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1 Introduction and main theorems

A pseudo-solenoid X is a compact connected metrizable space that is the
limit of an inverse sequence of the circles T

T yas T p2 T p3

where p; is a "crooked” map (see [7]) that has a positive winding num-
ber: deg p; > 1 for each 7. It has an exotic property, called hereditary
indecomposablility: for each pair K, L of compact connected subsets of X
with K N L # (), we have either K C L or L C K. In particular every
continuous map [0,1] — X is a constant map. In addition to this com-
plexity, the class of the pseudo-solenoids exhibits a topological rigidity in
that, two pseudo-solenoids X and Y are homeomorphic if and only if X
and Y are shape equivalent (Here ”shape equivalence” is an analogue of
"homotopy equivalence” for spaces that do not have homotopy type of CW
complexes. See [16] for topological shape theory). These conditions are also
equivalent to the condition H'(X;Z) = H'(Y; Z), where H!(-; Z) denotes the
first integral Cech cohomology ([10], [18]). Futhermore a continuous surjec-
tion o : Y — X between pseudo-solenoids X and Y is approximated by
homeomorphisms arbitrarily closely if and only if o induces an isomorphism
o - HY(X;Z) — HY(Y;Z) (see Theorem 2.5).

This note reports a recent result of the author [12] on a non-commutative
analogue of these results. The subject is the matrix algebra M, (C'(X)) =
C(X) ® M,(C) over a pseudo-solenoid X: in view of characterization of
k-homomorphisms of the algebra M, (C(X)) for a compact Hausdorff space



X ([21]) together with the above results, we may expect that the algebras
M, (C(X)) are classified by their C*-algebra-shape types in the sense of
Blackadar [3]. Theorem 1.1, Theorem 1.2 and Corollary 1.3 below show
that this is indeed the case. For each s-homomorphism ¢ : M, (C(X)) —
M, (C(Y)) of compact Hausdorff spaces X and Y, there exist a continuous
map « : Y — X and a (not necessarily continuous) map u : Y — U(n) of
Y to the unitary group U(n) such that

(eN)y) =uly) - ([(ay)) - uly)*, yeY

for each f € M,(C(X)). It turns out that the map « is uniquely determined
by ¢ and is denoted by « in the sequel. The K;-group of a C*-algebra A
is denoted by K7(A) ([19]). For a metric d on a metrizable space X and for
continuous maps a, 8 : Y — X, let d(a, 8) = sup,cy d(a(y), B(y)).

Theorem 1.1. Let X and Y be pseudo-solenoids and let n > 1. For a
«-homomorphism ¢ : M, (C(X)) — M,(C(Y)), the following conditions are
equivalent.

(a) There exists a sequence {py : M,(C(X)) = M, (CY)) | k& > 1}
of x-isomorphisms such that limy_, ||orf — @f|| = 0 for each [ €
M, (C(X)).

(b) There exists a sequence {ay, : Y — X | k > 1} of homeomorphisms
such that limy_, d(ay, o) = 0.

(¢c) The homomorphism ¢ is a shape equivalence in the sense of [3].

(d) The induced homomorphism Ki(p) : Ki(M,(C(X))) — K1 (M,(C(Y)))
of the Ki-groups is an isomorphism.

It can be shown that the condidion (b) above does not depend on the
choice of a metric on X. Also in [11], the condition (b) is shown to be
equivalent to a,, being a shape equivalence.

Theorem 1.2. For each isomorphism F': K1(M,(C(X))) = Ki(M,(C(Y))),
there ezists a x-isomorphism ¢ = M, (C(X)) = M,(C(Y)) such that F =
Ki(p).

Combining Theorem 1.1, Theorem 1.2 and [11, Theorem 11|, we obtain
the following corollary.



Corollary 1.3. Let X,Y be two pseudo-solenoids. Then the following con-
ditions are equivalent.

(a) Mn(C(X)) 2 Mo(C(Y)) as C*-algebras.

(b) Mn(C(X)) and My(C(Y)) are shape equivalent in the sense of [3).
(c) Ki(Mn(C(X))) = Ki(Ma(C(Y))).

(d) X andY are homeomorphic.

(e) X andY are shape equivalent.

(f) H'(X;Z) = H\(Y; Z).

Also one can show (see [12, Proposition 3.3]) that M, (C(X)) and M,,(C(X))
are not isomorphic as C*-algebras if m # n. This together with the above
corollary shows that the matrix C*-algebras M,,(C'(X)) over pseudo-solenoids
X, n > 1, form a (rather small) family of C*-algebras of positive real rank
that are classified by their K;-groups (cf. [8]).

