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1. INTRODUCTION

Let R be a quiver Hecke algebra associated with a simple Lie algebra g and “R-gmod” the category
of finite-dimensional graded R-modules. We set K(R-gmod) to be the Grothendieck ring of R-gmod.
It is well-known that the (unipotent) quantum coordinate ring A,(n) is categorified by K (R-gmod).
The basic theory of localization for the monoidal category ﬁ—gmod of R-gmod is initiated by [5] and
its Grothendieck ring rK(ﬁ-gmod) defines the localized (unipotent) quantum coordinate ring ?/(Xﬁ).
In [11], Lauda-Vazirani defined certain crystal structure on the family of simple modules of R-gmod
and they have shown that this crystal is isomorphic to the crystal B(co) of the nilpotent half of
U,(g). In this survey, considering the family of self-dual simple module B(E—gmod) of the localized
category ﬁ—gmod, we define a crystal structure of ﬁq\(ﬁ) and show that it is isomorphic to the cellular
crystal B; := B;, ® --- ® B;,, which is defined for a reduced word i = i - - - iy of the longest Weyl
group element wy. This result can be seen as a localized version of the result by Lauda-Vazirani.
The article is a survey of [13]. But, the subsection 2.1 and Example 3.16 are not described in [13],
which are new parts added here.

2. PRELIMINARIES

2.1. Setting. Let g = n@t®n_ = (e;, hy, fi)ier=(12. »y be a simple Lie algebra associated with a
Cartan matrix A = (a;;); jer Where {e;, fi, hi}ic; are the standard Chevalley generators and n = {¢;)ic;
(resp. t = (Mi)ier, no = (fi)ier) 1s the positive nilpotent subalgebra (resp. the Cartan subalgebra, the
negative nilpotent subalgebra).

Let {a;}ic; be the set of simple roots of g and {( , ) a pairing on t X t* satisfying a;; =
(Chi, @ j))ijer. We also define a symmetric bilinear form (, ) on t* such that (@;,@;) € 2Z., and
(hi, A) = 224 for ) € t*.

Let P := {1 € t*|(h;,A) € Z forany i € I} be the weight lattice and P, := {d € P | (h;, 1) >
0 for any i € I} the set of dominant weights. Set Q := ®;;Za; (resp. Q = Dy Z>0a;), Which
is called the root lattice (resp. positive root lattice). For an element 8 = Y, ma; € Q. define
|8l = .; m;, which is called the height of 8. Let W = (s;| 5;)ic; be the Weyl group associated with P,
where s; is the simple reflection defined by s;(1) = A — (h;, a; (1 € P).

We denote the dual weight lattice of P by P* := {h € t|{h, P) C Z}. Let U(g) := {e;, fi, qh)iel,hep*
be the quantum algebra associated with g with the defining relations (see e.g.,[1, 2]) and U,(9) =
(fidier (resp. U;’(g) := {e;)ier) the negative (resp. positive) nilpotent subalgebras of U,(g). We also
define the Z-form Uz, (s) of U;(g) as in [5]. Set g; := g @2 [n); = (q" — ¢ /(g — g7,

[n]i! := [To<k<nlkli and X := X7/[n];! for X; = fi,e; fori € I, n € Zso.
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2.2. Quantum shuffle algebra and quantum coordinate ring. See [12] for this subsection. Let
F :=(F;|ieI)be a free associative Q(g)-algeba. For a multi-index v = (v{,---,v,,) € I" letus
define a monomial F, := F, ---F, € ¥ and its weight wt(F) := «,, + --- + @,,,. For monomials
x, X', v,y € F,define
(@MW ®y) = ¢ @y,
it induces an associative multiplication on ¥ ®g(;) F and then ¥ ®g(,) ¥ becomes an associative
Q(g)-algebra. We can also define an comultiplication A : & — F ®q() F by setting A(F;) =
1® F; + F; ® 1. The quantum shuffle algebra ¥ is defined as a dual of ¥. For 8 € Q,, set
Fp := Oyerms ui()=pQ(@F . Define
7 =P ;= Homg)(F. Q(9))
BeQ.
The comultiplication A induces a multiplication on ¥ * by
Gy, =0y, Ax), Y eF L xeF),

where (, ) is a natural paring on F* X . Now, by this multiplication ¥* becomes an associative
Q(g)-algebra, which is called the quamtum shuffle algebra. The following lemma is known as the
shuffle lemma:

Lemma 2.1 (shuffle lemma). For v = (vi,-- ,vmu) € ™0V = (v1,-- ,vy) € I" and v’ =
Vst -+ > Vmel) € I, we obtain

(21) ka, . Fi,, = Z 1_[ q_(avw(a) @) F*

w(v)>
WES 1y \a<b,w(a)>w(b)

where S, is a subset of the symmetric group S ,,+; defined by
Spmi=fweSuulwl)<w@)<---<wim), wm+1)<wim+2)<---win+ 1)},
and note that the action of w € S,,,; on a multi-index v = (v, - - - , Vmss) € I is defined by
W)k := V1 (I<k<m+].
Now, let us define the (unipotent) quantum coordinate ring A,(n) a restricted dual of U; (g) as
Ay () = EB Ay Ay (W) := Homg, (U, (8)-5. Q(q))
BeQ_
As is well-known that there exists a natural projection 7 : ¥ —» U/ (g) and then considering the

dual of this map, we obtain the embedding of algebra A,(n) — F*. Note that U,(g) = Ay(n) as a
Q(g)-algebra. The Z-form A(n)z;4 .1 is defined as in [5].

