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1 Introduction

Let © be a bounded domain in R™ (n > 3) with smooth boundary 9€). We consider the
following doubly nonlinear degenerate and singular parabolic equation, called p—Sobolev
flow,

dyud — div (|VulP~2Vu) = A(t)u? in Qe :=Q x (0,00)
(1.1) [lu()]|g+1 =1 fort >0
u = U on Opflss 1= 0 x (0, 00)

where p > 1, p < ¢+ 1 < p* with p* := nn—_’in if 1 < p < n and any finite positive number
if p>n, u=u(zr,t)is a nonnegative function defined for (x, t) € Quo, Vo = 9/0x4,
a=1,...,m, Vu = (Vqu) is the spatial gradient of a function u, |Vu|? = 37 | (Vau)?
and Oyu is the derivative on time ¢. The initial and boundary data uy = up(x) is in the
Sobolev space W47 (), nonnegative and ||ugllq+1 = 1. By multiplying the equation by u
and integration by parts on space,
G L @I + Va0l = MO = A0 = [Tu(o)l,

where || f]|, is the LP(Q2)—norm of a function f, E(u) := [[Vul[b/p is the p—energy of a
function u. The system above describes the negative directed gradient flow in the con-
strained extremal problem for the p—energy. The corresponding Euler-Lagrange equation
is given as the p—Laplace type equation, which has only trivial solution if the domain €2
is star-shaped with the origin. It is proved by a Pohozaev type identity and Hopf’s maxi-
mum principle, which are available for regularized p—Laplace equation (see [M. Guedda,
L. Veron: Nonlinear Anal. 13 (1989) 879-902]). Thus, a solution of the evolution equation
may have concentration points of volume, local (¢4 1)—powered integral, at infinite time,
by the volume conservation ||u(t)||4+1 = 1. Our main purpose is to study such asymptotic
behavior of a solution to the evolution equation above. In this paper we shall report on
some results recently obtained.

The first result is the global existence a weak solution of (1.1) and its regularity (see
[T. Kuusi, M. Misawa, K. Nakamura: J. Goem. Anal. 30 (2020) 1918-1964; J. Differential
Equation 279 (2021) 245-281]).

Theorem 1 (A global existence and regularity) Let p > 1 and p < g+ 1 < p*. Suppose
that ug belongs to WyP(Q), is nonnegative, bounded, |uollcc < 00, and |Juglgs1 = 1.
Then, there exists a global weak solution u € C ([0, 00); LI () N L(0, oo; W, P(R)) of
the Cauchy-Dirichlet problem (1.1), satisfying the energy inequalities

[u@llgrr =1, V£ =0,

+1
(13) 10" 2oy + st E(u(t) < E(uo).
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Moreover, the solution u is positive and bounded, 0 < u(t,z) < ePEOIY4||yg||o for any
(t,x) € Qoo, and u and its spatial gradient Vu are locally in time-space continuous in Qq.

The boundedness and non-negativity of a solution is proved by a comparison type ar-
gument (see [Propositions 3.4, 3.5 and Lemma 3.6, J. Goem. Anal. 30 (2020)]). An
expansion of positivity of a solution is derived by some De Giorgi’s truncated local energy
estimates and De Giorgi’s Sobolev type inequalities with the truncation (see [Sect. 4, J.
Goem. Anal. 30 (2020)], [Theorem 5.2, p. 258, Propositions 5.4 and 5.4, p.259, Appendix
A, J. Differential Equation 279 (2021)]), those are reminiscent of the weak type estimate
in LP estimates. These local estimates are performed under a scaling setting intrinsic to
the doubly nonlinear parabolic operator which is the principal term of our equation. The
existence of a weak solution is based on that of the doubly nonlinear equation only with
principal part (see [J. Geom. Anal. 33 (2023), no. 33]) and a special scaling transfor-
mation (see [Proposition 4.1, p. 255, J. Differential Equation 279 (2021)] and refer to
[M. Misawa, N. Nakamura: Adv. Calc. Var. (2021)]), yielding a solution satisfying the
conservation of volume ||u(t)|/q+1 =1, ¢ > 0.

