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Abstract

In this paper, we give sparse form bounds and sparse bounds for Fourier integral operators asso-
ciated with the symbol belonging to Hormander class.

1 Introduction and results

For any m € R and 0 < p,§ < 1, Hérmander class Sl% is defined as the set of all @ € C’OO(R2") such that

0802 a(x,€)] < (14 [g)™ Ao,

for any (x,¢) € R*" and o, 8 € N2. Here, A < B means A < CB with a positive constant C' > 0. Given
a€ ST and @ € C*(R™ x (R™\ {0})), we define the Fourier integral operator (FIO for short) T, ¢ by

Toafla)= [ e*eaa,o)fe)ds
for f € S§. For simplicity, we write T, ¢ = 1. We assume that
(A-1) There exists a compact set K such that a =0 on K¢ x R",

(A-2) ® is a real-valued function and homogeneous of degree one in &,

0P
A-3 inf |det(=———(z, > 0.
(4-3) T€K,E#0 (8131-8@( &)
In the case ®(x,&) = z€, T is a pseudodifferential operator. Pseudodifferential operators are useful for
study of elliptic equations. However, the operators can not be applied to non-elliptic problems. FIOs
were introduced by Hormander [6] to consider such problems. For example, if u solves the wave equation,

(02 —A)u=0 inR" xR,
u(0) =0 in R™,
Opu(0) = f in R™,

then, u is written as u(z,t) = (T} + T}) f(x) where

T31(w) = 57 [ DT e i) = —5; [N fe)de.

Peral [11] showed that for any ¢t € R, T§+T7 is bounded from L? to H if and only if [1/p—1/2| < 1/(n—1),
where s = 1 — (n —1)[1/p — 1/2|. For p € [1,00), HP-L? boundedness of T' with a € S{%, was proved by
Stein [13] when m < —(n —1)[1/p — 1/2|. Here, H? means the Hardy space. In the case a € S} _, with
1/2<p<1and m=—(n—p)|1/p—1/2|, LP boundedness of T' was proved by Seeger, Sogge and Stein
[14]. The main purpose of this master thesis is to establish the sparse form bounds and sparse bounds
for T

(THO S Az rs(frg) o TF@) S As i f(2)

under the conditions (A-1)-(A-3). See below for the definition of A, o and Ay . f.



Definition 1.1. Let n € (0,1). A collection . of cubes in R™ is n-sparse if there are pairwise disjoint
subsets {Eq}qe such that Eq C Q, and |Eq| > 1|Q)|.

When 7 is not important, we omit it. For any cube @ and p € [1, 00), we define (f), o = |Q|_% £l 2o q)-
For a sparse collection . and r, s € [1,00) , the (r, s)-sparse form operator A , ; and r-sparse operator
A, are defined by

A.S”,r,s(fvg) = Z |Q|<f>r7Q<Q>S7Q 5 A.S”,Tf(m) = Z <f>r,Q1Q(T)

Qe Qe

for f,g € Li .. If r < p < s, we have

loc*
Ay s (f,9) SNl

This inequality is easily checked from the LP-boundedness of m-Hardy Littlewood maximal operator M,
which is defined by M, f(z) = supgs, ( f>r,Q' Furthermore, weighted inequality with Muckenhoupt
weights is deduced from sparse form bounds. Bernicot, Frey and Petermichl [2] showed

Ay rs(f9) S ([Wla

5N [ [P 7 s

where o = max(piT, 2%11)), [wla, = supQ<w>17Q<w1_q,>(117_Ql and [w]py = supQ<w>1_722<w>q7Q for any 1 <
q < oco. From this inequality, sparse form bounds is used to study weighted bounds for operators. In
recent years, people are interested in establishing sparse form bounds for several operators. Sparse form
bounds of rough singular integral operators and Bochner-Riesz multipliers were shown by Conde-Alonso,
Culic, Plinio and Ou [4], and Lacey, Mena and Reguera [10] respectively. Beltran and Cladek [3] proved
the sparse form bounds and sparse bounds for pseudodifferential operators with symbols in S}, with
0 < p < 1 and suitable m. It is natural to ask the same problem for FIOs instead of pseudodifferential
operators. Main results are the following.