Example 2.2. Aj-case. Set I = {1,2}, (@),1) = (@2, @2) = 2 and (a1, @2) = (a2, ;) = —1. By the
formula (2.1) we get easily FF} - F} = (1 +q‘2)F}‘1, Fy-F; = F},+qF3,, F;-F{ = F5 +qFy,. Here
note that

o _[(123) [123) (123 and their imverses §-1  [[123) (123) (123
12=19123)°\312) | 213 1y 127 \123) \231) 213/

Then, we get
F;-F{-F5=F; - (Fj,+qFy) =0 +qg)F;,+(q " +QF, +(1+¢)F5,
Fy-F5 Fy = F{ - (Fy +qFjy) = (q+q DFy,+2F} + (@ +q DF3,
Fy-Fi-F; = F; (1 + g DF) = (1+ (G F y + qF ) + Fop)-
Finally, we obtain the ”g-Serre relation”:
F;-F;-Fy—(q+q )F;-F,-F;+F;-F; - F; =0.
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3. CRyYSTAL BASES AND CRYSTALS

3.1. Crystal Base of Uq‘(g) = A,(). Letus define the crystal base (L(c0), B(c0)) of U;(g)([l]). For
i € I the operator e; € End( Uq‘(g)) is defined by the formula

i(PQ) = e(P)Q + ¢ Pej(Q), el(fi) =0bij €(1) =0,

for any P € Uy(g)p, Q € Uy(9), i, j € I. By the fact that for P € U,(g)s, there exists the following
unique decomposition

3.1 P= Zfl.(k)P,,,
k>0

where P, € Ker(e}) N U;(g)mkm. And define the operators &;, f, € End(U;(g)) on P € U;(g)ﬁ by
using the decomposition (3.1)

k>0 k=0
which are called Kashiwara operators. Now, set
L(e0) := Z Afy - fiteo, B(c0) = {f;, - -+ fittoo mod gL(00) | k 2 0, iy, -+ ,ix € I} \ {0},
k20,01, ixel
&i(b) = max{k : &b # 0},  @i(b) = &i(b) + (hi, wt(b)),
where u., = 1 € Uy(g) and A C Q(q) is the local subring at g = 0.
Theorem 3.1 ([1]). A pair (L(c0), B(c0)) is a crystal base of U, (9. Indeed, we obtain
&:L(00) C L(00),  fil(c0) C L(c0),
&iB(0) C B(oo) LU {0}, fiB(c0) C B(oo) LI {0},
wt(e;b) = wt(b) + o; for b, &:b € B(co), wt(fib) = wt(b) — a; for b, fib € B(co),
&i(@b) = gi(b) — 1 ¢;i(éb) = ¢;(b) + 1, for b, &b € B(x),
&i(fib) = o(b) + 1 @i(fib) = ¢i(b) = 1, for b, fib € B(x0),
fb=b = &b =b, forb, b € B(x)
3.2. Crystals. We shall introduce the notion crystal following [2], which is a combinatorial object

obtained by abstracting the properties of crystal bases in Theorem 3.1.

Definition 3.2 ([2]). A 6-tuple (B, wt, {&;}, {¢:}, {é:}, {fi})id is a crystal if B is a set and there exists a
certain special element O outside of B and maps:

3.2) wt:B— P, g:B—->ZU{-x}, ¢;:B—->ZU{-x} (i€l),
3.3) g :BU{0)—> BU{0), fi:BU{0)— BU{O} (€D,
satisfying :

(1) @i(b) = &i(b) + (hi, wt(D)).

(2) If b, é;b € B, then wt(¢;h) = wt(b) + ;, €i(é;b) = &;(b) — 1, i(é;b) = ¢;(b) + 1.

(3) If b, fib € B, then wt(f;b) = wt(b) — i, &i(fib) = &i(b) + 1, ¢;(fib) = i(b) — 1.

(4) Forb,b’ € Bandi € I,one has fib = b’ iff b = &;b’.

(5) If p;(b) = —co for b € B, then &b = fib = 0 and &;(0) = fi(0) = 0.
Here, a ccrystal graph of crystal B is a I-colored oriented graph defined by b—sb & fi(b) = b’ for
b,b’ € B.



4 B £ TOSHIKI NAKASHIMA % k% SOPHIA UNIVERSITY

Definition 3.3 ([2]). For crystals By and B,, V¥ is a strict embedding (resp. isomorphism) from B;
to By if ¥ : B; U {0} — B, L1{0} is an injective (resp. bijective) map satisfying that ¥(0) = 0,
wt(W(b)) = wt(b), i(Y(b)) = €;(b) and ¢;(Y(b)) = ¢;(b) for any b € By and ¥ commutes with all
¢;’s and f,s

We obtain the tensor structure of crystals as follows([1, 2]):
Proposition 3.4. For crystals B; and B, set
B1® By = {b1 ® by := (b1,b2) | by € By, by € Bo}(= By X By).

Then, B; ® B, becomes a crystal by defining:

(3.4) wt(by ® by) = wt(by) + wt(b,),

(3.5) &i(b1 ® by) = max(ei(b), £i(ba2) — (hi, wt(b1))),

(3.6) @i(b1 ® by) = max(gi(b), gi(b1) + (hi, wi(b2))),
- _ | @b ®by if pi(by) = €i(b2)

@7 tilbr®b2) = { bi®@eby i ¢i(by) < £i(ba),
x _ [ fbi@by if (b)) > £i(b)

(3:8) filbr®by) = { b1 ® fiby if ¢i(b)) < &i(by).

Example 3.5. Fori € I, set B; := {(n); |n € Z} and

wt((n);) = na;, &((n)) = —n, @i((n);) = n,
£j((n)) = ¢j((n);) = —co (i # j),
&) = (n+ 1) fil()y) = (n—1),
2i((m) = film) =0 (i # j).
Then B; (i € I) possesses a crystal structure. Note that as a set the crystal B; can be identified
with the set of integers Z.

3.3. Explicit structure of the crystal B; ® --- ® B;,. Here we shall describe an explicit structure
of tensor product of B;’s. Fix a sequence of indices i = (i, - - ,i,,) € I" and write

1, ) = f1(0), ® - ® f(0);, = (=x1);, © -+ ® (—X)i,,»

where if n < 0, then fi”(O)i means &;"(0);. Note that here we do not necessarily assume that i is a
reduced word though later we will take i to be a reduced longest word. By the tensor structure of
crystals in Proposition 3.4, for the sequence i as above, we can describe the explicit crystal structure
onB; := B;, ® --- ® B;, as follows: For x = (x,--- , x,) € Bj, define

o(x) 1= xp + Z(hiw @ )X;
Jj<k

and for i € I define

b’-(i)(x) ;= max{or(x)|1 <k <mandi; = i},
MO = MO(x) = (k|1 <k <m, iy = i, o4(x) = 7)),

my) = m(x) = max MO,  m = m(x) := min MO (x).
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Now, the actions of the Kashiwara operators &;, f; and the functions &;, ¢; and wt are written explic-
itly:

3.9) f;(x)k =X+ 6k,ﬁ(fi)’ &;i(X) = xx — 5k,ﬁ1f)’
(3.10) wi(x) = — Z X, &(0) = 7). @ix) = (hi, Wi(X)) + £i(x).
k=1

Define the function ,B,in on B; by :

3.11) B 1= 0 (0 = 0w(x) = X+ > Chivi))x; + X,

k<j<k*
for x = (xq,---, x,) € Bj, where for k € [1,N], k* (resp. k) is the minimum (resp. maximum)
number j € [1, N] such that k < j (resp. [ < k) and iy = i; if it exists, otherwise N + 1 (resp. 0). Here

one knows that ﬁif)(x) and z%gi)(x) are determined by {ﬁ,(:)(x) [l <k<N, ip=1i}.

