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Abstract

We discuss recent results on the essential self-adjointness of Klein-
Gordon type operators on several classes of spacetimes. These results
are based on joint works with Kouichi Taira (Ritsumeikan University).

1 Introduction

We consider the second order operator of the form:

P=3" Dig"(a)Dx + % SO(Dju ()¢5 + w5 (5)Dy) + (),
k=1 =1

on an n-dimensional manifold X, where D; = —i% (in a local coordi-
nate system). We suppose all the coefficients are real-valued C* functions.
The top order coefficients {g/*(x)} is a Lorentzian cometric, and hence we
suppose it is non-degenerate for all z € X.

Example: (Wave operator on an asymptotically Minkowski metric) We set
X =R4,

1 0 0 0
w0 =1 0 o0
(90 )_ 0 0 -1 0
0 0 0 -1

We suppose g/*(z) — ggk as |x| — o0o. ug(x) is the mass term, and w;(x) is
the electric potential, and (ua(z), us(z), usa(x)) is the vector potential.
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Motivations and related works:

In the construction of field theory on curved a spacetime, the Feynman
propagator is essential. It is widely known the Feynman propagator is given
by (P —i0)~!, at least formally, but the self-adjointness of P had not been
known before Vasy [13] and Nakamura-Taira [8], which prove the essential
self-adjointness for asymptotically flat spacetimes. We note Gell-Redman-
Haber-Vasy [5], Gérard-Wrochna [6, 7] and Dereziriski-Siemssen [2, 3] used
different method to construct Feynman propagator, but the essential self-
adjointness was conjectured.

Recently, a simplified proof for the asymptotically flat spacetimes is given
in Nakamura-Taira [9], and the proof for the asymptotically static spacetimes
is given in Nakamura-Taira [10]. Given the essential self-adjointness, Vasy
[13] and Taira [12] proved the limiting absorption principle for asymptot-
ically flat spacetimes. There are many non essentially self-adjoint metric
with pseudo Riemannian metric without boundary, and thus this problem
is far from obvious, and there are many open questions related to geometry
of pseudo Riemannian metric. See, e.g., Colin de Verdiére and Le Bihan [1]
and Taira [11].

Classical Mechanics:
In the proof of these results, the classical mechanics generated by the
Hamiltonian

pa(7,) = > g* (@)

Jk=1

plays essential roles. We note this is essentially the geodesic flow in the
differential geometry. We denote exp(tHp,) be the Hamilton flow on 7% X
generated by the symbol po(z,§), and we write

(y(t, 20, &0), n(t, w0, &0)) = exp(tHp,)(wo, o)

for t € R, (x0,&) € T*X. Along the flow, pa(y(t),n(t)) is invariant, and
since our metric is not positive definite, it can take all the real numbers.
In particular, a solution (geodesic) with pa(y(t),n(t)) = 0 is called a null
geodesic, and especially important in the following argument. We recall
microlocal singularities of a solution to Pu = 0 propagate along the null-
geodesics (Propagation of Singularities Theorem). If pa(y(t),n(t)) > 0 then
a solution is called time-like, and if po(y(t),n(t)) < 0 then a solution is called
space-like.

Asymptotically flat spacetimes|

We consider the case X = R", and suppose ¢/*(x) — géj in the following
sense, where g%k is a nondegenerate symmetric matrix.



Assumption A. For all j,k, ¢/*(z), uj(z), z € R", are real-valued smooth
functions. Moreover, there exists p > 0 such that for any o € Z}

|02 (6" (2) — g")
05 uj(x)

< Cplz) Pl 2 eR™, jk=1,...,n,
< Colz)y ™l zeR™ j=0,...,n,
with some C,, > 0.

Assumption B (Null non-trapping condition). If (g, &) € py '({0}) and
50 ?é 0’ then |y(t7x07€0)| — 00 as |t| — 0.