We are interested in studying the asymptotic behavior around infinite time of the global

solution to (1.1) obtained in Theorem 1. There may exist two possibilities about the
behavior: The global solution of (1.1) strongly converges to a limit function in I/Vlif (Q)
along a time-sequence increasingly tending to oco. Otherwise, the global solution only
weakly does so. The limit function is naturally a weak solution of the stationary equation
corresponding to (1.1);. In the case of the weak convergence there may appear the so-called
energy and volume gap at infinite time, which leads to energy and volume concentration.
We study a concentration phenomenon of the weakly convergent solutions to (1.1).
We shall state the following results, the asymptotic behavior of the global solution of (1.1),
obtained in Theroem 1. The first one characterizes concentration at infinity time, controls
the global solution of (1.1) for large time and leads to deriving the asymptotic convergence
to a limit function which is a stationary solution corresponding to (1.1).

Theorem 2 (s—strong compactness) Let n2—f2 <p<mnandq+1=p*. Let{ty}, tp /oo
as k — oo. There exist subsequence {ti} (non-relabelled), a positive number g > 0 and at
most finite points {x1,...,on} C 2, 0 < N < oo, such that there holds for any positive
number r <1 and allt=1,..., N,

tr

.. 1
(1.4) fiminf = [ )t (et 2 2o

te—7P

and the sequence {u(ty)} is strongly convergent in the Sobolev space WP on any compact
subset of Q\ {x1,...,xn}.

The following result yields the asymptotic profile at a concetration point of the global
soluton of (1.1).

Theorem 3 (Volume and energy concentration) Let n2—]:2 <p<nandqg+1=p* Let
{te}, t /00 and {ri}, m \y 0 as k — oo. There exist subsequences {ty}, {rr} (non-
relabelled), a sequence Ly ,/* oo as k — oo and, a positive number g > 0 and at most
finite points {x1,...,xn} C Q, 0 < N < oo, such that the followings hold for each x’ :=
each x;, 1 =1,..., N,

hkﬂ}i(gf luti)l| Latr (B(ar, ri)) = €03



p—(a+1)
wi(z) = L; 'u (x’ +L, " tk>

— w strongly and locally in WP N LT (IR") (k — o0),

where w is a positive and bounded weak solution of —div(|Vw|P~2Vw) = Aow? in IR™ with
a positive constant Ao, and w and its gradient Vw are locally continuous in IR™.

To explain the meaning of Theorems 2 and 3 we recall some results on the asymptotic
convergence of the Palais-Smale like sequence. In the Laplacian case (p=2) we have the
global compactness result established by Struwe ([M. Struwe: Math. Z 187 (1984) 511-
517). The result was extended to the p—Laplacian case for 1 < p < n (see [C. Mercuri,
M. Willem: Discrete Contin. Dyn. Syst. A 28 (2010) 469-493; N. Santier: Calc. Var.
25 (2006) 299-331; A. Farina, C. Mercuri, M. Willem: Calc. Var. 58:153 (2019)]).
Based on Theorems 2 and 3, we can establish the so-called energy and volume equalities,
which completely characterize the asymptotic behavior as infinity-time of the nonnegative
solutions to (1.1). See [Proposition 2.1, p. 513, Math. Z 187 (1984)], [Lemma 3.4, p.72,
H. Schwetlick, M. Struwe, J. reine angew. Math. 563 (2003)] for the case p = 2, [Theorem
1.2, pp. 471-472, Discrete Contin. Dyn. Syst. A 28 (2010)] for the casel < p < n. We
shall present the result elsewhere in the near future.

The limit function w at time-infinity in Theorem 3 is given as the extremal function
attaining the best constant in the Sobolev inequality, called Talenti function. Refer to
[G. Talenti: Ann. Mat. Pura Appl. (4) 110 (1976) 353-372] for the Laplacian case,
[B. Sciunzi: Adv. Math. 291 (2016) 12 -23; L. Damascelli, S. Merchén, L. Montoro, B.
Sciumzi: Adv. Math. 256 (2014) 313-335; J. Vétois: J. Differential Equations 260 (1)
(2016) 149-161] for the p—Laplacian case. In Theorem 2, any boundary concentration does
not appear because the limit function is a positive stationary solution with zero Dirichlet
boundary condition in the half space IR’} , which, however should be trivial (see [Theorem
1.1, pp. 470-471, Discrete Contin. Dyn. Syst. A 28 (2010)]), where the strong maximum
principle is used (refer to [J. L. Vazquez: Appl. Math. Optim. 12 (1984) 191-202). Thus,
the concentration points are in the interior of the domain 2.