Theorem 1.1. Let 1 <7 < s < oo and m < 0. We assume that a € Sy and ® € C(R" x (R \ {0}))
satisfy the assumptions (A-1)—(A-3). Then, for any compactly supported bounded functions f,g, there is
a sparse collection . such that

(Tf,9)l S Ao (1 9)
if
m<—(mn—1)(1/s=1/2) —n(l/r —1/s) and 1<r <s<2
or
m< —n(l/r—1/s) and 1<r<2<s<r.

Remark 1.1. When 1 < p < oo, Theorem 1.1 gives us the LP-boundedness of T with a € S7; and
m < —(n—1)|1/p —1/2|. Stein [18] proved that T can be extended to a bounded operator on LP when
m = —(n — 1)|1/p — 1/2|. However, it seems that this case can not be deduced from the sparse form
bounds.

Remark 1.2. By using duality, we can see that

|<Tf7g>| /S AY,S’,r(f’g)

under the same condition of Theorem 1.1.

Theorem 1.1 does not include sparse form bounds in the case 1 < r < 2 and s = oco. However, the
following theorem covers such a case.



Theorem 1.2. Let 1 <r <2, m<0and0 < p,§d < 1. We assume that a € S 5 and @ € C°(R™ x
(R™\ {0})) satisfy the assumptions (A-1)—(A-2). Then, for any compactly supported bounded function f,
there are sparse collections { % }k=1,... 3n such that

Tf(z)] < ZA.wa
if m< —n/r.
Remark 1.3. Since
3’7’1
ZAyk,’l‘f7 |<ZZ rQ| 1Qg|<ZA5’k7‘l fv )7
k=1 QeSS k=1

the following bounds hold under the same condition of Theorem 1.2.

|<Tf7g>| 5 Ay,r,l(f».g)

Furthermore, the Theorem 1.1 and the weighted inequality above give us weighted bounds for FIO.

Corollary 1.1. Let a € STy with m <0, ® satisfy the assumptions (A-1)-(A-3) and w € A. Then,

T F ey S N1lLrw)
holds in the following cases;
(1) m<—n,1<p<ooandw€ A,.
(2) n<m < —n/2, —n/m <p < oo and w € A_(yp)/n-
(3) —n/2<m<0,2<p<2n/(n+2m) andw € Ap/z N RH(2n/{(n+2m)p})’~
2 Sparse domination of Fourier integral operators
In this section, we give a proof of Theorems 1.1 and 1.2 and Corollary 1.1

2.1 Decomposition of T’

Using the idea of Beltran and Cladek [3], we decompose T. We take ¢ € C5°(R™) such that supp ¢
C B(0,2) , ¢ =1o0n B(0,1) and ¢ > 0, and denote 5(§) := (27°¢) — (275T1¢) for s € R. Then 7} is
defined by

i) = [ ¢ OaouOF
]Rn
= [ [ a0 fu)dsdy
for any f € S and j € Z. Moreover, for € > 0 and £ € Z, we define

//Rzn PO a2, )y (E)ve(x — y) f(y)dédy (> 0)

T‘,ef(l“): IR
j //Rzn HP@O=8) (4 L (E) o140y (x — ) f(y)dédy (5 <0)

For any € > 0, T is decomposed as follows :

T=Y>"Tie+> > Tiut+>. > Tivt+ > Tie

§>0 £>ej >0 0<ej <0 £>0 §<0 £<0



We need further decomposition of Tj . For v € {0,1,2}" and k € Z, the set D% of dyadic cubes is defined
by

v v Up Vp, "
Dﬁ::{?k[m1+§l,m1+1+§l)x---x2k[mn+?,mn—|—1+?);mEZ 1.

We decompose T, as

Tje=) T}

where
ZQED[VZHO] Tj,z(fl%Q) (j >0,0> jE)
Ty, f = 2qepr Tielfl10) (j>0,¢< je)
FEZ ZQED,[IL(Hs)J‘Ho] Tj,z(fléQ) (j <0,£>0)
ZQG'D’[I—(1+E)j+10] Tj,g(fl%Q) (j <0,£<0)

Here, we remark that the support of T‘j’g(fl%Q) is contained in (). To prove Theorem 1.1, we make use
of the following lemma which was given by Lacay and Mena [9].

