ON FORCIBILITY OF ¥, SENTENCES OVER L(Vj)

DAVID ASPERO

ABSTRACT. We prove a reflection property, with respect to forcibil-
ity of ¥ sentences, for L(Vy), where ¢ is the least ordinal vy which
is a Woodin cardinal in L(V;).

1. INTRODUCTION

Given a model M of enough of ZF and given an ordinal 6 € M, let
Coll(Vs,8)™ denote the partial order, ordered by reverse inclusion, of
all functions f : o — VM in M, for o < 4. If o is strongly inaccessible,
M =V = L(V), and for every o < § there is some well-order of VM
in M, then Coll(Vs, )™ forces ZFC over M and adds no sets to M of
rank less than 6. Also, if ¢ is Woodin in M, then ¢ remains Woodin in
the extension of M by Coll(Vj, §)M.

The main purpose of this note is to prove the following theorem.

Theorem 1.1. Suppose d is the least ordinal v such that v is a Woodin
cardinal in L(V,). Let ¢ > ¢ be such that L.(Vs) satisfies enough of
ZF and let M be a countable transitive model for which there is an
elementary embedding 7 : M — L.(Vs). Let o be a ¥y sentence and

suppose N 1is a countable transitive model of a large enough fragment
of ZFC such that

(1) M € N and M is countable in N,
(2) N[H] is Si-correct in V' for every set-generic filter H over N,
and

(3) there is some ordinal o« € N and some partial order P € VN
such that VN =P forces o.

Then there is a P-generic filter G over N, a transitive model M' €
N[G], an elementary embedding j : M — M', j € N[G], and an
ordinal o* < §* = j(771(0)) such that, letting Qg = Coll(V;Y' 5*)M",
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there is a Qg-name Q, € M’ for a partial order in Vi | M (G, such that

i
We will be using the following well-known fact (s. for example [4] or
[5])-

Lemma 1.2. Let k be a cardinal and let 6 < k be a Woodin cardinal.
Suppose X* exists for every X € H,. Let N be a countable transitive
model such that there is an elementary embedding m : N — H, with
§ € range(r), and let & € N be such that 7(0) = . Let H € V be a
P-generic filter over N for some partial order P € VSN, Then N[H] is
Yi-correct in V.

M'[Gg,) = Q1 has the 6*-c.c. and forces V. Moty

Theorem 1.1 and Lemma 1.2 have, as an immediate consequence,
the following reflection statement, for forcible X5 sentences, at the first
ordinal v which is a Woodin cardinal in L(V).

Corollary 1.3. Suppose there is a proper class of Woodin cardinals
and 0 is the least ordinal vy such that v is a Woodin cardinal in L(V5).
Let Qo = Coll(Vi,d). Suppose o is a forcible 3y sentence. Then there

is an ordinal o < § and a Qg-name Q1 € L(Vs) for a partial order on

L(V3) (G| such that

partial order in Vs

]

L(V;)[Gg,) = Q1 has the §-c.c. and forces Va( Va)lCoyuty =

Proof. 1t is enough to prove that if € > ¢§ is any ordinal such that L.(V)
satisfies enough of ZF, then there is an ordinal a@ < ¢ and a Qy-name

«(V9)[G,| such that

L.(V3)[Gg,] = Qi has the d-c.c. and forces V, 2-t] o

Let P be a partial order forcing o and let s a sufficiently high cardinal
which is a limit of Woodin cardinals.

Let P be a countable elementary submodel of L.(Vs) and M the
Mostowski collapse of P. Let m : M —— P be the inverse of the
collapsing function of P. Let ) be a countable elementary submodel
of H,, such that M, P € @ and let N be the Mostowski collapse of
Q. Let 7 : N — H, be the inverse of the transitive collapse of Q)
and let P be such that 7*(P) = P. We clearly have that M € N, M
is countable in N, and N = P forces 0. Let a € N be an ordinal
such that VM |= “P forces o”. Since & is a limit of Woodin cardinals
and Q < H,, we have by Lemma 1.2 that N[H] is Xi-correct in V
for every forcing notion Q € N and every Q-generic filter H over

Q; € L. (Vi) for a partial order on partial order in V:s 1

L(Vy)[G
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N. By Theorem 1.1 there are then a P-generic filter G over N, a
transitive model M’ € N[G], an elementary embedding j : M — M’,
j € NI|G], and an ordinal o* < §* := j(7v71(d)) such that, letting

Qp = qul(%ﬂl,, )M there is a Qp-name Q; € M’ for a partial order
in %JKFEGQO] such that

M/[G%*Ql]

M'[Gg,] = Qy has the 6*-c.c. and forces V. Eo
But then the desired conclusion holds by elementarity of jon~t. [

Remark 1.4. As will be immediate from the proof, assuming there is
a proper class of Woodin cardinals, the conclusions of Theorem 1.1 and
Corollary 1.3 extend to any ordinal v such that v is Woodin in L(V/)
and the set of L(V)-Woodin cardinals is bounded in ~.