2 Lemmata

We present the local boundedness available for a nonnegative weak solution to (1.1),
obtained in Theorem 1. This is the key estimation for showing the volume concentration
at the limit as time tends to oo of a solution of (1.1).

Lemma 4 (Local boundedness) Let n2—]:2 < p<mnand g+ 1= p*. Suppose that u a
nonnegative weak solution to (1.1), obtained in Theorem 1. Let o be a positive number
satisfying roE(ug) < 1 and Q(rg) = AB (xo,70) X (to — (10)P, to) C Qoo. Put v = ”("TH).
There ezists a positive constant 6o = do(n,p,q) < 1 such that the following holds true: For

any positive number &y < dg, there exist a positive number kg such that
1/

1 1 1 1 uat!
2.1 ko> ——, 1=— ——i——/—d:cdt ,
( ) 0 rg—‘rp(sg 50 Tg+pk0 |Q J k8+1

|
Q
where Q(ky, o) = B (:170, k(()p_(q+l))/pr0) X (to — 18, to), and there holds

(22) U(Io,to) S 4I€0



The proof of Lemma 4 is based on De Giorgi’s type local energy estimates for truncated
solutions, of which the detail will be appeared in a fothcoming paper. Here we shall
show how to determine the local boundedness constant, of which the way is intrinsic to a
solution and may be of its own interest. We emphasize that the equation (2.1) corresponds
to (2.3) in the following proposition.

Proposition 5 (Intrinsic local boundedness) Let 1o > 0 and o9 € (0,1). Let Q(ro) =
B (g, 10) X (to — (10)?, to) C Qoo. Put = % andy = @ (sothat B+y=q+1=
p*). Then there is a unique positive real number ko such that if u € LI(Q(rg)) and
u > 0, then there is a unique solution ko, ko > 1y " 7oy ", to the equation

1/
1 [ kot uP
2.3 ko= — 0——|—][ —u" dx dt ,
23) * T 5% ro P kS
Q(ko,r0)

where Q(ko,ro) = B (:vo, ké”*(qﬂ))/pro) x (to — (r0)?, to) . Moreover, the root satisfies ko =
k(u,r9,00) /1 00 as ro \y0 or dy \, 0.

Proof. Since
k—ﬂ+% (q+1-p)
0

B
][ u—6u7 drdt = — oo / uPtY da dt
X kg ro " P|B(0,1)] )
Q(ko,ro0) Q(ko,m0)

and
n n n—op
—B-l—;(q—f—l—p):'y—q—l—k;(q—i-l)—n:’y—i—T(q—i-l)—n:fy,

we have that

1/v
k0—1+v
T —i-][ —Bu7dxdt
0 .
Q(ko,r0)
1/~
1 1 1
2.4 =k — a1 g dt
( ) 0 RS k0+ |B(071)| / u x
Q(ko,ro)
The function
ko — h(ko) h(ko) = Y / I+ dg dt
0 0)» 0 —T6L+p ko T TB(0.1)] U T ,

Q(ko,ro)

is continuous and strictly decreasing function of kg and h(ko) | 0 as ko 1 oo for any given
ro > 0. Moreover h(r, " F) > 1. Therefore there must be a unique k& > 75" ¥ such that

h(ky) = o7 .

It is easy to see that this root converges to infinity as rg or dg tends to zero. This proves
the claim. O

By the use of Lemma 4 we show the uniform local boundedness for solutions of (1.1).