Lemma 2.1. Suppose n € (0,1) and r,s € [1,00). For any compactly supported bounded functions f,g,
there is a sparse collection .y such that

A.S/’,r,s(fa g) 5 AYO,T,S(fv g)

for any n-sparse collection ..

2.2 Estimates of T},

We estimate |1}, := sup ||Tjef|[;. with 1 <7 <s < oo to prove Theorem 1.1.
7 A r=1

Lemma 2.2. For 1 <r <s<2andj >0, we have the followings.

(1) For £ € Z with € > je, ||Tj,|, . < 210nm=—mG+0,

r,s N

2) e, Thell < gimAi(n=1)(1/s=1/2)+jn(1/r=1/s)

Proof. (1) Let N be a positive integer and ¥(z, &) = ®(x,&) — 2. We integrate by parts in £ to obtain

|Te f ()]

‘/ [ e a0, (©vnla ) () dedy

IN

/ AN (¥ @Dz, £, (€))de / & — 5172 ez — ) F () dy.

Since ¥ is homogeneous of degree one in ¢ and € is localized in the annulus {2971 < |¢] < 29+1} it holds
that [0g ¥ (z,&)| < ) 1ol < 200=1eDi for any o € N, and |8gei‘1’(ﬂ%€)| < 1. Therefore we obtain

sup |AY (e "9 a(z, €)1 (€))] S 2 <1,

z,6

which yields

Ty f ()] < 29— EN 3N / e — )| F @) ldy.



By using Young’s inequality and taking sufficiently large N, we have

||T‘g|| < 910n(m—n)(j+0)

(2) Since >, Lo =Tj — > 4o ;. Tje, it suffices to prove
T . < 9im~+j(n—=1)(1/s=1/2)+jn(1/r—1/s)

Since |920¢ {a(x,&)v;(E)} < 2™(1 + €)1 and L2-boundedness of FIO [13], it holds 1Tl S 27™.
Let K; be the kernel of T}, i.e.

T;f(z) = / Kz, y)f (y)dy.
The inequality

sup / K (z,y)|dz < 29m+i(n=1)/2
yeR™ .

was proved by Stein [13]. Hence, one obtains ||Tj||, , < 2/™*+7("=1)/2_ Interpolating this and L2-bound
above, we have

T3] < 9im+i(n—1)(1/s-1/2)

s,8 ~

Let zﬁj =1;_1 4+ ¥; +¥j41. From the L°-bound, we deduce

pe = ITHF gl Nl s
gim+i(n—1)(1/5-1/2)

|75 /1

F 5] e
9im~+3j(n—=1)(1/s=1/2)+jn(1/r—1/s) (K

AN N

Lemma 2.3. For 1 <r <2<s<7" andj >0, we get the followings.

(1) For ( € Z with £ > je, ||Tj,|, . < 20nm=—mG+0,

r,s N

2 1 e<s; T”Hr,s < gimtin(1/r=1/s),

Proof. First claim is the same as (1) of Lemma 2.2. Let us prove the second inequality. We can easily
check that [|T}]], ., < 29", Interpolating this and L*-bound of T, we can see

< 2jm+jn(2/r—1).

T’ N~

T3l
On the other hand, we have [|T}]|, , < 2/™"(1/7=1/2) from the proof of Lemma 2.2. Interpolating this
and L™-L"" bounds above, we obtain

T < gim+in(l/r=1/s)

Lemma 2.4. For1 <r <s < oo and j <0, it holds the followings.

(1) ForteN, ||Tj,l, .S 910n(j—)

r,s

@) 1| Soao il , 2



Proof. (1) For |a| > 1, we obtain |9ge™(®8)| < i1l and AN (= Oa(x, )i (€))] < 27WNH <
272N for any N € N. By using integration by parts, one has

Tef @) < / AN (V@ 0, ) (€)]de / 1 — o)™ e 1oy (= — ) ()l

9—2(N+2¢jN / [Ve— 140y (@ — I f(v)|dy.