What is crucial in the argument is the characterization of *-homomorphisms
of the matrix algebra M, (C(X)) due to Thomsen (Theorem 2.6), from
which it follows that the homotopy information of a *-homomorphism ¢ :
M, (C(X)) = M,(C(Y)) is carried by the continuous map a, : Y — X

Throughout, T denotes the unit circle on the complex plane. For a
continuous map p : T — T, deg p denotes the winding number of p. For a
compact Hausdorff space X, M, (C(X)) denotes the C*-algebra of the size
n matrices over C'(X). All x-homomorphisms between unital C*-algebras
are assumed to be unital unless otherewise stated.

2 Preliminaries on pseudo-solenoids and -
homomorphisms on matrix algebras

First we recall some basics on pseudo-solenoids. For an inverse sequence




of compact metrizable spaces and for integers i,j with i < j, let p; =
piopit10---opj_1 : X; — X;. In particular p; ;41 = p;. The above sequence
is simply denoted by

(Xiypz'j : Xj — Xz) (21)
Let X be the inverse limit X = @(Xi,pij : X; = X;) and let pi : X —
X; be the projection to the factor space X;. A solenoid ¥ is the limit
¥ = l'&n(Xi,pi‘,- : X; = X;) of an inverse sequence (X;,p;; : X; — X;),
where X; = T for each ¢ and the map p; ;41 : T — T is given by

piipi(z)=2% 2€T

for a positive integer d;.
For two cotinuous maps f,g: S — T between topological spaces S and
T, we write ” f ~ g” when they are homotopic.

Definition 2.1. [11] An inverse sequence (2.1) is said to have Property (x)
if the following condition holds: for each v and for each ¢ > 0 and for each
continuous map A : X; — X; with j > © and X\ ~ p;;, there exist an integer
k> j and a map p: X, = X; such that p >~ pji and d(X o p,pix) < €.

A pseudo-solenoid is originally defined as a compact connected hereditar-
ily indecomposable metrizable space that is the limit of an inverse sequence
of simple closed curves with essential bonding maps. The next definition is
convenient for our purpose. As shown in [11, Theorem 7], it is equivalent to
the original definition.

Definition 2.2. A pseudo-solenoid X is the limit of an inverse sequence

with Property () such that X; = T and deg p; ;+1 > 1 for each i. When
deg p; iv1 =1 for each i, X is called the pseudo-circle.

Every pseudo-solenoid has the same topological shape type of a solenoid.
See [9], [10], [18] for basic information on pseudo-solenoids and see also
[2], [20] for recent developements. The spaces have been studied also from
dynamical system point of view (e.g. [5], [13]). The name ”the” pseudo-
circle above is justified by the next theorem.

Theorem 2.3. [9/,[10],[11, Corollary 8] Let X and Y be pseudo-solenoids.
Then X andY are homeomorphic if and only if X and'Y are shape equiv-
alent.



In what follows, a metric on a metrizable space is always denoted by d.
A specific choice of a metric is not important for our argument.

Definition 2.4. A continuous map o : X — Y between compact metrizable
spaces is called a near-homeomorphism if for each ¢ > 0, there exists a
homeomorphism 0 : X — 'Y such that d(a, 0) < €.

Every near-homeomorphism is a surjection.

Theorem 2.5. [11, Theorem 11] Let X,Y be pseudo-solenoids and let « :
Y — X be a continuous surjection. The following conditions are equivalent.

(a) The map « is a near-homeomorphism.
(b) The map « is a shape equivalence.

(¢) The induced homomorphism o : H' (X;Z) — H'(Y;Z) of the first
integral Cech cohomology is an isomorphism.

For later use, we outline the proof of the implication (b)=(a) above. Let
X =1im(X;,py; - X; = X;),Y = @(Y;,qzj :Y; — ;). For the proof it is
enough to assume that each of X; and Y; is a compact ANR and the inverse
sequences (X;,p;; : X; — X;) and (Y}, ¢;; - Y; — Y;) have Property (x).

Assume that « : Y — X is a shape equivalence. Then we can take
subsequences {m;}, {n;} of positive integers, sequences of continuous maps
{og Yy, = X, | 0> 1} and {B; © Xy, — Yo, | 4 > 1}, and a sequence
{€;} of positive numbers with lim; ., ¢; = 0 such that

d(pmjmi o Q; 0 qM-oo:pmjoo o 05) < €; fOl" eaCh ] S 7/.; and
Q; O 57 x~ pmimi+17 57? O Q41 ~ C_Inmi_,_l .