3.4. Braid-type isomorphism. We shall introduce some isomorphism of crystals, called “braid-
type isomorphism”.
Set ¢;j 1= (hi, a;){hj, @), c1 := —(h;,a;) and ¢, := —(hj, @;). In the sequel, for x € Z, put

x ifx>0,
Xy =
0 ifx<O.

Proposition 3.6 ([14]). There exist the following isomorphisms of crystals ¢ (k = 0,1,2,3)
(1) If Cij = O,

(3.12) ¢§?> : B;® B—B;® B,
where ¢ ((x); ® (),) = (), ® (x);.
(2) If Cij = 1,
(3.13) ¢ :B;® B;j® B—B,;8B;®Bj,
where

P ®(0);® @) =+ (~x+y-2).);® (X +2i & (Y= 2~ (—x+y—2).);.
(3) If Cij = 2,

(3.14) ¢f}2) : Bi®Bj®B[®B_i—L>B_i®Bi®Bj®B,',

where ¢ is given by the following: for (x)i®(y);®(2);®(w); we set (X);&(Y);®(Z);&(W); :=
¢§f.>((x),» ® () ®(2)i ® (W))).

(3.15) X = wH(-ox+y—-w+co(x—cy+2+)+,
(3.16) Y = x+cpw+(—x+z—ciw+x—c1y+24)+,
(3.17) Z = y—(-ax+y-—wto(x—cy+2d+
(3.18) W = z—ciw—(—x+z—ciw+(x—c1y+2)+)+

(4) If ¢;j = 3, the map

(3.19) ¢} :Bi®B;®B;®B;®B ®B—B;®B;®©B;®B ®B;® B,
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is defined by the following: for (x); ® (y); ® (2); ® (u); ® (v); ® (W) ; we set A := —x +c1y — 2,
B:=-y+cz—u,C:=—-z+ciu—vand D := —u+cv—w. Then (X);®(Y);®(2);® (U); ®
W)je W)= ¢S>((x)i Q();® (2)i ® (u); ® (v); ® (W);) is given by

w+ (D +(c2C+ 2B+ A4+,

= x+cw+ (1 D+BC+QciB+2A)1)4)4,
= y+u+w-X-Y,

x+z+v-Y-—-W,

= u-w—-—02D+ Q2cC+ BB+ c2A)1)4 )+,
= v—ciw—(C1D+RC+(c1B+Ay))4)s.

T <N~ X
I}

They also satisfy ¢E§) o ¢§.’lf) =id.
We call such isomorphisms of crystals braid-type isomorphisms.

We also define a braid-move on the set of reduced words of w € W to be a composition of the
following transformations induced from braid relations:

cifee i (cij =0, ceedficee e jijee (e = 1),
i e Jifiee (e = 2)y e difijeee = eee jijijice (cij = 3),

which are called by 2-move, 3-move, 4-move, 6-move respectively.

3.5. Cellular Crystal B; = B;;,..;, = B;, ® - -® B;,. For areduced wordi = i;i, - - - iy of some Weyl
group element, we call the crystal B; := B;, ® --- ® B;, a cellular crystal associated with a reduced
word i. Indeed, it is obtained by applying the tropicalization functor to the geometric crystal on the
Langlands-dual Schubert cell £X,,, where w = s, -+ 8;, 1s an element of the Well group W ([15]).
It is immediate from the braid-type isomorphisms that for any w € W and its reduced words i; - - - i;
and j; - - - j;, we get the following isomorphism of crystals:

(3.20) B,® --®B,=B;,® - ®B.

3.6. Half potential and the crystal B(co). For a Laurent polynomial ¢(xy,--- ,x,) with positive
coeflicients, the tropicalization of ¢ is denoted by ¢ := Trop(¢), which is given by the rule: Trop(ax+
by) = min(x, y) with a,b > 0, Trop(xy) = x + y and Trop(x/y) = x — y and Trop(c) = 0 for ¢ > 0. In
[10], the crystal B(co) has been realized as a certain subset of B; defined as follows:

Theorem 3.7 ([10, Theorem 5.11]). Define the subset of B;:
Brome, = {x=(x1, . xy) € B | 0P (x) 2 0},

where B}, is a certain geometric crystal, @™ is a tropicalization of the half potential @) which is

a Laurent polynomial with positive coefficients in N variables and @ is a certain positive structure
on the geometric crystal B, . Then, (B}, Yoo e, = B(c0).

Remark 3.8. To define the crystal structure on (@;<,)¢(+),®is it is supposed that if &;x ¢ (EV‘W))@M,@P

then &;x = 0. Thus, in this sense, the embedding B(co) = (ﬁfv{))@m,@i < B; is not a strict embedding.

In [16, 15], it has been given the strict embedding of B(co) < B;, which is called “Kashiwara
embedding” and the method to describe the image of this embedding, called ”polyhedral realization”.
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3.7. Subspace H;. The object H; will play a significant role for this article.

