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ABSTRACT. The universal enveloping algebra U(sly) of sly is a unital associative algebra
over C generated by E, F, H subject to the relations
[H,E] =2F, [H, F| = —2F, [E,F] = H.

In 2002, Junie T. Go showed that the Terwilliger algebra of H(D,2) is a homomorphic
image of U(slz). Firstly, I will present a connection of the even subalgebra of U(sly) with
the Terwilliger algebra of %H (D,2). Secondly, I will show how the Clebsch-Gordan rule
of U(slp) is related to the Terwilliger algebra of H(D,q). Thirdly, I will give an algebraic
connection between the Clebsch—Gordan coefficients of U(sly) and the Terwilliger algebra
of J(D, k). The first part is a joint work with Chia-Yi Wen.

1. U(sly) AND THE TERWILLIGER ALGEBRA OF H(D,2)

Definition 1.1. The universal enveloping algebra U (sls) of sly is an algebra over C generated
by E, F, H subject to the relations
|H,E] = 2F, [H,F] = —2F, [E,F|=H.
The element
H2
AN=FF+FFE+ -
is called the Casimir element of U(sly).

Lemma 1.2. For any n € N there exists an (n + 1)-dimensional irreducible U (sly)-module
L,, satisfying the following conditions:
(i) There exists a basis v((]"), ool for Ly, such that

Eo™ = iv@l (1 <i<n), EU(()") =0,

K3 3

Fo™ :(n—i)vi(z)l (1<i<n-—-1), Fo™ =0,

()

Ho™ = (n — 21’)11(") (1 <i<n).

[ 7

(ii) The element A acts on L,, as scalar multiplication by @

Note that the U (sly)-module L, is the unique (n+1)-dimensional irreducible U (sl;)-module
up to isomorphism.

Definition 1.3. Let D > 1 denote an integer. The D-dimensional hypercube H(D,2) has
the vertex set X = {0,1}” and z,y € {0,1}” are adjacent if and only if x and y differ in
exactly one coordinate.

Let A denote the adjacency operator of H(D,2). Let A*(z) denote the dual adjacency
operator of H(D,2) with respect to z € X. Let T(z) denote the Terwilliger algebra of
H(D,2) with respect to x € X [1,7-9]. Note that T(z) is generated by A and A*(z). In

2002 Junie T. Go gave the following result:
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Theorem 1.4 (Theorem 13.2, [2]). For each x € X there exists a unique algebra homomor-
phism p(z) : U(sly) — T(x) that sends

Moreover p(x) is onto for each x € X.

Theorem 1.5 (Theorem 10.2, [2]). The U(sly)-module C* is isomorphic to

LQJ D-2i+1(D\
D—i+1\i) "

o

=0
2. THE EVEN SUBALGEBRA OF U(sly) AND THE TERWILLIGER ALGEBRA OF 1H(D,?2)

Definition 2.1 (Definition 1.2, [5]). The universal Hahn algebra H is an algebra over C
generated by A, B,C' and the relations assert that [A, B] = C' and each of

a=[C,A] +24% + B,

p=[B,C]+4BA+2C

is central in H.

Theorem 2.2 (Theorem 1.3, [5]). There exists a unique algebra homomorphism 4 : H —
U(sly) that sends

H
A — Z,
B o E?+F?+A-1 E
4 8’
E? — F?
C — TR
|_> u
4 )
g — 0.

The element
Q=4ABA+ B* - C*-28A+2(1 —a)B

is central in H and it is called the Casimir element of H.
Lemma 2.3 (Lemma 4.5, [5]). The homomorphism §j maps Q to (2A — 3).
The algebra U(sly) has a Z-grading algebra structure with
degll =1, deg F' = —1, deg H = 0.

For each n € Z let U, denote the n'" homogeneous subspace of U(sly). Define

5[2 EBU2n

neZ
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Since 1 € Uy and by (G2) the space U(sly). is a subalgebra of U(sly). We call U(sly). the
even subalgebra of U(sly).

Theorem 2.4 (Theorem 3.4, [5]). The algebra U(sly). has a presentation given by generators
E? F?2 A, H and relations

[H, E? = 4E?,
[H, F?] = —4F?,
16E°F? = (H* —2H — 2A)(H? — 6H — 2A + 8),
16F2E? = (H* 4+ 2H — 2A)(H? + 6 H — 2A + 8),
AE? = E?A, AF? = 2, AH = HA.
Using the presentation for U(sly). we found the following result:

Theorem 2.5 (Theorem 1.5, [5]). (i) Imf = U(sly)..
(i) Kery is the two-sided ideal of H generated by  and 16§2 — 24« + 3.

For any U(sly)-module V' and any 6 € C let
V(@) ={veV | Hv=6v}.
Proposition 2.6 (Proposition 5.1, [5]). Let V' denote a U(sly)-module. Then

B Vo +4n)

nez

is a U(sly)c-submodule of V' for any 0 € C.
For each n € N let

LY = P Lu(n — 4i).
i€Z.
For each integer n > 1 let

LY =P La(n — 4i - 2).