Theorem 1 (Vasy, N-Taira). Suppose Assumptions A and B. Then P is
essentially self-adjoint on C§°(R™).

Asymptotically static spacetimes

We consider the case X = R x M, where M is a compact Rieman-
nian manifold without boundary. We denote the Riemannian metric on
M by qo = >°7';_; 90,ij(®)dwidzj, locally in & € M. We write go(z,§) =

Z?,k:l qéj(x)fjfk. Let p(t,z,7,£) be the symbol of P on T*X, and it has
the form:
p(t? €, 7—75) = 7_2 - QO(:U? 5) + Q(t, z,T, 6)7

Assumption C. ¢(t,z, 7,§) is smooth in (¢, x), quadratic in (7, ), and there
is > 1 such that for any multi-index o € Z} and k € Z,

|07 02 q(t, 2, 7,6)| < Cralt) (1 + 77 + [¢).
We denote a geodesic by
(t(8)7 ‘T(S)a T(S)7 6(8)) = eXp(SHp)(t07 Zo, 70, 50)7 (t()? Xo, 70, 60) S T*X

Assumption D. If p(tg, xo, 70, &0) = 0, then either ¢(s) — +o0 as s — o0
or t(s) — Foo as s — +o0.

Theorem 2 (N-Taira). Suppose Assumptions C and D. Then P is essen-
tially self-adjoint on C§°(X).

|Asympt0tically expanding spacetimes| (work in progress)

We consider the case X = R x M as in the asymptotically static space-
times. Let 0 < a < 1, and p(¢, z, 7,€&) be the symbol of P on T*X, and it
has the form:

p(t,x, 7,8) =72 = [t| *qo(x,&) + q(t, 2, 7,8), [t|>1.

Assumption E. ¢(¢,z, 1, §) is smooth in (¢, z), quadratic in (7, &), and there
is 4 > 1+ a such that for any multi-index o € Z"} and k € Z,

|0F 02 q(t, @, 7,6)| < Cralt) (1 + 72+ [¢).
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Assumption F. Any null geodesic satisfies either t(s) — +o00 as s — 00
or t(s) — Foo as s — +o0o.

Theorem 3 (in progress). Suppose Assumptions E and F. Then P is es-
sentially self-adjoint on C§°(X).

Remark 4. Probably the same hold if —1 < o < 0, i.e., asymptotically
shrinking cases, or cusp cases. The case o > 1 is open for the moment. The
de Sitter solution corresponds to the e~ weight case, where M is a constant
curvature Riemannian manifold.

2 Asymptotically flat spacetimes

2.1 The first reduction

In order to show the essential self-adjointness of a symmetric operator P
on C§°(X), it is sufficient to show Ker(P* — z1) = {0} for some z4 € C,
+Im(z4) > 0. We concentrate on the case = = z; in the following. The
other case is similar. Let 1) € Ker(P* — z), then it implies

Y € LA(R"), (P — 2)1 =0 in the distribution sense. (1)

Our theorem is proved if (1) implies ¢» = 0. The first step of the proof is
remark that it follows if we know ¢ is a sufficiently good function. This
simple remark is due to Vasy [13].

Lemma 5. If ¢ satisfies (1) and ¢ € HY/>~Y/2(R™) then ¢ = 0.
Here H**(IR") is the weighted Sobolev space H*!(R") = (z)~*(D,)*[L*(R")].

2.2 Semiclassical quantization of the symbol:

We quantize the symbols (functions on R?") using the semiclassical quanti-
zation:

Opy(a)u(x) = aW(a:, hDg)u(z) = (2rh)™" // a(%y,g)ei(”_y)g/hu(a:)dydf
for a € C*°(R?") and u € §(R™), h > 0.