Fix a reduced longest word i = i; ---iy and take the function ﬂ](:)(x) = Xk + D jekr (hikai‘,)xj +
X+ (1 <k < N)asin (3.11). In what follows, let us identify the Z-lattice ZV with B; and then we
define the summation of elements x = (xy,--- ,xy)andy = (yy,--- ,yn) by x+y = (Xx;+y1,--- , xny+
yy) as a standard one in ZV. Here, we define the subspace Hj C ZV by

(3.21) H; = {x € Z¥(= By) | BV (x) = 0 for any k such that k* < N} € B;.
The following result was presented in [10]:
Proposition 3.9 ([10]). Fori=ijiy---iy,k=1,2,---,N and a fundamental weight A;, set
(3.22) B = (hy, i, sy A and by = (B0 0P, RY) € By
Then, we obtain that {hy,--- ,hy} is a Z-basis of H;, namely,
(3.23) Hi =7Zh; &Zh, & --- & Zh,,.

Proof. Let {a}};, {h}}; and {s7}; be the simple roots, the simple co-roots and the simple reflections

of the Langlands dual Lie algebra g" respectively. Define mgk) €Zso(ke[l,N],iel)by
r(k) . r ’ ’ k) s
o= Sy Siy—1 7" Sk (@) = me @;-
iel
By [10, Lemma 9.1], one has that {m; := (m§1>,m§2>, e ,mEN)) | i € I} is a Z-basis of H;. Thus, it
suffices to show that hf.k) = mf.k) forany k € [I,N]andi € I.
Let us define the set of paths from a to b (a,b € Z, a > b) by

P(a,b) :={(a, j1, jo,-- - b)) |la>j1> jo>---> j;>b, 1 >0},
where set P(a,a) = 0 and [ = —1. By the following lemma, we can complete the proof of the
proposition.
Lemma 3.10. We obtain the following explicit formulas:
(3.24) (higs iy i, (@)

= D D i X, )y YR (p> k),
(P.j1s 5 jik)eP(p.k)
(3.25) s Si st (@)
N

= Z Z (_1)l+l<h;Lv al{fl ><h:/l ) al;jz > e <hl/‘j/_] 5 a;‘j[ ><h:u ) al;k >a:‘l_v
L=k (L.ji jik)eP(LK)
where note that in (3.25) if £k = L, namely P(L, k) = 0, then the corresponding term is al’.k.

Example 3.11. In ¢ = Gj-case. Set aj; = —1 and a;; = —3. Taking a reduced longest word
i=121212, one has

ﬂ(li)(x) =x1—x2 + X3, ﬂ(zi)(x) =x —3x3 + x4, ﬁ(;)(x) =3 — X4 + X5, f;i)(x) = x4 — 3x5 + X.
By the formula (3.22), one gets

h; =(1,3,2,3,1,0), h, =(0,1,1,2,1,1).
Then the solution space H; of [)’(li)(x) = ﬁ(zi)(x) = ,B(Si)(x) = ﬂg)(x) = 01is given by

H; = {c/hy + cohy = (c1,¢2 + 3¢y, 00 +2¢1,2¢0 +3¢1,00 + ¢1,02) | ¢1,¢2 € Z).
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Lemma 3.12. The braid-type isomorphisms are well-defined on H;, that is, ¢f§)((l-{i) = H,;, where
i’ is the reduced word obtained by applying the corresponding braid-moves. We also obtain the
following formula:

(1) Forany h = (--- ,x,y,---) = --- ® (=x); ® (-)); ® - -- € Hj, assume that a;; = aj; = 0.
Applying the braid-type isomorphism qbg.)) on (x,y) in h, we have
(3.26) G = (oo 3 X)) =8 (=), @ (-0 ® - € Hy
(2) Foranyh= (- ,x,3,2,--) = ®(=x);®(-y);®(=2); ®- - - € H;, assume that ¢;; = aj; =
—1. Applying the braid-type isomorphism ¢f.jl.) on (x,y,z) in h, we have
327 ¢ = (X)) = ®(=2);® () @ (—x); @ € Hy
(3) Forh = (- ,x,y,z,w,---) = -+ ® (-x); ® (=) ® (=2); ® (—w); --- € Hj, assume that
a;j - aj = 2. Applying the braid-type isomorphism ¢f§> on (x,y,z,w) in h, we have
(3.28) PO = Wz yx ) =@ (-w) 8 () ® (), ® (1) ® - €

(4) Forh=(-,xy,z,u,v,w, ) = ®(=x);®(=y);®(=2)i ®(-u) ;& (-); ® (~w); - - - € H;,
assume that g;; - a;; = 3. Applying the braid-type isomorphism qbf.j.) on (x,y,z,u,v,w) in h,
we have

(329) D) =Wz y X ) =B () ® (20 ® (<), ® (1) ® - € Hy

In [10, Sect.8], we have shown the following statements under the condition "H;”, where we omit
the explicit form of H; since we do not need it here. But, we succeed in showing the following
proposition without the condition H; since in [10] we have shown that there exists a specific reduced
longest word iy satisfying the condition Hj;, for each simple Lie algebra g and we got Lemma 3.12.

Proposition 3.13. Leti = iji; - - - iy be an arbitrary reduced longest word. Here if the crystal B(co)
is realized in B; as in 3.6, we shall denote it by B(co); to emphasize the word i. For & € H;, define

B'(co); := {x+ h € ZV(= By)| x € B(co);) C By.
(1) For any x + h € B"(c0); and i € I, we obtain
(3.30) &i(x+h) = &(x)+h, fix+h) = fi(x) + h.
(2) For any h € H;, we have B(co); N B(c0); # 0.

3)
B; = | ] B"(co);

he 7‘1i

Remark 3.14. In the setting of the half-potential method in [10], as mentioned in Remark 3.8, the
crystal B(oo) is realized as a subset of B; and it is supposed that &;x = 0 if é;x ¢ (E‘VU)@HQ = B(c0).
At the statement (2), since x € B(o0); is considered as an element of B;, &;x is also considered as an
element in B;. That is, even if &;x ¢ B(c0), we consider that &;x € B; and then it never vanishes.

It is immediate from this proposition that one has the following theorem:

Theorem 3.15 ([10]). For any simple Lie algebra g and any reduced word iy, - - - i, the cellular
crystal B; j,..;, = Bi, ® B;, ® --- ® B;, is connected as a crystal graph.