For notational simplicity we may assume without loss of genearity that
Xi = Xp,;,Yi =Y,,. Then we have

(1) d<pji O & O (ico; Pjoo © a) < ¢ for each 7 <
(2) @joBi >~ piip1, Bi© Qg1 ~ q; i+1, and in particular,

(3) ioqit1 ™ Piit10 Qi



for each i > 1. See the diagram below.

qi i+1 dit1oo
Yi Yipa Y

N

J Tpji P i z‘+1Xi+1 Pit100

In what follows we inductively define subsequences {ix}, {jr} of positive
integers and sequences of continuous maps {6y : ¥;, — X;, | £ > 1} and
{7+ Xipyy = Y, | k > 1} as follows. Take sequences {{} and {n} of
positive numbers such that limy ., & = limg_,oo 1 = 0.

Start with 41 = j; = 1 and let 0; = oy : Y;, — X;,. From (2) above
we have 0y o B ~ p;i,+1. Apply Property (%) to 6; o 5y in order to find
io > 11 + 1 and a map vy : X;, = Xj, 11 such that

U1 ™ Diyt1 4, and d(60y 0 By o vy, piyiy) < &1
Let 1 = B, ov1 : X;, = Y;,. We obtain
(i) d(0y o T1,pii,) < & and
(ii) 7o, ™ B1oPi 1 1,00y ™~ B1O0G £10Gi 11 iy ™ iy iy +1°Gis+1 iy = Giriy-

Apply Property (x) to 7 o i, to find an integer js > iy and a continuous
map w; : Yj, — X, such that

w1 ~ Piyj, and d(Ty 0 oy, 0wy, Gy j,) < M
Let 0y = ay, ow, : Y}, — X;,. We have
(iii) d(71 062, qj5,) <m,
(iv) B2 0 Qjsoo = Wiy © Giyjs © Gjsco = Piyoo O O
(V) Digjs © 0ty = 0ty © @ipj, = b5, and
(Vi) 620 Bj, = ai, © Giyjy © Bjs = Pisjy © Ajy © Bjy ™ Pigjy © Pjs jot1 = Diy jo+1-

See the following diagram.



Xi

wx-l2 Pigja XJ2 pi2j2+lXj2+1])j2+100X

Pijig

Repeating this process we have sequences {iy}, {jx} of positive integers
and {0y : V), — X;, | k> 1} and {7 : X;,,, = Yj, | k > 1} of continuous
maps such that

d(Or © T, Diginsr) < kv AT © Opsts Qs ) < Mk

By making & and 7 sufficiently small, we obtain a well-defined map 6 :
Y — X defined by

Piygoo © 0 := eli_}rg}p,-kie e} H@ O Gjy00 (k 2 1)

which is a homeomorphism satisfying d(61 o ¢j,cc, Pi,e0 © ) < & ([17]).
For an arbitrary ¢ > 0, take a large integer N and a small § > 0 such
that
diam(S) < é, S C X;, = diam(p;,.(5)) <,

where diam(S) denotes the diameter of S (with an appropriate metric). We
may assume that ey, &y < d/2. We may repeat the above construction of
starting with 7; = j; = N and #; = ay. Then the resulting homeomorphism
6 1Y — X satisfies d(piyoo © 0, QN 0 Gjyoo) < En < 0/2. Also we have
d(aN © Gjyoos Piyoo © @) < €n < 0/2. Then we see d(piyoo © @, Piyoo ©0) <
0 and by the choice of §, we have d(f,a) < e. Therefore a is a near-
homeomorphism.

Next we recall some results on x-homomorphisms of matrix algebras
M, (C(X)) over C(X) with X being a compact metrizable space. The fol-
lowing theorem due to Thomsen plays a fundamental role (see [6] for an
analogue in Lipschitz algebras). For a continuous map « : Y — X, let
a1 M,(C(X)) = M,(C(Y)) be the homomorphism defined by (aff);; =
Jijoa (1 <id,5<n)for f=(f;)€ M,(C(X)). The unitary group of size
n is denoted by U(n).



Theorem 2.6. [21],/22] Let p : M,(C(X)) = M,(C(Y)) be a x-homomorphism.
There ezist a continuous map o : Y — X and a (not necessarily continuous)
function u:Y — U(n) such that

() =uly) - flaly) -u(y)’, yeY (2.2)
for each [ € M,(C(X)).

Remark 2.7. The above continuous map « : Y — X is uniquely deteremied
by o, while the unitary element u(y),y € Y, is unique up to multiplication
of unimodular scalar matrices.