2.3 Asymptotically free classical mechanics:

We recall the symbol of the operator P is p(z, £), and it is asymptotically free

in the sense p(x, &) — po(&) as |x| — oo, where pp(§) = z?,k:l G} &€k This
implies, with the non-trapping condition, the Hamilton flow asymptotically
converges to a free motion, i.e.,

y(t) ~ to(¢), as o] — 00, where v(€) = depo(€) = (2293’“@
k=1

J
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2.4 In-coming escaping function:

With this observation, we can construct a function b_(z, &) with the follow-
ing properties: We write & = z/|z|, and we denote

(5,0,R) = {(2,6) [ 1=6 <[P <146, 0(&) < o, |2| > R}
where 0 < d < 1, 0 € [-1,1] and R > 0.

Lemma 6. For 0 < v < 0,0 < § <1 and 0 < o/ < 0 < 1, there are
Ro and Cy > 0 such that for R > Ry there exists b_ € S*®(R?") such that
supplb_] C I_(430, 7, CoR), b_(x,€) < Cla)7, () € R?", and

C ) <b_(2,8), (x,8) €T_(8,0",R),

{p2,b_} < —co(x) 'b_, with co > 0.

2.5 In-coming smoothness:

We set B_ = Opy(b—). Quantization of the inequality in Lemma 6 implies
an inequality of the form (with the sharp Garding inequality) :

—i[B*B_,P] < —%Bi<x>—13_ + E*E,

where E is a lower order error term (order 0 in h, with suitable microlocal
support conditions). We note the principal term of P is given by h™2p,(z, )
with respect to the semiclassical quantization. Then, by standard algebraic
computations, we learn

c _ 2 h 2
%H(:@ Y2B_p|” + 2(Im2)|| B-o||* < 2—6H<$>1/2B—(P —2)¢||” + | Bl
for ¢ € §(R™) and z € C, Imz > 0. If ®» € L? and (P — 2)¢) = 0, then, at
least formally, we have

c

Sl1@) 2By |* 4 2h(ima) | B> < hl| Byl

and this implies H(a:>_1/QB_¢H = O(h'/?) and ||B_4|| = O(1). In fact, the
error operator E has the same form as B_, and we can iterate this procedure
to show

[(x)"V2B_yp|| = O(WY), || B_| = O(hY) with any N.

These estimates imply ¢ is smooth in the in-coming region, and (z)74¢ €
H®° in a microlocal sense.



2.6 Propagation of singularities and the local smoothness:

By the nontrapping condition, each null geodesic eventually arrive at the
in-coming region as ¢ — —oo. Thus, by the propagation of singularities
theorem (of Hérmander) and the above smoothness in the in-coming region,
we learn ¢ is smooth locally overall.

2.7 Out-going escaping function and out-going smoothness

It remains to show the smoothness and the Sobolev estimate for the out-
going region. We modify the argument for the incoming region. We set

D4(6,0,R) = {(@,€) | 1= 0 < €2 <1+ 6,2 0(¢) > 2] > R}
where 0 < 0 < 1, 0 € [-1,1] and R > 0.

Lemma 7. For 0 < v < 0, 0 < 6 < 1 and —1 < o0 < ¢’ < 0, there
is Ry and Cy > 0 such that for R > Rq there exists by € S®(R?") s.t.
supp[b+] C I't (400, 0, CoR), by (2, &) < C(x)™7, and

CY_1<$>_7 S b+($7£)7 fO’f’ (xvf) € F+(5070/7R)7

{p2, by} < —cola) by + f,  with cg > 0,
where f € C°°(R?™) such that [ is bounded and

supp[f] C {(2,€) | 1 - 40 < ¢ < 1+45,|z| < CoR or 0 < B(z,€) < o'}
By a quantization, we have
Tk C o« - *
—i[B{ By, P] < —EB+<$> 'B, + F+ E*E,
where F' = Opy,(Re(fby)), and E is a lower order error term (as in the

in-coming case). This implies

C

S [[@) 72 B + 2h(1me) | Byl < by, F) + b| By

where ¢ € L?, (P — 2)1) = 0. By the support property of f, we know
(¢, F) = O(h*), and the same argument as in the in-coming case applies.
Thus, we have ||Byv| = H(h*). This implies (z) "¢ € H*™ in the out-
going region.