€L

Lemma 2.7 (Lemmas 5.5 and 5.8, [5]). (i) For any n € N the U(sly).-module L\ is irre-
ducible.
(ii) For any integer n > 1 the U(sly).-module LY is irreducible.

Theorem 2.8 (Theorem 5.10, [5]). The U(sly).-modules LY for alln € N and the U(sly).-
modules LS) for all integers n > 1 are mutually non-isomorphic.

Theorem 2.9 (Theorem 5.11, [5]). For any d € N the U(sly).-modules ngl), Lng)+17 ngﬂ,

ng)m are all (d + 1)-dimensional irreducible U (sly).-modules up to isomorphism.

Lemma 2.10 (Lemma 6.2, [5]). For each v € X the algebra homomorphism p(x)ol:H —

T(x) maps
A*()
A
— 1
2 _
B A 1.

4
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Suppose that D > 2. Let
; i even} .

D
X, = {x c {0,1}"
=1

Definition 2.11. The halved graph %H (D,2) of H(D,?2) is a finite simple connected graph
with vertex set X, and =,y € X, are adjacent if and only if x and y differ in exactly two
coordinates.

The adjacency operator of 3 H(D,?2) is equal to
A?2-D
2
Let z € X, be given. The dual adjacency operator of %H (D, 2) with respect to x is equal to
SAY(7)| ok, D=2,
A*(2)|or, i D >3
Therefore the Terwilliger algebra Te(z) of $H(D,2) with respect to x is the subalgebra of
End(C*X<) generated by A?|cx. and A*(z)| oxe [1,7-9).
Theorem 2.12 (Theorem 6.4, [5]). For each x € X, the following hold:
() T.(w) = {Mex. | M € Im (p(a) o ).
(ii) Te(z) = {M|cx. | M € Im (p(x)|v(st). ) } -
Theorem 2.13 (Theorem 6.5, [5]). The U(slg) -module CX¢ is isomorphic to

1 %] bt
D—-2k+1/(D D—-2k+1(D 1)
N7 D—k:+1<k:> Lplok @ @ D- k:+1(k:) D=2k

k is even k zs odd

cXe’

3. THE CLEBSCH-GORDAN RULE FOR U(sly) AND THE TERWILLIGER ALGEBRA OF
H(D,q)

Definition 3.1 (Definition 1.6, [4]). Given any scalar w € C the Krawtchouk algebra &, is
an algebra over C generated by A and B subject to the relations

A’B —2ABA + BA? = B + wA,

B’A—2BAB+ AB* = A+ wB.

Theorem 3.2 ([4,6]). For any w € C there exists a unique algebra homomorphism ¢ : R, —
Ul(sly) that sends

A — Bep4Lep_¢H

B — 1iH,

C —» —B2E4+152F

[\

|

Moreover, if w? # 1 then C is an isomorphism and its inverse sends

E = H—WAJFH—WB—H—WQ
F = =A+#~B+C,

H — 2B.
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Let D > 1 denote an integer. Let ¢ > 2 denote an integer. Set

X={i|li=0,1,...,q—1}.

Definition 3.3. The D-dimensional Hamming graph H(D,q) over X has the vertex set X
and z,y € XP are adjacent if and only if 2 and y differ in exactly one coordinate.

Let A denote the adjacency operator of H(D,q). Let A*(x) denote the dual adjacency
operator of H(D,q) with respect to z € XP. Let T(z) denote the Terwilliger algebra of
H(D, q) with respect to z [1,7-9]. Without loss of generality we fix x = (0,0,...,0) € XP.

Set 5
w=1—-—.
q

Definition 3.4. Let Ci denote the subspace of C¥X consisting of all vectors Z _1 cit where
C1,Coy vy Cg1 € C with Y27 ,1 ¢ = 0. Let C¥ denote the subspace of C¥X spanned by 0 and
Sl Note that CX = C{ & C5*.

Definition 3.5. For any s € {0,1}” we define the subspace CX” of CX” by
CX=CfeCfe  -oCL
Note that CX” = Dicio13r cXx”

Proposition 3.6 (Proposition 3.12, [4]). For any s € {0,1}7 there exists a K,-module
structure on (CfD given by

D
A D 1
A= g 2
q<C§D q 22
A'x)) D 1 D
B = - _Z
q CXD q 22

In particular CX” isa R,-module.
The Clebsch-Gordan rule for U(sls) is as follows:
Theorem 3.7. For any m,n € N the U(sly)-module L, ® L,, is isomorphic to

min{m,n}

@ Lm+n—2p-
p=0

The U(sly)-module C§ is isomorphic to (¢ — 2) - Lg. The U(sly)-module Cy is isomorphic
to L;. Hence the U(sly)-module CX” (s € {0,1}?) is isomorphic to (¢ — 2)°~? - L where

r= Zi[; Si-
Theorem 3.8 (Theorem 1.10, [4]). The U(sly)-module CX” is isomorphic to

D 5]
p—2k+1 2k+1(D\ (p Dp
D p—k+1 < p) @20 Ly

p=0 k=0
Here 0° is defined as 1.
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4. THE CLEBSCH—GORDAN COEFFICIENTS FOR U(sl;) AND THE TERWILLIGER
ALGEBRA OF J(D, k)