Lemma 6 (Uniform boundedness) Let n2—]:2 <p<mnandq+1=p*. Suppose that u a
nonnegative weak solution to (1.1), obtained in Theorem 1. Suppose that, for some positive
numbrs o, ro < 1 and Q(ro) = B(zo, 10) X (to — 15, t0) C Qo

to
1
(2.5) = / [ull o+t (Bao, ro)) < €0-
0

_ P
to o

Then there holds, for positive numbers r(, = ry(ro,e0), C = C(ro,€0) and Q(r() =
B(xo, r5) % (to = (r0)”, to),

(2.6) sup |u] < C.
(z,)€Q(rg)

Proof. Let (z(,t;) € Q(ro/2) be an arbitrarily taken and fixed. We shall employ
Lemma 4 for the proof, where ¢ and (zo, o) are replaced by r/2 and (xj, t(), respectively.
Clearly, Q'(r0/2) = B(z{,70/2) % (t{, — (r0/2)?, 1) is contained in Q(ro). Let ko be chosen
asin (2.1) of Lemma 4. From np - ;q D) _ _nn_pp = —(g+1) and (2.5), it follows that,
letting Q'(ko, 70/2) = B (wf, kP~ TP (ro/2)) x (th — (r0/2)7 1) ,

1 q+1 on+p on+p
(27) B —— / % dx dt = Ty / Uq+1 dxdt < o 0 s
|Q/(k0,7“0/2)|Q (koro/2) ko To |B(1)|Q( | g |B(1)]
"(ko,To T0

where we note that kg > 1 by dyp < 1 and ro < 1. Choosing k{, > k¢ so large that

(2.8) 1

_ 1 < 1 2"+Pgo> on+ptlg,
T 0 \rg PRy rgIB()]) T dgrg2B(L))

we obtain from (2.2) in Lemma 4 that
(2.9) w(a,ty) < 4kh for any (zh,t) € Q(ro/2).

Here we notice the dependence of kg, ki = k{ (0, do, €0, 1, p), and thus, the assertion (2.6)
p—(a+1)

follows from (2.9), letting v, = (k() ™ #»  (ro/2)(< 10/2). ]

Proof of Theorem 2.  First we notice that the conditions, n2—]:2 <p<nandqg+1=p*
imply that ¢ > 1. Let u be nonnegative weak solution to (1.1), obtained in Theorem 1.
We shall show the following: There exists a sequence of times {73}, 7% o0 as k — oo
such that the sequence of solutions {u(7;)} converges to a weak solution of the stationary
equation corresponding to (1.1).

First we take a subsequence {tj} of {t}} such that ¢}, ; — 1/ > 1 for all k = 1,... and
ty /oo as k — co. Write as I(k) = ( s t%+1)> k=1,.... Now we prove that there exists

a sequence {73} such that 7, € Iy, k =1,..., 7 /00 as k — 0o and
(2.10) lim / 10pu?(7)| dix = 0.
k—o0
Q

Indeed, by (1.3) in Theorem 1 there holds

© q 9 o0
1 1
Z—//‘@tu% dxdtﬁ//‘@tu%
= Mkl
I, Q 0 Q

2
dx dt < oo,




where we use that the length |Ii| of Ij is larger than 1 by the choice of ¢]. From the
mean-value theorem, for each k& = 1,... there exists a number 7, € I such that, as

k — o0,
2 1
/‘&tunH(m)‘ dx < —//’@u%l
1|
Q I Q

For ¢ > 1 the chain rule of weak differential enables us to compute as

2
dz dt — 0.

1

(2.11) Byu = q%flun’latun,

2
since the function z#+1 is locally Lipschitz on z € [0,00). The fact above and the Hélder
inequality yield the estimation

i
= (7)l2

N
o
<

—1
[u*=" (72 |2l 0w

/|8tuq(7k)|dx q+ 1
Q

20 o EES at1
< —= Q7T t 2 |0, 2
= 7 1€ e lu(®)llg 21 10w (72 [|2
g—1 q+1

< ol Fr 0™ ()lls — 0

as k — oo, which gives (2.10).

Next we claim that the integral equation
(2.12) / (049 (1) + [ValP"2Vu(my) - Vo — () (m)é) der = 0

Q

holds true for any ¢ € C5°(2).