2.8 Proof of Theorem 1

Combining the estimates in in-coming region, out-going region and compact
region, respectively, we conclude ¢ € HY=7 for any N. Thus, by the first
reduction step, we conclude ¥ = 0 and hence P is essentially self-adjoint. [J



3 Asymptotically static spacetimes

3.1 Classical mechanics

We note, since t = xy € R is a coordinate, we use s € R as the parameter
of the geodesics/classical trajectories. The classical Hamiltonian asymptot-
ically converges to

po(t,l’,ﬂf) = 7-2 - QO(xag) on T*(R X M) = {(t,l‘ﬂ',f)},

as t — oo, and hence pg determines the asymptotic motion. It is easy to
see

exp SI{po (t(), o, 70, EO) = (tO + 2s, 70, €xp Squ (37(), 50))7 s €R,

(with an obvious change of order of variables). Thus, the asymptotic motion
is not free, but the free motion in ¢ times (tensor product) the Hamilton
flow on M generated by qo.

We need to construct an escaping function which is decreasing along the
asymptotic motion, but the asymptotic motion is not free, so we need some
care. On the other hand, qg is an invariant for the flow, and we can handle
it as if it is a constant.

3.2 In-coming escape function and its quantization

We can construct an escaping function of the form: b_ = b_ _ + b_ 4 such
that

supp[b— +] C {Ft > R} N {|7 — (+1)] <20} N {[qo(,¢) — 1| < 26},
boy =t on {Ft>2R}N{]r— (1) <8} N {lqo(x,&) — 1] < 5},

and
{p2,b— 1} < —co{t) tb_ 1, o> 0.

Moreover, they have the form

b*,i(ta €, T, 5) = bl—,:l:(t» T)bQ—,:I:(tv QO(w: 5))

We note the support is inside the in-coming regions. Moreover, since we are
only interested in null geodesics, we may suppose 72 — qo(z, &) ~ 0, and the
regions cover the relevant regions after semiclassical scaling. Here, the only
large parameter of the coordinate is ¢, and we consider the decay in ¢, and
not in x. We quantize b_ 1 by

B_,:t = Oph(bl_d:)bz_d:(t, hQQO),

where ()¢ is the Laplace-Beltrami operator on M corresponding to ¢, and
Opy,(+) is the semiclassical quantization with respect to the ¢-variable. b% | (¢, h*Q)
is defined by the functional calculus.



We note b2_yi(t, h2Qo) is a pseudodifferential operator, and its principal
symbol is given by b2 | (t,qo(x,£)). However, it is not the same as the
quantization of the principal symbol, and the lower order error does not
decay in t. We need to use this quantization, since the asymptotic motion
is still affected by qo, and not free. In practice, it is important that Qg
commutes with B_ .

3.3 Proof of Theorem 2

Using B_ and the argument analogous to the asymptotically flat case, we
can show, if
YpeL? (P—2)1=0, Imz>0,

then ¢ is smooth on the incoming region:
Q- ={(t,7) ‘ Ft > 2R, £7 > 0},

and (t)7¢Y € H*°(2_). Then by the propagation of singularities theorem
and the nontrapping condition again, we learn the local smoothness, i.e.,
¢ € C*°(X). We then use a similar construction of the out-going escaping
function, and an argument analogous to the asymptotic free case to show
is smooth on the out-going region:

Qp = {(t,7) | £t = 2R, +7 > 0},

and (t) 7 € H®(Qy). Now we have v € H "N(X) with any N, and
by the reduction argument, we conclude @ = 0. Thus, P is essentially
self-adjoint. O

4 Asymptotically expanding spacetimes

This part is still work in progress, and we omit the incomplete explanation
in this proceeding.
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