For a *-homomorphism ¢ : M,(C(X)) = M,(C(Y)), let o, : ¥ — X
be the continuous map of (2.2). Remark 2.7 shows that o, is well-defined.
Also let U(n)/Z(U(n)) be the quotient Lie group of U(n) by the center
Z(U(n)) = {21, | z € T} with the projection 7 : U(n) — U(n)/Z(U(n)).
Remark 2.7 again shows that the map u, : Y — U(n)/Z(U(n)), given by
t,(y) == m(u(y)) for y € Y, is well-defined and is uniquely determined by
¢. Also Lemma 2.8 (1) below shows that the map Ad(a,) : M,(C(Y)) —
M, (C(Y)) given by

(Ad(ty) f)(y) = uy - f(y) vy, yeY

where wu, is an aribrary unitary matrix such that 7(u,) = u,(y), is well-
defined as well. Under the notation, every homomorphism ¢ : M, (C(X)) —
M,(C(Y)) is written as

¢ = Ad(ay,) o 04?0 (2.3)
for continuous maps ay, : Y — X and 4, : Y — U(n)/Z(U(n)).

For a sequence {py, : M,(C(X)) = M,(C(Y)) | kK > 1} of *-homomorphisms
and a homomorphism ¢ : M, (C(X)) — M,(C(Y)), we write "limg_,o r =

¢ if limy oo ||k (f) — @(f)]] = 0 for each f € M, (C(X)).
The proofs of the next two lemmas are omitted (see [12]).

Lemma 2.8. Let ¢ = Ad(@,) o of, : Mn(C(X) = M,(C(Y)) be a *-
homomorphism.

(1) The map uy, :Y — U(n)/Z(U(n)) is continuous.
(2) Let {or : M, (C(X)) = M,(C(Y)) | k& > 1} be a sequence of x-

homomorphisms such that limy_,., or = . Then klim d(ovp, . ) = 0.
— 00
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(3) Let {o, : Y — X | k > 1} be a sequence of continuous maps such
that klim d(ag,ap) = 0 for a continuous map o : Y — X. Then
—00

there exists a sequence {¢y : M,(C(X)) — M, (C(Y)) | & > 1} of
x-homomorphisms such that limy_,. pr = .

Two x-homomorphisms ¢,1 : A — B of C*-algebras are said to be
homotopic, written as ¢ ~ 1, if there exists a family (®; : A — B)o<t<1 of
sx-homomorphisms such that &, = ¢, &y = ¢, and for each a € A, the map
eq 1 [0,1] = B defined by e,(t) = ®,(a),t € [0, 1], is continuous.

Lemma 2.9. Let X,Y be compact metrizable spaces.

(1) Let @, : M,(C(X)) = M,(C(Y)) be two x-homomorphisms. If ¢
and v are homotopic, then a, ~ oy 1 Y — X.

(2) Let (Y — X))oy and (@, 1Y — U(n)/Z(U(n

topies. Let ¢, = Ad(iy) o af : M,(C(X)) = M,(C
Then the family (or : Mp(C(X)) = Mp(C(Y)))o<,

n)))o<i<1 be homo-
(Y)) fort € ]0,1].

<1 18 a homotopy.

By Kiinneth formula [4], we have
K1(M(C(T))) = K1 (C(T))  Ko(Ma(C)) = Z.

Using the above isomorphism and the continuity of K groups, one can show
the following lemmas. Details are again omitted ([12]).

Lemma 2.10. (1) Lety, v : M, (C(T)) — M,(C(T)) be two x-homomorphisms.
If Ki(¢) = Ki(v), then ap, ~ oy : T — T.

(2) For each homomorphism F : K1(M,(C(T))) — Ki(M,(C(T))), there
exists a map 7 : T — T such that F = K,(%).

Lemma 2.11. Let X = lim(X;,p;; : X; = X;) be the limit of an inverse
sequence (X;,pij : X; = X;), where X; =T for each i. Let d; = deg p; i+1.
Then we have an isomorphism

Ki(M,(C(X))) ={ |r> 1,k eZ}.

dy--



3 Proof outline of main theorems

(1) Proof of Theorem 1.1.

The implications of (a) < (b) = (¢) of Theorem 1.1 are consequences
of Theorem 2.5 and the next two proposition whose proofs are omitted (see
[12]). For a s-homomorphism ¢ : M, (C(X)) — M,(C(Y)), we keep the
notation (2.3).

Proposition 3.1. Let X, Y be compact metrizable spaces andn > 1. Let ¢ :
M,(C(X)) = M,(C(Y)) be a x-homomorphism. The following conditions
are equivalent.

(a) There exists a sequence {py : M,(C(X)) — M, (C(Y)) | k > 1} of
x-isomorphisms such that limy_, pr = .

(b) oy, Y — X is a near-homeomorphism.