Example 3.16. For G;-case, by the polyhedral realization method, we obtain

X4 X3 X2
B(oo) = {(x1, X2, X3, X4, X5, X6) | X6 = 0, x5 > 3 252 3 > x; >0},
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where (x1, X2, X3, X4, X5, X¢) stands for (—=x1); ® (=x2)2 ® (=x3)1 ® (—x4)2 ® (=x5); ® (—=Xg)2. As has
seen in Example 3.11, we get

h; =(1,3,2,3,1,0), h, =(0,1,1,2,1,1).
Thus, let us see that for any v = (a, b, ¢, d, e, f) € Bi21212, the conditions on ¢y, ¢; such that v+ch; +
chy € B(c0). Indeed, they are given by
¢y 2 max(3a — b,2b — 3c,3c —2d,d — 3e,—f), Cc) > —a.

4. QuiveR HECKE ALGEBRA AND ITS MODULES

In this section, we shall introduce the quiver Hecke algebra and its basic properties (see [4, 5, 7,
17).

4.1. Definition of Quiver Hecke Algebra. For a finite index set I and a field k, let (2; j(u, v)); je1 €
k[u, v] be polynomials satisfying:

(1) 2;iu,v)=2;(v,u)foranyi,jel.
(2) 2 j(u,v)is in the form:
t,',j;a,hu“vh ifi # j,
2; j(u,v) = { alera)+blaja)=—2(aa))
0 ifi = j,
where ti,j;—a,-,,O e k*.
Forf = Y;m; € Q. with |B| := Y;m; =m, set IP := {y = (vi,--+ ,v) € I" | XL, @y, = B

Definition 4.1. For 8 € Q,, the quiver Hecke algebra R(f) associated with a Cartan matrix A and
polynomials 2; ;(u, v) is the k-algebra generated by

temlve Py, {ull<k<n), {rll<i<n-1}
with the following relations:
e()e(v') = 6,y e(v), Z e =1, eMx = xe(v), XX = XX,

velp
Te(v) = e(siM)t, mm =TTy if k=1 > 1,

e = Ly, (X XesDEO),
—e(v) ifl=k, vi =vis1,
(Tkxl - xsk(l)‘rk)e(v) = e(v) ifl=k+ 1, Vi = Vi+ls
0 otherwise,

T TeThl — TeTrat TOEW) = Do GXtes Xpr 1, Xpa2)e(v) i vg = vigo,
+ + + = .
0 otherwise,

2, jwv)-2; ;(wy)

u—-w

where @,‘,j(u, v, W) = e Klu,v,w].

(1) The relations above are homogeneous if we define
deg(e(v)) =0, deg(xie(v)) = (ay,, @), deg(rie(v)) = —(ay, ay,,).

Thus, R(B) becomes a Z-graded algebra. Here we define the weight of R(S8)-module M as
wt(M) = —8.
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) Let M = P ez, Mi be a Z-graded R(B)-module. Define a grading shift functor q on the
category of graded R(B3)-modules R(3)-Mod by

qM = @(qM)k, where (gM), = M.
keZ

(3) For M, N € R(B)-Mod, let Homg (M, N) be the space of degree preserving morphisms
and define Homgg) (M, N) := @keZ HomR(ﬂ)(q"M, N), which is a space of morphisms up to
grading shift. We define deg(f) = k for f € Homgs)(¢“M, N).

(4) Let  be the anti-automorphism of R(8) preserving all generators. For M € R(5)-Mod,
define M* := Homg(M, k) with the R(8)- module structure by (r - )(u) := f(y(r)u) for
re R(B), u € M and f € M*, which is called a dual module of M. In particular, if M = M*
we call M is self-dual.

(5) For B,y € O, sete(B,y) = X eperr v, V). We define an injective homomorphism &z, :
R(B) ® R(y) — e(B.y)R(B + y)e(B,y) by £(B,y)(e(v) ® e(v')) = e(v.V), &(B,y)(xie(B) ®
1= xke(ﬁv ) g(ﬂ» 7/)(1 ® xe(y)) = xk+|ﬁ|€(ﬁv ) g(ﬂ» 7)(Tke(ﬁ) ®1) = Tke(ﬁ’ ) g(ﬂ9 e
Tre(y)) = Tirpe(B, y).

(6) For M € R(8)-Mod and N € R(y)-Mod, define the convolution product o by

MoN := R(ﬁ + 7)6([3, ‘y) ®R(ﬁ)®R(7) (M® N)

For simple M € R(8)-Mod and simple N € R(y)-Mod, we say M and N strongly commutes
if M o N is simple and M is real if M o M is simple.

(7) For M € R(3)-Mod and N € R(y)-Mod, denote by MVN := hd(M o N) the head of M o N
and MAN := soc(M o N) the socle of M o N, where the head of module M is the quotient
by its radical and the socle of module M is the summation of all simple submodules.

4.2. Categorification of quantum coordinate ring A,(m). Let R(8)-gmod be the full subcate-
gory of R(B8)-Mod whose objects are finite-dimensional graded R(8)-modules and set R-gmod=
b se0, R(B)-gmod. Define the functors

E; : R(B)-gmod — R(B — «;)-gmod, F; : R(B)-gmod — R(B + a;)-gmod ,

by Ei(M) := e(a;,f — a)M, Fi(M) = L(i) o M, where e(@;,8 — ;) := 3 ep,= €(v) and L(i) :=
R(@;)/R(a;)x; is a 1-dimensional simple R(a;)-module. Let K'(R-gmod) be the Grothendieck ring
of R-gmod and then K (R-gmod) becomes a Z[q, ¢~ ']-algebra with the multiplication induced by the
convolution product and Z[g, g~']-action induced by the grading shift functor g. Here, one obtain
the following:

Theorem 4.2 ([4, 17]). AsaZ[gq, q‘l]—algebra there exists an isomorphism
K (R-gmod) = A,(W)z4 411

4.3. Categorification of the crystal B(co) by Lauda and Vazirani [11]. The following lemma is
given in [4]:

Lemma 4.3 ([4]). For any simple R(8)-module M, soc(E;M), hd(E;M) and hd(F; M) are all simple
modules. Here we also have that soc(E;M) = hd(E; M) up to grading shift.

For M € R(B)-gmod, define
4.1 wi(M) = =B,  &(M) =maxin € Z|E}M # 0}, ¢i(M) = &:(M) + (hi, wi(M)),
4.2) EM = q " Msoc(E:M) = g7 hd(EM),  FiM = ¢7"hd(F;M).