By taking sufficiently large NV, we have

A

||T‘7g|| < 9lon(j—£)

r,8 ~J

(2) To prove the second estimate, we prove ||Tj||, < 29"/". It is not hard to see that

T3 fl oo S min (2771 £l 2, 2721 £]] 2)-

Since the support of a(-,€) is compact set, we obtain ||T}||,, < 2/"/2 and [|T}]|, , < 2/". Therefore, we

~ ~

can see [[Ty||, . < 27"/" and || Y2, o Tyl < 27"/" in the same way as Lemma 2.2. O

r,s ~

2.3 Proof of Theorem 1.1

Proof. Recall the decomposition of T in Subsection 2.1:
T=2 2 Tt D Tt D Tt D Tie
J>0£>ej §>0€<ej §<0£>0 §<0 £<0

First, we concider the case 1 < r < s < 2. Since supp Tj’g(fX%Q) C @, (1) of Lemma 2.2 yields the
following estimate for the first term.

DD > Tulfxio) 9l

J200>je v Qeplt+1ol

SO S Tl ol o)
J200>je v epletiol
< 2210n(m—n)j Z 210n(m—")4+5”(1/“1/5)z Z |Q|<f>r,Q<9>s’,Q
>0 o> v QeplttY
< Z2lon(m—n)j (Z 210”(“1—”)“2"(1/“1/5)) Ay s (frg)
=0 >0

where Sy is the sparse collection in Lemma 2.1. Since the both series converge whenever m < 0 and
1 <r < s < 2. Therefore, we have

|<Z Z T’,Zf? C]>| 5 ASO,T,S/ (f7 CI)
70 £>je
On the other hand, (2) of Lemma 2.2 gives the following estimate for the second term.

DD D> Thulfxig) o)l

j>04<je v QGDL£j+IO]

S YYD e Till, QTR 0 (9) v
j>0 v QeDl[’strlo] ’

S Z2jm+j(n—1)(1/s—1/2)+jn(1/r—l/s)+jen(l/r—l/s)Z Z |Q|<f>r,Q<g>s’,Q
j>0 v QGD,[,”HO]

S Z2jm+j(n—1)(1/5—1/2)+jn(1/r—1/s)+jsn(1/r—1/5)Ay07hs/(f’ g).
720



Ifm<—(n-1)[1/s—1/2)| —n(1/r —1/s), we can take € such that the last geometric series absolutely
converges. Consequently, we obtain the desired sparse form bound for the second term. For the rest of
terms, we can get same bounds in the same way as that of Lemma 24. If 1 <r < 2 < s < 7/, the
inequality is shown from the same argument by using Lemmas 2.3. and 2.4. O

2.4 Proof of Theorem 1.2

In this part, we prove Theorem 1.2. Hyténen, Lacey and Pérez [7] showed the following property of
shifted dyadic cubes.

Proposition 2.1. For any cube Q, there exist v € {0,1,2}" and Qo € D, such that Q C Qo and
Q[ ~ Qo

To prove Theorem 1.2, we give a sparse bounds for Hardy-Littlewood maximal operator by using Propo-
sition 2.1 and the idea of Pérez [12].

Proposition 2.2. Let M, denotes r-Hardy Littlewood maximal operator. Then for any f € LP for some
1 < p < 0, there exist sparse collections ., C D,, such that

M, f(z) < Z Ay, . f(z) ae z€R"
vef{0,1,2}"

Proof. From Proposition 2.1,

Mf(x) S Y M f(a).

ve{0,1,2}"
where MP" f(z) := supp 505, (flg, Fixa>>1 and let
Sk={QeD,; d < (o & mazimal with inclusion}
for any k € Z and let ./, = Ukezjﬂf. From the maximality, one has
ak < (Ngr < 2" "
for each € .7%. First, we prove that .7, is a sparse collection. For each @ € /¥, let
Eg:={zcQ; a" < MP(flg)(x) < a**'}.