Let 0 < e, h N\, 0 and define a cut-off function on time 7, = np(t) such that 7, is Lipschitz
onR,pp,=1in[rx—e+h, 7, +e—h],n =0in R\ (7 — &, 7 +¢) and |Oynp| < 1/h in
IR. Then, we use the test function ¢y, in the weak form of (1.1);. Noting the integrability
of each term appearing in the resulting equality, by the Lebesgue convergence theorem we
pass to the limit as A \, 0 and have

Ti+e€

/ {/ (Ol + [VulP>Vu - Vo — (Auf)e) d:c} dt =0
Q

Tk —¢€

and then, dividing the both side of the above equation by 2¢, from the Lebesgue’s differ-
enrtial theorem available for integrable functions we can take the limit as € N\, 0 in the
resulting equation to obtain the claim (2.12).

From (1.2) and (1.3) in Theorem 1 we see that the sequence {u(7;)} is bounded in
WLP(Q) and thus, by the compactness of Sobolev empbedding into the Lebesgue space
we have a (non-relabeled) subsequence {7}, the limit function w € WO1 P(Q) and a finite
number)\,, such that, as k — oo,

u(Tg) — w weakly in W1P(Q),
u(Tg) — w strongly in L"(Q), Vr € [1,p*), and almost everywhere ,
(2.13) AMTr) — Moo,

where we use Mazur’s theorem verifying that the closed subspace T/VO1 P(Q) of WHP(Q) is
weakly closed in W1P(Q).



We also have the following strong convergence of gradients: There exists a (non-relabeled)
subsequence {u(1y) such that

(2.14) Du(r) — Dw strongly in L"(Q), Vr € [l,p),

of which the proof is referred in [Lemma 5.3, p. 19, Appendix E, p. 43, M. Misawa, K.
Nakamura, Md Abu Hanif Sarkar: Nonlinear Differ. Eqn. Appl. (2023) 30 :43].

By means of the convergences (2.10), (2.13) and (2.14) we have the identity holding true
for any ¢ € C*°(2)

(2.15) / (IVw|P2Vw - Vo — Aowi¢) dz = 0.
Q

Further we can verify that the sequence {u(7;)} strongly converges to the limit w in
WLHP(Q\ N) for some set of finitely many points N = {x1,...,2x}. In fact we shall
demonstrate the convergence

(2.16) Du(r;) — Dw  strongly in LY (Q\N).

loc

For the proof we shall employ the local boundedness of the solution to (1.1).
Fix xg € Q and assume that for some positive rg < 1 there holds

tr
o1
hkrgg;f % / Hu(t)HL‘H](B(CEoJo)) < €o-

_ P
tr o

Then we choose a subsequence {t,.} of {t;} such that

ty,
1
(2.17) » / 10(8) | 01 (13m0, o) €t < 0.
0

!
1, —To

Applying Lemma 6 with (2.17), we have positive numbers r{, = r{(ro,e0), C = C(ro,€0)
and Q(ro; xo, t},) = B(xo, o) x (), — (r0)?, 1),

(2.18) sup |u| < C,

Q(ro;xo,t},)

yields the uniform on ¢}, boundedness of the solutions {uin Q(ro;zo,t})}, k=1,....
Next we shall show the validity of the following convergences as k — oo:

(2.19) /8tu(7k) (u(g) —w) doe — 0,
Q

(2.20) / (u?(mg) — w?) (u(mg) — w) de — 0.
B(wo,r4/2)

Noting (2.11) again we estimate as

2 a+1 q+1 q—1
/|8tu(7'k)||u(7'k) —wlde < H—ql/@u%(mﬂ (w () + w7 ()Ml ) da
Q Q

(2.21)

A
o
<

a$1 3t ~1
2 () (numnqil T flum)| g+1||w|q+1) ,



where the Holder inequality is used in the second inequality with ¢ > 1. Thus, the
convergence (2.19) folows from (2.10).
For the proof of (2.20) we note the strong integral convergence as

(2.22) u(7g) — w strongly in LY(B(zg,r()) for any finite v > 1,

wichi is verified by the use of the convergence (2.13) and the uniform boundedness (2.18).
By the Holder inequality we simply estimate and take the limit as £ — oo in the resulting
inequality as

