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Abstract

This paper is an announcement of the series of recent research of the
author jointly done with Izuki, Nogayama and Noi. Actually, the author
considered the class A% with them. But this note is oriented to general
applications of the local class of weights. This is why the author omitted
p(+) in the title.

1 Introduction

Let 1 < p < co. A locally integrable weight w is an A,-weight or belongs to A,-
1

class, if 0 < w < oo almost everywhere, and [w]4, = sup mQ(w)méf_l)(w_l) <

QeQ

oo. The quantity [w]4, is referred to as the A,-constant or the Ay-characteristic.
The class A, collects all A,-weights. Write Ao =, o0 Ap-

Here and below we write

) = (g / \w@),udx)i

for a cube @ and a function w € L°(R").
We know:
e The Hardy—Littlewood maximal operator M is bounded on LP(w) if and
only if w € A,,.

e It is easy to check 4, C A, C A, C L} .(R™) by Holder’s inequality when-
ever 1 < p < ¢ < oco. But any weight in A, is never integrable.

e Let r>1. | |*€ A, if and only if € (—n, (r — 1)n).



Among other things, it is sometimes inconvenient that M p(,1) is not in A;. The
goal of this series of research is to overcome this issue by using the local class.

With this in mind, let

MlOCf(:E) = sup XQ X[Ol ’Q’ / |f |dy

QeQ

for a measurable function f: R"™ — C or f: R" — [0, o0].

For a weight w, define its local A;-characteristic by

Mloc

[ Aloc = ‘ .
LOO

The quantity is also called the local Ai-constant. A weight w is a local A;-weight
if [w] gioc is finite. The class A collects all local Aj-weights.
Let 1 < p < oo. A locally integrable weight w is a local A,-weight or
belongs to local Ay,-class, if 0 < w < oo almost everywhere, and [w] Ao =
1

sup me(w )m;” 1)(w*1) < o0o. The quantity [w]aw. is referred to as the Ape-
QeQ

constant or the A°-characteristic. The class AIOC collects all AIOC weights. Write

Aloc _ U1<p<oo Aoc
It is known that M, is bounded on LP(w) if and only if w € A°.

Here we present examples. Let A€ R,0<k<land1l<p< .

1. Asis seen from the fact that w(x) ~ w(y) if [z —y| < 1, w(z) = (1+]x])4
Aloc.
P

2. Likewise, w(z) = exp(Alz|") € A¥°.
3. Unfortunately, w(x) = exp(—n|z|?) ¢ Al

I would like to present some applications to this local class. Here I can consider
the following function spaces:

1. Periodic function spaces: Denote by LP(T") the p-locally integrable func-
tions with the period Z". Then we can embed LP(T") into LP((Mxpa))*)
for any o > 1.

2. Amalgam spaces: Let 1 < p,q < oo. Let f be a measurable function.

Define )
q
1 lleazry = (Z (HfHLp(mﬂo,un))q) :

meZ"l

2



The amalgam space ¢9(LP) collects all measurable functions f for which
| flleacry < oo. The space £>°(LP) is referred to as the uniformly p-local
function space.

As we mentioned in the abstract, what we did is to replace LP with the vari-
able exponent. The starting point where we characterized the class for variable
Lebesgue spaces can be located as the extension of the result by Rychkov [5].
However, his technique does not work (see [1]). We considered the dyadic coun-
terpart (global/local) and we managed to characterize the local class for variable
exponents. As further applications, we considered the wavelet characterization
2] and Sobolev spaces [3]. As is well known, the class A, is monotone. We
established the counterpart in [4]. In [4] we considered local Hardy spaces.
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