From weak type (r,7) boundedness of M,., we obtain

R\ Eql < [IMyllprsproca™ "Il
< 2m||]\/[r||Lr_>Lnoca_r|Q|
1
< =
< Ll

by taking sufficiently large a. Next we prove that {EQ}QE.S/’k is disjoint. Let Q) € 7%, Q, € .72 and

Qr # Q,. We may assume k < s. If Qp N Q, # 0, then it holds that Qi C Q, or Q; C Q. Hence, one
has k < s and Q5 C Qj, from maximality of cubes in .. If there exists x € Eg, N Eq., it holds

a® < MP*(flg,)(z) < MP*(flg,)(x) < a**!

which contradicts k& < s. Therefore ., is a (1/2)-sparse collection. To complete the proof, it is sufficient
to prove

MPrf(2) S Ay, o f(2) ae x€R™



For any x € R™ such that MP» f(z) # oo, there is a ko € Z so that
a™ < MP» f(x) < akotl.

From the definition of MP», we can take a dyadic cube Qy > = which satisfies Qy € /%0 that means
ako < (f)qo.r- Therefore we obtain

MP* f(z) < alf)g, . < als, . f(2).

From Proposition 2.2, it is sufficient to prove following lemma.

Lemma 2.5. Let 1 <r <2, m<0and0<p,d <1. We assume that a € S;’?(; and ® € C°(R"™ x (R™\
{0})) satisfy the assumptions (A-1)—(A-2). Then,

ITf(x)] < M. f(x) a.e xe€R"”
holds if m < —n/r.

Proof. We use the decomposition of T' = ez T; in Subsection 2.1. Let N be a positive integer such
that 2N > n and ¥(z,§) = ®(z,§) — €.
(1) When j > 0, we integrate by parts in & and use the Hausdorff-Young’s inequality to obtain

L@ = e | [ [ €0 = ) Ot 0y (O} o - ) F)dedy
S S CEE R[]
€]~
S 2l Flw =)V )
S 2l — N

Since m < —n/r, we have
D ITif ()] S Mo f(=).
Jj=0
(2) When j < 0, we define the self-adjoint differential operator L as
L=2"2NH1 4 (—a).

From
1

eile—y)E —
22384+ Ja =y

Let(@—v)¢

and
|L(e™ ™ Da(z, )9 (€))] S 272N,
T; f is dominated by M f as follows.
1

T f(2)] < //R% |L(ei‘1’(””’5)a(:v,£)¢j(€))|2_2jN+j F—

/ 9—2jN+j+ijn )
N — F)ldy
2-2N+I 4 |x — y|2N

o | f (y)|dEdy

/ 1
= 9in 1 .
gz/u_mwg@—ﬂgﬁ 1 + 22kN [/ (y)|dy

2kn

S 2y 1 _|_22kNMf(x)
kez

~ 23WINMf().



Therefore, it holds that

S Tif(z) S Mf(x) < M, f().

j<0

2.5 Proof of Corollary 1.1

In this subsection, we prove Corollary 1.1 by using weighted bounds for sparse form. Bernicot, Frey and
Petermichl [2] showed following weighted bounds for sparse form.

Proposition 2.3. Suppose 1 <r <p < s <oo and & is a sparse collection. Then, it holds that

At (£:9) S (@, lmrr, ) I o6 ot sy

( 1 s—l)
o = max , )
p—r s—p

Proof. (1) It is clear from Lemma 2.5.
(2) We take 6 > 0 such that

for anyw € A,/ N RH (/) where

Let us prove Corollary 1.1.

w € A(—m/n—s)p

and let r = (—m/n —6)"'. By taking sufficiently small &, one obtains < min{p,2}. Furthermore, it
holds that

—n/r=-n(—-m/n—3§) >m
which yields
Tf(z) S M f(z).

The statement follows from this.
(3) We can take § > 0 such that w € RH (2, /{(nt2m)p})'+5- Let s denote a number which satisfies

(s/p)" = (2n/{(n +2m)p})" +,

and then it holds that

2n

2<s8<
n—+2m

which implies
m < —n(1/2 —1/s).
From Theorem 1.1 and Remark 1.2, we obtain

|<Tf~ g>| 5 AS,Q,S’ (fa g)

This bounds and Proposition 2.3 complete the proof. O
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