Before proceeding to the proof of Theorem 1.1, we will point out
that Hugh Woodin has proved similar results.

2. PROVING THEOREM 1.1

Throughout this section, a premouse is meant to be simply a tran-
sitive structure (M, €,0), with M satisfying enough of ZFC and ¢ €
Ord™ as given by [3]. We will consider iteration trees in the sense of
[3], Definition 1.4.

The following is Definition 1.9 from [3].

Definition 2.1. An iteration tree T is normal iff there are ordinals
Pa, for e < 1h(T), such that for all a, f with a + 1, 5+ 1 < 1h(7),

(1) pa+2< strengthMZ(Ea),

(2) po < pg for all @ < B < 1h(T), and

(3) for every « such that v+ 1 < 1h(7), T-pred(« + 1) is the least
v < a such that crit(E,) < p,.

If 7 is an iteration tree of length A and @ < 8 < A, then
pT (o, B) = min{strengtth(Ev) Ca<y< B}

Theorems 2.2 and 2.3 below are, respectively, Theorems 2.2 and
Theorem 4.3 from [3].

Theorem 2.2. Let T be a iteration tree of limit length X, and let b and
c be distinct cofinal branches of T. Let 0 = sup{p” (o, \) : a < A}, and
suppose 0 € wip(M]) Nwip(MT). Let f: 0 — 0, f € M] N M.
Then M = “6 is Woodin with respect to f7; in other words, M]
satisfies that there is some k < 6 such that f“k C k and there is an
extender E with crit(E) = k and strength(E) > ig(f)(k).
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Given a model M, an elementary embedding 7 : (M, €) — (V,, €),
an iteration tree 7 on M, and a branch b through 7, we say that b is
m-realizable if there is an elementary embedding

ko (M],€) — (Va, €)
such that 7 = ko jaf - Also, given any f < 1h(7) and an extender

E on MJ, we say that Ult(M], E) is w-realizable in case there is an
elementary embedding

k:UW(M],E) — (Va, €)

-
such that =k o i]gb o jarﬁ, where

i MT — Ult(M], B)
is the canonical extender embedding.

Theorem 2.3. Let T be a normal® iteration tree on a countable model
M, and let m : (M,€) — (V,,€) be an elementary embedding for
some ordinal . Suppose there is no mazximal branch b of T such that
sup(b) < Ih(T) and b is w-realizable.

(1) IfIh(T) is a limit ordinal, then T has a cofinal branch which is
m-realizable.

(2) If B < v <IW(T), MT = “E is an eatender”, and crit(E) +
1< p"(B,7), then Ut(M] , E) is mw-realizable.

We will now start with the proof of Theorem 1.1.

Let 6 be the least ordinal v such that v is a Woodin cardinal in
L(V,), let € > § be such that L.(V;) satisfies enough of ZF, and let
M be a countable transitive model for which there is an elementary
embedding 7 : M — L.(Vs). We also fix a ¥y sentence o and suppose
N is a countable transitive model of a large enough fragment of ZFC
such that

(1) M € N and M is countable in N,
(2) N[H] is ¥3-correct in V for every set-generic filter H over N,
and

(3) there is some ordinal a € N and some partial order P € V.V
such that V¥ = P forces o.

We need to prove that there is a P-generic filter G over N, a transitive
model M' € NIG], an elementary embedding j : M — M', j €
N|[G], and an ordinal a* < ¢* := j(7m (d)) such that, letting Qy =

IThe conclusion holds actually with ‘normal’ replaced by ‘plus two’, which is
more general and is in fact how Theorem 4.3 in [3] is stated. However, we will not
be using the notion of plus two iteration tree and therefore we are not defining it.
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Coll(VY', 6*)M' | there is a Qg-name Q; € M’ for a partial order in

M'[Clo, ] such that

; : M'[Gyy e
M'[Gg,] = Q; has the 6*-c.c. and forces V. Caguy] = o

The basic strategy for achieving this is standard (s. [2]). Let 6 € M
be such that 7(5) = & and let £ be the collection of all extenders in
VM. Let go € N be a Coll(Vz,d)-generic filter over M (which exist
since M is countable in M). Then M|go] satisfies (enough of) ZFC
and £ is a collection of extenders still witnessing the Wodinness of ¢ in
M]go]. Hence, in what follows we will write M for M|go.

