Applications of the class A^{loc}

Yoshihiro Sawano

Abstract

This paper is an announcement of the series of recent research of the author jointly done with Izuki, Nogayama and Noi. Actually, the author considered the class $A_{p(\cdot)}^{\mathrm{loc}}$ with them. But this note is oriented to general applications of the local class of weights. This is why the author omitted $p(\cdot)$ in the title.

1 Introduction

Let 1 . A locally integrable weight <math>w is an A_p -weight or belongs to A_p -class, if $0 < w < \infty$ almost everywhere, and $[w]_{A_p} \equiv \sup_{Q \in \mathcal{Q}} m_Q(w) m_Q^{(\frac{1}{p-1})}(w^{-1}) < \infty$. The quantity $[w]_{A_p}$ is referred to as the A_p -constant or the A_p -characteristic. The class A_p collects all A_p -weights. Write $A_\infty = \bigcup_{1 .$

Here and below we write

$$m_Q^{(u)}(w) = \left(\frac{1}{|Q|} \int_Q |w(x)|^u dx\right)^{\frac{1}{u}}$$

for a cube Q and a function $w \in L^0(\mathbb{R}^n)$.

We know:

- The Hardy–Littlewood maximal operator M is bounded on $L^p(w)$ if and only if $w \in A_p$.
- It is easy to check $A_1 \subset A_p \subset A_q \subset L^1_{loc}(\mathbb{R}^n)$ by Hölder's inequality whenever $1 \leq p \leq q < \infty$. But any weight in A_q is never integrable.
- Let r > 1. $|\cdot|^{\alpha} \in A_r$ if and only if $\alpha \in (-n, (r-1)n)$.

Among other things, it is sometimes inconvenient that $M\chi_{B(0,1)}$ is not in A_1 . The goal of this series of research is to overcome this issue by using the local class.

With this in mind, let

$$M^{\text{loc}} f(x) \equiv \sup_{Q \in \mathcal{Q}} \frac{\chi_Q(x)\chi_{[0,1]}(|Q|)}{|Q|} \int_{\mathcal{Q}} |f(y)| dy$$

for a measurable function $f: \mathbb{R}^n \to \mathbb{C}$ or $f: \mathbb{R}^n \to [0, \infty]$.

For a weight w, define its local A_1 -characteristic by

$$[w]_{A_1^{\mathrm{loc}}} \equiv \left\| \frac{M^{\mathrm{loc}} w}{w} \right\|_{L^{\infty}}.$$

The quantity is also called the local A_1 -constant. A weight w is a local A_1 -weight if $[w]_{A_1^{\text{loc}}}$ is finite. The class A_1^{loc} collects all local A_1 -weights.

Let 1 . A locally integrable weight <math>w is a local A_p -weight or belongs to $local\ A_p$ -class, if $0 < w < \infty$ almost everywhere, and $[w]_{A_p^{\rm loc}} \equiv \sup_{Q \in \mathcal{Q}} m_Q(w) m_Q^{(\frac{1}{p-1})}(w^{-1}) < \infty$. The quantity $[w]_{A_p^{\rm loc}}$ is referred to as the $A_p^{\rm loc}$ -constant or the $A_p^{\rm loc}$ -characteristic. The class $A_p^{\rm loc}$ collects all $A_p^{\rm loc}$ -weights. Write $A_\infty^{\rm loc} = \bigcup_{1 .$

It is known that M_{loc} is bounded on $L^p(w)$ if and only if $w \in A_p^{loc}$.

Here we present examples. Let $A \in \mathbb{R}$, $0 \le \kappa \le 1$ and 1 .

- 1. As is seen from the fact that $w(x) \sim w(y)$ if $|x-y| \leq 1$, $w(x) = (1+|x|)^A \in A_n^{loc}$.
- 2. Likewise, $w(x) = \exp(A|x|^{\kappa}) \in A_p^{loc}$.
- 3. Unfortunately, $w(x) = \exp(-\pi |x|^2) \notin A_{\infty}^{\text{loc}}$.

I would like to present some applications to this local class. Here I can consider the following function spaces:

- 1. Periodic function spaces: Denote by $L^p(\mathbb{T}^n)$ the *p*-locally integrable functions with the period \mathbb{Z}^n . Then we can embed $L^p(\mathbb{T}^n)$ into $L^p((M\chi_{B(1)})^{\alpha})$ for any $\alpha > 1$.
- 2. Amalgam spaces: Let $1 \leq p, q \leq \infty$. Let f be a measurable function. Define

$$||f||_{\ell^q(L^p)} = \left(\sum_{m \in \mathbb{Z}^n} (||f||_{L^p(m+[0,1]^n)})^q\right)^{\frac{1}{q}}.$$

The amalgam space $\ell^q(L^p)$ collects all measurable functions f for which $||f||_{\ell^q(L^p)} < \infty$. The space $\ell^\infty(L^p)$ is referred to as the uniformly p-local function space.

As we mentioned in the abstract, what we did is to replace L^p with the variable exponent. The starting point where we characterized the class for variable Lebesgue spaces can be located as the extension of the result by Rychkov [5]. However, his technique does not work (see [1]). We considered the dyadic counterpart (global/local) and we managed to characterize the local class for variable exponents. As further applications, we considered the wavelet characterization [2] and Sobolev spaces [3]. As is well known, the class A_p is monotone. We established the counterpart in [4]. In [4] we considered local Hardy spaces.

References

- [1] T. Nogayama and Y. Sawano, Local Muckenhoupt class for variable exponents. J. Inequal. Appl. 2021, Paper No. 70, 27 pp.
- [2] M. Izuki, T. Nogayama, T. Noi and Y. Sawano, Wavelet characterization of local Muckenhoupt weighted Lebesgue spaces with variable exponent. Nonlinear Anal. 198 (2020), 111930, 14 pp.
- [3] M. Izuki, T. Nogayama, T. Noi and Y. Sawano, Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents. Constr. Approx. 57 (2023), no. 1, 161–234.
- [4] M. Izuki, T. Nogayama, T. Noi and Y. Sawano, Weighted local Hardy spaces with variable exponents. In preparation.
- [5] V.S. Rychkov, Littlewood–Paley theory and function spaces with $A_p^{\rm loc}$ weights. Math. Nachr. 224, 145–180