Set B(R-gmod) := {S | § is a self-dual simple module in R-gmod}. Then, it follows from Lemma 4.3
that E; and F; are well-defined on B(R-gmod).
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Theorem 4.4 ([11]). The 6-tuple (B(R-gmod), {E}, {E}, wt, {&;}, {¢i})icr holds a crystal structure and
there exists the following isomorphism of crystals:

¥ : B(R-gmod) — B(co).

Remark 4.5. Note that Lauda and Vasirani showed this theorem under more general setting that g
is arbitrary symmetrizable Kac-Moody Lie algebra. Here we assume that g is a simple Lie algebra.
The definition of E; and F; in (4.2) differs from the one in [11], which follows the one in [7].

5. LOCALIZATION OF MONOIDAL CATEGORY
Here we shall review the theory of localization for monoidal category following [5].

5.1. Braiders and Real Commuting Family. Let A be Z-lattice and 7~ = @,c4 7, be a k-linear A-
graded monoidal category with a data consisting of a bifunctor ® : 73, X7, = 7., an isomorphism
aX,Y,Z2): X®Y)®Z—XQ® (Y ®Z)satisfying a(X, Y, Z@W)oca(XQY,Z, W) =idy ®a(Y,Z, W) o
a(X,Y®Z W)oa(X,Y,Z)®idy and an object 1 € 7 endowed with an isomorphism € : 1 ® 151
such that the functor X — X ® 1 and X — 1 ® X are fully-faithful.

Definition 5.1 ([5]). Let g be the grading shift functor on 7. A graded braider is a triple (C, Rc, ¢),
where C € 7, Z-linear map ¢ : A — Z and a morphism:

Rc:C®X - ¢ X C (XeT)),
satisfying the following commutative diagram:

CoXxey —LphexeCey  (XeT, YeT,)

\ lX@Rc(Y)
Re(X®Y)

FPIXY)eC

and being functorial, that is, for any X, Y € 7 and f € Hom¢(X, Y) it satisfies the following com-
mutative diagram:

id
Cox-* cov

RC(X)l/ ch(Y)
id
xec 2% yec

Definition 5.2 ([5]). Let  be an index set and (C;, Rc,, ¢;)ic; @ family of graded braiders in 7. We
say that (Cy, R, ¢i)icr 1s a real commuting family of graded braiders in 7 if

(1) C; € Ty, for some A; € A, and ¢;(4;) = 0, ¢;(1;) + ¢;(4;) =0 forany i, j € I.

(2) Rc,(Cy) € K idcgc, forany i € 1.

3) RC,.(C]‘) ®ch(Ci) € kxidC,@Cj for any i, j € 1.

Note that R¢,’s satisfy so-called ”Yang-Baxter equation”, such as,
Rc,(Cj) o Rc,(Cy) © Re,(Cr) = Re;(Cy) © R, (Cy) © Re,(Cj) on CioCjoCy.

For a finite index set I, set I := @,;Ze; and 'y 1= @i/ Z>pe;.
Lemma 5.3 ([5]). Suppose that we have a real commuting family of graded braiders (C;, Rc¢;, ¢;)ier-
We can choose a bilinear map H : I' X I' — Z such that ¢;(4;) = H(e;, ¢;) — H(e;, ¢;) and there exist

(1) anobject C* forany @ € I'y.
(2) anisomorphism &, : C* ® CP—¢"@PC¥*F for any a,p € T,
such that C° = 1 and C¢ = C;.
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5.2. Localization. Let 7 and (C;, R¢,, ¢i)ic; be as above and {C%},er, objects as in the previous
lemma. We define a partial order < on I" by

a<Be=pB-acl,
For a;,as,--- €T, define
Doy, =10 €T |aj+6€Tly forany j=1,2,---}.
ForX € 7,,Y € 7, and 6 € Dyg, set
Hy((X, ). (Y.)) := Homr(C**" ® X, ¢" "7y © C7*°),
where a Z-valued function P(a,f,0,1) := H(0,f—a) + ¢(0 + B,u) and the map ¢ : [ X A — Z is
defined by ¢(a, L(B)) = H(a,8) — H(B,@) and L : T — A is defined by L(e;) = 4; ([5]).
Lemma 5.4 ([5]). For § < ¢’ there exists the map

G+ Ho(X, @), (Y, B)) = Hy ((X, @), (Y. 8))
satisfying
4'5,51 o 4'5,’6// = {5,5//for o< o < 0.

Therefore, we find that {Hs((X, @), (¥, B))}sen,,, becomes an inductive system.

Definition 5.5 (Localization [5]). We define the category T by
Ob(7) := Ob(7) x T,
Homz((X, @), (¥, ) := lim Hs((X, @), (Y. 3)),

seD(ap),
A+L(@)=p+L(B)

where X € 7, Y € 7, and the function L : ' — A (¢; = 4;) is as above. We call this T a
localization of T by (C;, R¢,, ¢:)icr and denote it by ‘7'[C?'1 | i € I when we emphasize {C; | i € I}.

Theorem 5.6 ([5]). 7 becomes a monoidal category. Moreover, there exists a monoidal functor
T:7 — T such that
(1) Y(C;)is invertible in T for any i € I, namely, the functors X — X®Y(C;) and X — T(C;))®X
are equivalence of categories.
(2) Foranyi€land X € 7, T(R¢,(X)) : T(C; ® X) = T(X ® C;) is an isomorphism.
(3) The functor Y holds the following universality: If there exists another monoidal category
7 and a monoidal fucntor 1" : 7 — 7’ satisfying the above statements (1) and (2), then
there exists a monoidal functor F : T — 7~ (unique up to iso.) such that 1" = F o T.

Proposition 5.7 ([5]). Under the setting above, we obtain

(1) X,a+p) =g HBaCreX,p), (1,5)®(1,—p) = ¢ HEA1,0)fora eT,,feT and X € T

(2) If 7 is an abelian category, then so is T.

(3) The functors Y : 7~ — T is exact.

(4) If the functor —®Y and Y ®— are exact for any Y in 7, then the functors T >T X XY
(resp. X — Y ® X)) are exact for any Y in T.