Recall the definition of Woodin’s extender algebra on M correspond-
ing to £ with 0 generators, which we will refer to by W;5(£), or simply
W: Wi 5(€) is the quotient Boolean algebra (Bj5/T55(E))Y, where B; s
is the propositional algebra of L;s-formulas (i.e., the infinitary formu-
las obtained from variables a¢, for { < 8, by closing under the usual
propositional connectives, together with infinite conjunctions /\5 < Pt
and disjunctions \/,_, ¢ for £ < §), and T55(&) is the deductive closure
in L;5 of all sentences

V(. k.m) : \/ ge o \/ de,

<k &E<n

for measurable cardinals K < n < ¢, a sequence gg = (¢ : £ < 5)
of L;s-formulas with ¢ € V; for all £ < &, and a (5,77 + 2)-strong
extender £ € £ such that crit(£) = & and such that E has length n*,
where 7* is the least inaccessible above 1. In M, W has the é-c.c.?

Let G € V be a P-generic filter over N (which exists since N is
countable). For the remainder of the proof we will be working mostly
in N[G].

Let 7 = |[Vo|Y and let a € N[G] be a subset of 7 coding Va' ). Let
H € V be a Coll(w, 7)-generic filter over N[G]|. Working in N|[G], we
will build a certain normal iteration tree 7 on (M, €,8) of length 7,
for some 7 < (1), together with a sequence (p, : o < 7) of ordinals
witnessing its normality. The construction will be arranged in such a
way that the following holds.

(1) For every a < 7, M is correct about sharps of sets in Vir N
M.
2See e.g. [1]. Wi 5(€) is actually a mild variant of the original extender algebra.

We refer to [1] for the relevant facts on the theory of Ws5(€) (whose proof is the
same as for the original extender algebra).
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(2) For every nonzero limit ordinal v < 7, jJ_(6) is the minimum
ordinal g with the property that there is, in V', a cofinal well-
founded branch b through 7 | v such that

(a) jg,(0) = 4 and
(b) M, is correct about sharps of sets in Vir. N M.

(3) sup{p” (e, y) = o < 7} < jd,(9) for every limit ordinal ~ such
that v+ 1 < 7.

If 7= +1, we will get a j(}(% (W)-generic filter g € N[G] over MWC

such that a € M [g], which will yield the desired conclusion since then
Mgl

Va V'l as a € N[G] codes V') and MT e N[G]. If T is a
limit ordinal, we will obtain a cofinal branch ¢ € N[G] through T such
that M is well-founded up to jJ.(6), together with a jJ (WV)-generic
filter g € N[G] over M such that a € M [g]. This will again yield
the desired conclusion for the same reason as in the previous case.

We start out by iterating linearly in length 7. From stage 7 onwards,
the construction proceeds as follows. Let v < (7H)¥, v > 7, and
suppose 7 [ 7 has been defined.

If vy =70+ 1, then T | v is given by the following specification.

Suppose there is some extender E € j&f +,(€) which, in Mz(;, is a

witness to the existence of some W(¢, k1) € 38~ (T55()) such that
a b~ lIf(qg,m,n) and n > ps for all % < 7y. Let F be the set of all
extenders F € MAZ; as above with n minimal and let p,, be that minimal
value of . Note that all extenders in F have strength, in M;’; , at least
n + 2. We then pick F,; to be a member of F of minimal Mitchell
rank in M which is possible as the Michell order on the class of
short extenders is well-founded (s. [6]). We also extend T [ 7 to a
tree order on v + 1 by setting the 7-predecessor of v to be the least
7 with crit(£,,) < py. We then have, thanks to Theorem 2.3 (2),
that M7 = Ult(M7, E,,) is well-founded and correct about sharps of
sets in V(7 (5 N Ult(MT, E,,), where i : MT — Ult(MT, E,,) is
the canonical extender embedding, so we preserve condition (1) of our
construction.

If there is no E as above, then we set 7 = v and stop the construction.

Now suppose 7 is a limit ordinal.

Claim 2.4. There is a cofinal w-realizable branch through T | 7.

Proof. This is essentially the proof of Corollary 5.11 from [3]. If the
conclusion fails, then by Theorem 2.3 (1) there is a maximal branch
b through 7 [ 7 such that A := sup(b) < 7 and b is 7-realizable. In
particular, M, is correct about sharps of sets in ‘/}g’b(g) N M]. Let
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T' =T [ Aand let ¢ = {a < A : a <7 A}. Since b is a maximal
branch through 7 [ v, b # c. Let

0 =sup{p’ (c, A) : o < A} < g (6) < i, (6),

where the first inequality holds by condition (3) in the construction
since it did not stop at stage A 4+ 1 and the second inequality follows
from condition (2) in the construction.