[t —wiiutm) e < [ Quml + ul?) fuln) - wl de
B(zo,r}) B(zo,r})
< (lulm)liger + lwliga) lu(mi) = wll o (o)) — 0,
where the convergence (2.22) is used in the last line. The validity of (2.20) is shown.
Here we recall the algebraic inequalities as follows: There holds for any vectors P, Q €
IR™ that
(IPPP=2P = 1QP*Q) - (P = Q) = C1 (1P| + Q)" [P - QI
(2.23) [PP=2P — |QIP2Q| < Ca (IP| + QI * 1P - QI
Now we subtract (2.15) from (2.12) and use the test function 1? (u(7) — w) in the resulting

equation, where the function n = n(z) is Lipschitz on IR™ such that n =1 in B(zg,7(/2),
n = 0 outside B(zo, 7)) and |Vn| < 2/r|. By the use of (2.23) we have, if p > 2,

C’ / n? |Vu(ry) — Vwl|?

B(zo,ry)

<c [ Vil (utm) + Vul) fun) - uf® do

B(zo,7()
- / 2 Ou(ry) (u(ri) — w) dz + A / 72 (u(75) — ) (u(7y) — w) da
B(zo,7() B(xo,7()
(2.24) + (A(Tk) — Aso) / nul (i) (u(ry) — w) da

B(xo,7()
—0 as k — oo,

where we use the convergences (2.19), (2.20) and (2.13)s.
If 1 <p <2 we use (2.23) to have the inequality

0 |Vu(ry) — VP

B(Io,’!‘é)
£
< 7 ([Vu(ri)| + Vw2 [Vu(re) — Vol de / n? (IVu(r)| + [Vw|) da
B(z0,7() B(z0,7()
£
<C / n? (|Vu(Tk)|p_2Vu(Tk) — |Vw|p_2Vw) - (Vu(rg) — Vw) dz
B(zo0,7{)
2—p
2
X n? (|Vu(ri)| + |Vw|)” do

B(zo,7()



At this stage we evaluate the last term in the above inequality. The integral term in the
1st brace is equal to the same as 3rd one in (2.24) and the integral term in the 2nd brace
is bounded by (1.3) in Theorem 1. Thus, from the same resoning as (2.24) this last term
converges to 0 as k — oo.

Therefore we have that Vu(r,) converges to Vw strongly in LP(B(xg,r(/2)) as k —
0o. The convergence (2.16) follows from by a usual covering argument with the strong
convergence of gradients above.

The finiteness of concetration points A in (1.4) is verfied as follows: We compute as

N b ) %N
S [ Ol d = 5 [ Y R0 e s d
i=10,7 5 0,7 »i=1

k"o =0

IN

lu(t)|| Lot () dt = 1,

where we use (1.2) in the last line. Taking the limitinf on & * 0o in both side in the above
inequality yields the estimation

t

N
|
Ve < Doimint [ 1@lzessenn d
= =T
N b
< it [ 1Ol e < 1
B
and thus,
1
(2.25) N < —.
€0
The proof of Theorem 2 is completed. O
Proof of Theorem 3. We shall show the validity of Theorem 3. Let xg = x;,

i=1,...,N be any point where (1.4) holds true for any positive r < 1. Let {tx}, tx / 00
as k — oo. Let {r;} be a sequence of postive numbers 7, \, 0 as [ — oco. Then, by (1.4)
we have, for any r, [ =1,...,

tr

/ Hu(t)”L‘IH(B(zO,m)) dt > g

t—(r)P

(2.26) hkn}‘lor.}f Ok

and from the mean-value theorem there exists a number ¢y, tx — (r)P < tg; < ti for each
k,l =1,... such that

ty

1
(2:27) futidlless = s [ Ol

t—(r1)?



By Cantor’s diagonal argument, (2.26) and (2.27) we can take subsequences {r}} of {r;}
and {t}, } of {tx;} such that t; — ()P < t}, <t and

thy, 00, 5. N\ 0 as k — oo,
o €0
(2.28) i inf [[u(t) | Lot (B, ) 2 -

Let us write {¢}, } as {tx} and {r.} as {rg}.