6. LOCALIZATION OF THE CATEGORY R-gmod

In this section, we shall apply the method of localization to the category R-gmod.
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6.1. Determinantial Modules. Here we just go back to the setting as in Sect.4. Let L({") :=

q% L(i)*" be a simple R(na;)-module satisfying qdim(L(i")) = [n];! := [}_, Zk:Z:lk (qgi = qu)
Definition 6.1 ([5, 7]). For M € R-gmod, define

F'(M) := L(")VM.
For a Weyl group element w, let s;, - - - 5;, be its reduced expression. For a dominant weight A € P,,

set
my = (hik’sik+l "'Si1A> (k: 1’ ’l)

We define the determinantial module associated with w and A by

M(WA, A) := F" - F"1,

where 1 is a trivial R(0)-module.

Note that in general, one can define determinantial modules M(wA, uA) (w, u € W) which corre-
sponds to the generalized minor Ay,p .

Now, let us see some similarity between the family of determinantial modules {M(woA, A)}acp,
and the subspace H;. As has seen above that for a reduced longest word i = i; - - - iy, the subspace
H; C B is presented by

Hi=Pzhi, b= (0 = By si, s, ADker - -
iel
Furthermore, we also get
Proposition 6.2. For any reduced longest word i = ii> - - - iy and A € Py, set
my =l S Sig, Sy A) (k=1,2,--- ,N) and  hp = (my, - ,my).
Then we obtain
hy = - (0, © 0, @@ (0)) = f(0), @ f2(0);, @+ @ f (O, € H,
where note that for A = }; a;A;, one has hy = }; ajha,.

By this proposition, one observes that there would exist a certain correspondence

(6.1) MwoA,A) = F" - F"1 e ha =" f™(0), ® (), ® - ® (0);,)-

i
Definition 6.3 ([5]). For 8 € Q., define a central element in R(8) by
D= e (Hae[l,l---,ht(ﬂ)),vuzi xa) e(v) € R(B). For a simple M € R(B)-gmod, define an affinization
M of M with degree d:
(1) There is an endomorphism z : M — M of degree d > 0 such that M is finitely generated
freE module of K[z] and M/zM = M.
(2) ;M # 0O foranyi€ I.

Theorem 6.4 ([5, Theorem 3.26]). Forany A € P, and w € W, the determinantial module M(wA, A)
is a real simple module and admits an affinization M(wA, A).

Note that indeed, if g is simply-laced, then the affinization M always exists for any simple M €
R(B)-gmod as ([3]),
M =K[z] & M.
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6.2. Localization.

Definition 6.5 ([5]). Let M be a simple R-module. A graded braider (M, Ry, ¢) is non-degenerate
if Ry (L(7)) : M o L(i) — L(i) o M is a non-zero homomorphism.

For R-gmod, there exists a non-degenerate real commuting family of graded braiders (C;, R¢,, ¢:)icr([5])-
Set Cp := M(wpA, A) and denote Cp, by C;.

Proposition 6.6 ([8]). For A = }; m;A; € P,, we obtain the following isomorphism up to grading
shift:

6.2) Cp := M(WoA,A) = C‘;’”‘ o0 CYM.
Theorem 6.7 ([5, Proposition 5.1]). Define the function ¢; : Q — Z by
$i(B) := —(B,wol\; + A).

Then there exists {(Ci, Rc,, ¢:)}ics @ non-degenerate real commuting family of graded braiders of the
monoidal category R-gmod.

Now, we take I' = P = @B, ZA; and I', = P, = @, ZsoA;. Here, we obtain the localization
R-gmod[Cf'1 |i € I1by {(Ci,Rc,, ¢:)}ier, Which will be denoted by ﬁ-gmod.
By the above Proposition, it holds the following properties:

Proposition 6.8 ([5]). Let ® : R-gmod — ﬁ-gmod be the canonical functor. Then,
Q8 E—gmod is an abelian category and the functor @ is exact.
(2) For any simple object § € R-gmod, (S) is simple in R-gmod.
(3) C; :=®(C)) (i € I) is invertible central graded braider in R-gmod.

For u € P, define EN such that a, = ®(C,) foru € Py, 5_,\1, = Cl.°‘1 and E,H# = 54 o 5,, for
A, i € P up to grading shift.

(4) Any simple object in E—gmod is isomorphic to Ch o ©(S) for some simple module S €
R-gmod and A € P.

Note thatin (4) A € P and S € R-gmod are not necessarily unique.

Remark 6.9. In [5], the localization is applied to more general category %,,, which is the full sub-
category of R-gmod associated with a Weyl group element w. The category R-gmod here coincides
with 6, associated with the longest element wy in W.

Defi_nition 6.10. The category ﬁ-gmod is abelian and monoidal. Therefore, its Grothendieck ring
K (R-gmod) holds a natural Z|[g, q‘{]:algcbra structure, which defines a localized quantum coordi-
nate ring A, () := Q(q) ®z(y,4-11 K(R-gmod).

Indeed, the Grothendieck ring K (ﬁ-gmod) is described as follows:

Proposition 6.11 ([5, Corollary 5.4]). The Grothendieck ring W(ﬁ—gmod) is isomorphic to the left
ring of quotients of the ring K'(R-gmod) with respect to the multiplicative set

S:=1g"[ [lca" 1 ke Z, (@ier € ZLy),

iel

that is, K (R-gmod) = S~'%(R-gmod).
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7. CRYSTAL STRUCTURE ON LOCALIZED QUANTUM COORDINATE RINGS

‘We shall mention the main theorem, crystal structure on localized quantum coordinate ring ﬁq\(ﬁ/).
More precisely, we shall define a crystal structure on a family of self-dual simple objects in the
category E—gmod (Theorem 7.4) and mention that it is isomorphic to the cellular crystal B; (Theorem
7.5), where i is a reduced word for the longest Weyl group element wy.

Lemma 7.1 ([4, Proposition 2.18]). For any i € I, B,y € Q., any modules M € R(B)-gmod and
N € R(y)-gmod, one has the following exact sequence in R(5 + y — @;)-gmod:

(7.1) 0— EMoN — E{(MoN)— q"“PMoE,N — 0.
Fori e I, leti* € I be a unique index satisfying A;s = —wpA,;.