By Lemma 2.2 we know that for every function f : § — 6, if
f e MINMT then M] |= “0 is Woodin with respect to f”. In order
to finish the proof it suffices to show that  is Woodin in L(V,)™? (this
of course yields a contradiction since it holds in M that jJ(6) is the
least ordinal g such that p is Woodin in L(V),)). The Woodinness of
0 in L(Vy)™” will be established if we show that (X*)M/ = (X#)M
where X = VM = VM e M7 A MT 3 But (XH)M = X# = (xH)MT
since M, and M are both correct about the sharp of X. U

Let p be minimal such that, in V/, there is a cofinal well-founded
branch b through 7 [ ~ such that j{f ,(0) = p and such that M is

correct about sharps of sets in V;Orb(g) N M;. Using the ¥i-correctness
in V of N[G][H]|, we have that in N[G]|[H] there is a cofinal well-

founded branch b trough 7 | 7 such that jJ,() =y and such that M,
is correct about sharps of sets in Vjr 5 N M.

If sup{p” (a,7) : a <7} = p = jgb(g), then the construction of T
stops and we set T = 7. B
Now suppose that 6 := sup{p” (a,7) : a <7} < jafb(d).

Claim 2.5. In N[G][H] there is exactly one cofinal well-founded branch
b through T | 7y such that j§,(0) = p and such that M is correct about

. M
sharps of sets in 'V, ° .

Proof. Assume, towards a contradiction, that in N[G][H| there are two
distinct cofinal well-founded branches by and by through 7™ [ «y such that
0o (0) = jd,,(0) = p and such that for each 4, M is correct about
MT

sharps of sets in V,, ". Since # < p, by Lemma 2.2 we have that 6 is
Woodin with respect to f for every function f: 6 — 6 in M N M.

As in the proof of Claim 2.4, and using the correctness about the sharp
M M
of V, " =V, " of both M, and M], it follows that ¢ is Woodin in

L(%)MbTO. But this is a contradiction since p > 6 is the least ordinal
p* € M which is Woodin in L(VN*)M’JTO. O

M

3 M T . . e . T
Vot =V, ¢ follows from the definition of 8 as sup{p’ (a, ) : o < A}
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By the homogeneity of Coll(w, 7), the unique branch b given by Claim
2.5 is an actual member of N[G]. We then extend 7T | «y to an iteration
tree of length v + 1 by letting av <7 ~ if and only if a € b.

A standard reflection argument shows that the construction cannot
run in length (7)Y + 1 (s. for example the proofs of Lemma 3.7 and
Theorem 4.1 in [1]). Hence 7 exists and is at most (77)".

Suppose first that 7 is a successor ordinal, 7 = v + 1. Let us see
that, letting 6* = j(;fvg(g),

g:{gﬁELd*?(y*ﬁM% : a):gi)}

is & Wi 5 (jd -, (€))-generic filter over M. That will finish the proof
of the theorem in this case as then of course a € M7 [g].
Assuming otherwise, by the general theory of the extender algebra,

there is some extender E € j/ (€) which, in M is a witness to the

existence of some U(¢, k,10) € 380 (T55(E)) such that a £ (¢, K, 10)

(s- [1)-
Claim 2.6. 1y > p, for all v < 7.

Proof. Let us assume, towards a contradiction, that this is not the case.
Let us suppose first that there is some v < 7y such that ny < p,. We
then have that E € M since iy < p, < p} and since M7 and M7
agree below p>. But this contradicts the minimality in the choice of p,
at stage 7 + 1 of the construction.

Since 19 < p,, for some 7, (py : 7 < 7) is strictly increasing, and
there is no 7 such that 7y < p,, it follows that 79 = 5 + 1 and 7 =
p5,- Let 7 be the T-predecessor of 7o, so that M = Ult(M7, Ex,).
But Ult(M, E5)) and Ult(MT, Es,) agree below i(crit(Es,)) + 1 >
g + 2, where i : MI] — Ult(M], E5,) is the canonical extender
embedding (since necessarily i(crit(E5,)) > n§ + 1). In particular £ €
Ult(MI | E5,), which violates the minimality of Es, in the Mitchell

order. H

But now, by the claim, we are in a position to extend 7 one more step
as given by the successor step of the construction, which contradicts
the fact that the construction already stopped.