Inspired by the Clebsch—-Gordan coefficients for U(sly) the following result was discovered
in [3]:

Theorem 4.1 (Theorem 1.4, [3]). There exists a unique algebra homomorphism § : H —
U(sly) ® U(sly) that sends

VRN H®1—1®H7
4
A(A
B — —(2),

C —» ExF-F&E,
Awl+1lwA  A(H)?
+ ;
2 8
(A®1—-1®A)A(H)
5 :

By pulling back via f every U(sly) ® U(sly)-module can be considered as an H-module.
Let V denote a Ul(sly) ® U(slz)-module. For any 6§ € C we define

V() ={veV|A(H)v=_0v}.
It can be shown that V() is an H-submodule of V' for any 6 € C.

[0 o d

£ —

Theorem 4.2 (Theorem 1.6, [3]). Suppose that m,n € N and ¢ is an integer with 0 < ¢ <
m +n. Then the following hold:

(i) The (min{m, ¢} + min{n, ¢} — ¢+ 1)-dimensional H-module (L, ® L,)(m +n — 2{) is
wrreducible.

(ii) Suppose that m’,n’ € N and €' is an integer with 0 < ¢/ < m’' +n'. The the H-module
(Lyy @ Ly )(m' +n' — 20') is isomorphic to (Ly, ® Ly)(m +n — 2¢) if and only if

(m/,n' ) € {(m,n,0),(m+n—200,n), l,m~+n—~Lm),(n,mm+n—"{)}
Let € denote a finite set with size D and let G denote the covering relation in 2.

Theorem 4.3. There exists a U(sly)-module structure on C%' given by

Ea::Zy for all z € 2%,

yCx

Fa::Zy for all x € 2%,

xCy

Hx = (D = 2|z|)x  for all v € 2.

For notational convenience we define

w221

n—1+1

for all integers i,n with 0 < i < [gj
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Theorem 4.4. The Ul(sly)-module C** is isomorphic to

1%
EB mi(D) - Lp_s.

Fix an element zo € 2. The spaces C2*"™ and C2™ are U(sly)-modules. Hence C2*'" ®
C2™ has a U(sly) ® U(sly)-module structure. Consider the linear isomorphism () : C** —
C2"™ @ C2™ given by

r = (z\x9) ®(xNxg) for all z € 2.
By identifying €2 with C2""° @ C2™ via t(z0), this induces a U (sly) ® U(sly)-module struc-
ture on C2".
Lemma 4.5 (Lemma 5.5, [3]). The U(sly) ® U(sly)-module C** is isomorphic to
e 2

2

mi(D — |zo|) mj(\fCOD * Lp—jwg|-2i © Ligg|—25-
i=0  j=0

Theorem 4.6 (Theorem 5.8, [3]). For any xo € 2% the actions of A and B on the H-module
C>* are as follows:

ACEZ<Q—‘$O\$’+’$\$0’>$ forallm€2”,

4 2
D (D —2z|)? 0
B$:(§+T x+||§|:|y for all x € 2.
xyﬂ;gx

Let k denote an integer with 0 < k < D. The notation (gj) denotes the set of all k-element
Q
k,

subsets of . It follows from the above theorem that (C( ) is an H-submodule of C2°. Let

D —
P(k):{(i,j)€Z2’O§i§ 5 k,OSjgmin{D—k—i,k—i,g}}.

Theorem 4.7 (Theorem 5.7, [3]). Suppose that k is an integer with 0 < k < D. For any
o € (&Iz) the following statements hold:
(i) Suppose that k # %. Then the H-module C(%) s isomorphic to
B mi(D—k)ym;(k) - (Lp—g—2i ® Li—z))(D — 2k).
(1,4)€P (k)
Moreover the irreducible H-modules (Lp_g—2; @ Ly_9;)(D — 2k) for all (i, j) € P(k) are
mutually non-isomorphic.
Q

(ii) Suppose that k = %. Then the H-module C(%) s isomorphic to

1]

o

(B g Ly 0)

=0
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@ D o (2)m (2) tyao s

i=0 j=i+1
Now we assume that D > 2 and k is an integer with 1 <k < D — 1.

Definition 4.8. The Johnson graph J(D, k) is a finite simple connected graph whose vertex

set is (gj) and two vertices z,y are adjacent whenever x Ny G .

The adjacency operator A of J(D, k) is a linear endomorphism of c®) given by
Az= Yy forallze (})

|z|=]y|
TNyCr

The dual adjacency operator A*(zo) of J(D,k) with respect to zo € (S,z) is a linear endo-
morphism of c(®) given by
D(lwo \ @ + [\ zo)
A" =D-1)(1-
(wo)o = (D —1) ( 2%(D — k) v
forall z € (7). Let T(z) denote the Terwilliger algebra of J(D, k) with respect to o [1,7-9].

Theorem 4.9 (Theorem 5.9, [3]). For any o € (Skl) the following equation holds:
Q
k

T(z9) = Im (7—[ — End(C( ))) .
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