Hereafter we shall fix £ = 1,... and write as tg = ¢ and ro = 7. Let Q(rg) =
B(zo,70) x (to — (ro)P, to). Let (z(,t;) € Q(ro) be arbitrarily taken and be fixed. Make
a local prabolic cylinder Q'(ro) = B(z(, o) % (t{, — (ro)?, t;) with vertex at (xf,t;). We
now employ Lemma 4 in Q'(rg). Thus, we have positive numbers dy < 1 and L’ such that

L' > (ro) 707,
Q'(Lr0) = B (wh, (L)@ 0)/mry ) x (th — (o) ).

1/~
1 1 1 udtt
(229) 1= % (To)n+pL/ + |Q’(L’7fr0)| A / W dx dt N
Q'(L',ro)
(2.30) u(zg, ty) < AL

Here, in (2.29)3 and (2.30), the positive number L may depend on (x{,t;). Now we
claim that the positive numbers L’ is bounded uniformly on (zj,t;). Indeed there exists
a positive L > L’ such that

L > (2rg)~" 7757,

1 1 1

wit dz
Gy | oL T Q0] drdt

gt1 2z
(2.31) / T dwdt | < (00)71Q(r0)] /

Q(2ro) Q(2r0)

Because the positive constant L in (2.31) does not depend on any (xj,t;) € Q. In fact,

~

for any positive [ > 1 and any point (xf,t,) € Q(ro), Q'(l,79) is contained in Q(2ry) and
thus, we have,

1/~
1 1 1 wdt!
— ~ —— dx dt
do | (ro)"*vl * Q' (1) / a1
Q' (L,ro)
1/~
1 1 1
= — + wIt da dt
o | (ro)" Pl |B(1)|rg™? /
Q'(L,ro)
1/~
1 1 1
2.32 < = + / wItt dg dt
( ) do | (ro)™*rl  |Q(ro)]
Q(2ro)

L’ is a root of the equation (2.29) and L is that of (2.31) and thus, L doed not dpend on
(xp,tp) € Q and L' < L.
Therefore from (2.30) and the observation above it follows that

(2.33) u(xy, ty) < 4L for any (z(,t;) € Q.



We write L as Ly to indicate the dependence of L on t; and 7. Now we introduce the
scaled solution defined as

p=(a+1)
u(azo—i—Lk P, tk—|—t>

(2.34) v (x,t) = I ;

gtl—p

(z,t) € Q' (k) = B(k) x J(k), B(k)=B (O, reLly © ) , Jr=(=(rp)?, 0).

From (2.31)1, the space-width of Q’(k) is computed as

atl—p > — n —n
(2.35) Ly 7 > (80) R (r) e foo as k — oo,

because _p(1++;p)_" < 0 and 4y is a fixed positive number, and the time-length ()P \, 0

as k — oo, and thus, the sequence of sets {Q'(k)} converges to all of space IR". By (2.33),
we have the boundedness

(2.36) sup v, < 4
Q' (k)
and compute the integral quantities of vy for any ¢ € (—(rx)?, 0), as
(2.37) ok ()| o1 By = llute + D)l Latr(B(zo, r)»
(2.38) IVUr ()l Le k) = IVults + Ol e 8o
0 t
(239 | 100yt = [ 10
—(rk)? tp—(rk)?

By virtue of the boundedness (1.2) and (1.3) we can argue similarly as (2.10)-(2.15) to
have subsequences {t}.}, {r}.} (non-relabelled), a sequence {73} and the limit w € WP N
LA (IR™) such that

b1 — b > 1, Tk € (t, — (r})P, t}) forall k=1,...,

/ |0yvr (72) > dzz —> 0 as k — oo,
B(k)
/ (Opvr(17)6 + |V (1) P2 Vg (71) - Vo — (M) (1x)) de =0 for all ¢ € CF(IR™),
IR”!L
(1K) — w weakly in W1P(IR"),
v (T8) — w strongly in L"(IR™), Vr € [1,p*), and almost everywhere IR",
)\(Tk) — )\OO,
Doy (7)) — Dw strongly in L"(IR™), Vr € [1,p),
/ (|VwP~?Vw - Vo — Acwi¢) dz =0 for all ¢ € Cg°(IR™).
IR'n,

Further we have the strong convergence of gradients

(2.40) Duy(1,) — Dw strongly in LP(IR™),

of which the proof is performed similarly as in (2.19)-(2.24) by the use of (2.36). The
proof of Theorem 3 is completed. O
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