Lemma 7.2. (1) For§ € R-gmod andi € I, if E;S = 0, then the module E;Cy,. o S is a simple
module.
2) If E;S =0 for S € R-gmod, then we get for A € P, with (h;-,A) > 0,

(7.2) SOC(Ei(Cp ©8)) = Cp—p,. © (EiC 0 5),

up to grading shift.

We set
B(ﬁ-gmod) :={L| L is a self-dual simple module in ﬁ-gmod}.

Lemma 7.3 ([5]). For any simple L € E—gmod, there exists a unique n € Z such that ¢"L is self-dual
simple. For a simple module L € R-gmod we define 6(L) to be this integer n.

Then by this lemma, we find that B(R- R-gmod) includes all simple modules in R- gmod up to grading
shift. For a simple object Cpo®(S)€R- gmod we write simply C, o S if there is no confusion.
Now let us define the Kashiwara operators F;and E; (i € I) on B(R- gmod) by

(1.3) FACp 08) = ¢CFSC, o S,
S(Cr0E;S) T T
~ q CproE;S if E;S #0,
7.4 E(CproS)=1" = _
7 (Cne®) {q“CA-Ar “ECx- oy 0 (EiCh, ) i ES =0,

where Cy o S is a self-dual simple module in R- gmod, the actions E;S and F;S are given in (4.2),
which is defined on the family of all self-dual simple modules in R-gmod and in (7.4) the module
E Ca, oS is simple by Lemma 7.2. Note that for any m > 0, E’”(CA ) S) *0, F’”(CA 0§)#0.

Let 'Y : B(R- gmod)——>B(00) be as in Theorem 4.4. For Cp o S € B(R -gmod), we also define

£(Cp 0 8) = &(W(S)) — (hi, woA), Wt(Cp 0 8) = wt(F(S)) + woA — A,

(7.5) @(Cr 08) = &(W(Cn 0 5)) + (hy, Wi(Cp 0 S)).

Theorem 7.4. The 6-tuple (B(R-gmod), wt, {&/}, {¢:}, {Ei}, {F))ies is a crystal.
Here, by Proposition 6.2 we observe that there seems to exist a certain correspondence:

{CAl|A € P} CRgmod «— H
Ca=F"---F™ > hy=f"7" f"™(0), @ (0), ® - @(0),)

L)

Together with the result of Proposition 3.13, we obtain the following:



16 5 £ TOSHIKI NAKASHIMA E# k% SOPHIA UNIVERSITY

Theorem 7.5. For any reduced longest word i = i;i; - - - iy, there exists an isomorphism of crystals:
¥ :B(R-gmod) — B;= U B"(c0)
heH;
CroS +— hp+¥(S) e B™ (),
where ¥ : B(R-gmod)—s B(o) is the isomorphism of crystals given in Theorem 4.4, S is simple in
B(R-gmod) and for A = }}; a;A; sethy = 3, a/h;.

8. APPLICATION AND FURTHER PROBLEMS
8.1. Operator a. Define the Q(¢g)-linear anti-automorphism * of U,(g) by
@ =q", e =en fr=f.
Theorem 8.1 ([2]). Set L*(0) := {u* |u € L(0)}, B*(0) := {b* | b € B(c0)}. Then we have
L*(c0) = (o), B*(c0) = B(w0),
From the proof of Theorem 5.13 in [5] we get

Proposition 8.2 ([5]). For v = (vi,v2, s Vi1, Vm) € I8 (m := |B]) set V = (Vpuy Vi1, - -+ V2, V1).
Define the automorphism a on R(8) by

ale(v)) = e(v), a(xe(v)) = xp—ir1€(v), a(Tje(v)) = —Tpmje(v).
Then, there exists the functor a : R-gmod — R-gmod such that a(C;) = C;- (Vi € I), o> = id and

a~(X oY) = a(Y)oa(X) for X, Y € R-gmod. Furthermore, it is extended to the functor a : E—gmod -
R-gmod which satisfies

(8.1) @ =id, and dXoY)=al¥)odX) forX,Ye ﬁ-gmod.

Note that a(resp. @) induces the operation * on A, (1) (resp. ﬁ!(n)) since a(L(i)) = L(i) and then
one has a(f;) = f; (resp. a(f;) = f;) on A, () (resp. A,(n)). Now, we obtain the following:

Proposition 8.3. Leta : ﬁ-gmod - E—gmod be the functor as above. It yields
(8.2) d(B(R-gmod)) = B(R-gmod).
Here note that Proposition 8.3 can be seen as a generalization of Theorem 8.1.

Since as crystals B(E—gmod) =~ B; for any reduced longest word i, the proposition above gives
rise to the following problem.
Problem 1. Can we describe d-operation on B; = B;, ® - - - ® B;,, explicitly?

Of course, this problem is non-trivial since even for the case B(co) the explicit description has not
yet been done before in B;.

8.2. Category %, In [5], it has been shown that for an arbitrary symmetrizable Kac-Moody Lie
algebra and any Weyl group element w € W, there exists a subcategory %,, CR-gmod and it admits a
localization _

G =CuACT i€ D], (Ci= M(wAi,A)
Indeed, note that for finite type Lie algebra setting, 4, = R-gmod.
Problem 2. We conjecture that the localization % possess a crystal B(%). If so, we also conjecture
that there is an isomorphism of crystals

B(¢,)— B, ® ®B;,

where i; - - - i, 1s a reduced word of w.
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8.3. Rigidity.

Definition 8.4. Let X, Y be objects in a monoidal category 7,and ¢ : X®Y —» landn: 1 - Y®X
morphisms in 7. We say that a pair (X, Y) is dual pair or X is a left dual to Y or Y is a right dual to
X if the following compositions are identities:

3 ’ .
X=2Xel U xereXx X 1eXx=X Y~10Y S vyexe? S yel~y

We denote a right dual to X by D(X) and a left dual to X by DX).
Theorem 8.5 ([5]). For any finite type R, E—gmod is rigid, i.e., every object in E—gmod has left and
right duals.

Note that in [6], it is shown that for any symmetrizable Kac-Moody setting the localized category
%, is rigid.
Problem 3. For a simple object C o S € B(ﬁ-gmod), describe the right and left duals explicitly:
P(D(Cr08)), (D (ChoS)) eB;
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