality (2) denotes the embedding : W, * < L?", and the Hardy inequality (1)
denotes the embedding : Wy* < LP"?(C L¥").

What about the critical case where p = N ? Although p* " oo asp ' N, the embedding

Wol Ny L does not hold. Furthermore, these two inequalities look degenerate, because
their best constants (22 ; EYr Sn.p go to zero as p ,* N. In the next section, we give some
relation between the subcritical (p < N) and the critical (p = N) Sobolev spaces via
harmonic transplantation.

2 Harmonic transplantation and its applications

The harmonic transplantaion is proposed by Hersch [1]. It is a generalization of the con-
formal transplantation and is a powerful tool for the construction of comparison functions
or approximate solutions of variational problems. Here, we introduce a result in [6] as an
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application of harmonic transplantation, which is the equivalence between two norms of
the subcritical Sobolev space W, *(R™) and the critical Sobolev space W, (BY) for radial
functions. For other kinds of applications of the harmonic transplantation, see [4] §3.3..
Let G0 be p-Green’s functions on 2 with the pole O. The following transformation and
the equality are given for radial functions u, v in [6]:

u(l]) = v(ly]), where Grmo(la]) = Gavollyl), p= N < m,
/ Vu(z)? dr = / VoY dy
R™ B

This equality helps us to investigate embeddings, functional inequalities and PDEs in the
critical case where p = N. However, the harmonic transplantation is available only for
radial functions. Therefore, we need further analysis of critical problems for non-radial
functions. Recently, we have obtained some results about the embedding, the functional
inequality and the PDE in the critical case where p = N. For the details, see [2, 3, 5].
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