Proposition 3.2. Let ¢ = Ad(ii) o o : M,(C(X)) — M,(C(Y)) be a *-
homomorphism, where X andY are compact metrizable spaces and o 1Y —
X andu:Y — U(n)/Z(U(n)) are continuous maps. Then the map « is a
shape equivalence if and only if ¢ is a shape equivalence in the sense of [3].

The implication (¢) = (d) of Theorem 1.1 follows from [3]. In order to

complete the proof of Theorem 1.1, it thus remains to prove the implication
(d)=(b).

Proof of (d) = (b) of Theorem 1.1.

Let X = lién(Xi,pij : X; = X;) and Y = lim(Y], q;; : Y; = Vi), where
X; =Y, =T for each i and assume that (X;,p;;) and (Y}, ¢;;) have Property
(x). Let ¢ = Ad(@) o of and assume that Ki(p) : K;(M,(C(X))) —
K1 (M, (C(Y))) is an isomorphism. Take subsequences {m;}, {n;} of positive
integers and a sequence {p; : M,(C(X,)) = M, (C(Yy,)) | i > 1} of
x-homomorphisms such that

Griniys © Pi ™ Pig1 © Do 1
QD o pmioo =~ inoo o 801
for each ¢ > 1. For notational simplicity, let X; := X,,,, and Y; =Y,,.. Since

K () is an isomorphism, by taking a subsequence if necessary, we may as-
sume that there exist sequences {iy}, {jx} of positive integers and a sequence

10



{me : Ki(M(C(Y5,))) = Ki(C(X4,,,)) | k> 1} of x-homomorphisms which
form the commutative diagram below:

K (Mo (C(X5,)) 25 K (M (C(X, )

Iﬁ(@k)t / lK(‘pk—H)

Ky (Mo (C(Yy,) = Ki(Mn(C(Y, )

qﬂ'kik+1

By Lemma 2.10 (2), there exists a continuous map i : Xy, ,, — Ya, such

that K7 (6%) = n. Then we have

Ki(@rs1 0 BL) = Ki(ghn,.,)r Ki(Bhowr) = Ki(Phym,.,)-

By Lemma 2.10 (1), we see

k+1

Bk o a@k+1 =~ annk+17 a@jk o Bk =~ pmkmk+1-

Thus « is a shape equivalence. Theorem 2.5 implies that « is a near-
homeomorpism.
This completes the proof of Theorem 1.1.

O

(2) Proof of Theorem 1.2. Let X = @(Xi,pij :X; = X)) and Y =
@(K,qzj 1 Y; = Y;), where each of X; and Y; is homeomorphic to T and
the sequences (X;,p;;) and (Y, gi;) have Property (x). Let d; = deg p; i+1.
By Lemma 2.11, we have an isomorphism

Ki(C(X)) = Ki(C(Y)) =A{

k
ad |r>1keZ}.
Let D be the right-most group of the above. It follows from the above iso-
morphism that every homomorphism F' : K (M, (C(X))) = Ki(M,(C(Y)))
is uniquely determined by the element F'(1). Identify the group K (M, (C(X1)))
with K, (M,(C(T))) that is generated by the element [¢]; of Lemma 2.10.
Observe then that K;(p?_)([t]:) = 1 € D under the identification of K;(C/(X))
with D. Take an integer j and an element a € K;(M,(C(Y}))) such that
K (qgoo)(a) = F'(1). This defines a homomorphism F} : K;(M,(C(X;))) —

11



K1 (M, (C(Y;))) such that F o Ky(p_) = Ki(q}s) © F1. Since F' is an iso-
morphism, we can find subsequences {m;}, {n;} of positive integers and se-
quences of x-homomorphisms {F; : K1 (M, (C(Xn,))) = Ki(M,(C(Yn,))) |
i > 1}, {G; : Ki(M,(C(Yy,))) = Ki(M,(C(Xp,,,))) | i > 1} satisfying

m1:17 Tll:j,

GioF;, = K1(p§ni Fii10G; = Kl(qgi for each i > 1.

mi+1)7 ni+1)

Apply Lemma 2.10 (2) to obtain a map «; : Y, — X,,, such that K, (oz'i) =
.

By repeating the proof of Theorem 2.5 (b) = (c) (see Section 2), we
obtain a homeomorphism ¢ : Y — X such that pioc 00 ~ a1 0 gjoc. Then
we have K1(0%) o K1(pt) = Kl(qgoo) o Ky (a}) = K1(q§oo) o Fy. Then we see

Ki(09)(1) = Ki(6%) o Ki(phoo)([th) = Ki(qis) © Fi([t]1)
= Fo Ki(pi.)([th) = F(1),

and thus K;(6%) = F.
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