It remains to consider the case that 7 is a limit ordinal. In this
case, we know in particular that in N[G][H] there is a cofinal well-
founded branch b through 7 such that sup{p” (8,7) : 8 < 7} = u for
= 3jd,(0). Let b € N[G] be a Coll(w, 7)-name for b and let Q € N[G]

be a countable elementary submodel of some large enough Hév I such
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that b € Q. Let h C @, h € N[GJ, be a Coll(w, 7)%-generic filter, and
let b = by,. Let a = sup(Q N 7).

Claim 2.7. a =7

Proof. Suppose, towards a contradiction, that o < 7.* We will prove
that sup{p” (8,) : B < a} = jJ,(0), which is a contradiction as then
the construction has stopped at stage a.

We note that (jJ 5(0) : 8 € b*) is not eventually constant. It follows
that

sup(j7 4 0 5(0)) < g (0)
for every g € b*. Let us fix 8 € b* N Q. There is then some vy € aNQ
above 3 such that
sup(j5 - G0 p(9) < p” (v.0) = p" (1, 7) € Q,
where the equality holds by the fact that p7 (v, 7) < p” (7, 7o) for all
To < 11 < T, the correctness of (), and the fact that v € (). We then of
course have that also
Sup(j7 o “J0,5(0)) < sup(j5 - g 5(6)) < p7 (7, 1)
Since

J0.(0) = sup{sup(jj , “ig s(8)) : B € " NQ}
and p7 (v, ) < jl,(0) for all ¥ < a, it follows that

J0a(0) = sup{p (B, 0) : B < a}
O
By the same argument as in the proof of Claim 2.7, it follows that
sup{p” (8,7) : B <7} = j{s-(6). We note that M is well-founded up
to jd,(6). Since
sup{p” (B,7) : B <7} = p =3, (0),
by the same argument as in the previous case we have that
g={0 € LN M : al= ¢}
is a jJ . (W)-generic filter over ML: otherwise there is some extender
E € jJ,(€) which is a witness to the existence of some (¢, k1) €

Jdp (T55(E)) such that a B~ (g, k,n); but n > p, for all vy < 7 by
the same argument as in the proof of Claim 2.6, which is impossible

L
as then n > p whereas F € VHM“. This finishes the proof in this case,
and hence the proof of the theorem, since a € M [g].

“Equivalently, cf(7)NE > .
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3. A LOCAL FORM OF {)-LOGIC

Corollary 1.3 motivates a local version of Woodin’s 2-logic ([7]) for
which we can prove a reasonable completeness theorem.®

Definition 3.1. Let W and M we models of set theory.

(1) M is a 1-step local forcing extension of W in case there is some
ordinal § € W such that M is a set-forcing extension of L(Vz)"W.

(2) Given n > 1, M is a n + 1-step local forcing extension of W
in case there is an n-step local forcing extension My of W and
there is an ordinal 0 € M such that M is a 1-step local forcing
extension of M,.

M is an iterated local forcing extension of W if there is some n > 1
such that M is an n-step local forcing extension of W.

Our local version of Q-logic is the following.

Definition 3.2. Given a set T of sentences in the language of set theory
and a sentence o in the language of set theory, we write T |=q¢ o in
case for every iterated local forcing extension M of V' and every ordinal
a, if VM ET, then VM = 0.9

Thus, Fqe is a weak version of Q-logic. We refer to =q¢ as local
Q-logic.

A simple variation of the proofs of Theorem 1.1 and Corollary 1.3
establishes the following.

Theorem 3.3. Suppose there is a proper class of Woodin cardinals.
Let 0 be a sentence. Then the following are equivalent.
(1) 0 o o
(2) Suppose 0 is an ordinal such that & is Woodin in L(Vs) and the
set of L(Vy)-Woodin cardinals v < 0 is bounded in 6. Then
L(Va) = “0 g 07,
(3) There is a real v such that for every countable transitive model
N of ZFC, if r € N and N|[H]| <yz1 V for every set-generic
filter H € V over N, then N
models “ ) =qe 0.

The equivalence between (1) and (3) can be seen as a completeness
theorem for local (2-logic in the spirit of the (2-conjecture for the original

SWe recall that the Q-conjecture is the completeness theorem for Q-logic relative
to the calculus in the definition of Fq in terms of A-closed models M for fixed
universally Baire sets A C R ([7]).

6The ¢’ superscript in QF is for ‘local’.
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Q-logic. This equivalence also yields the following corollary on the
complexity of Qf-validity.

Corollary 3.4. Suppose there is a proper class of Woodin cardinals.
Then {c : 0 Eqc o} is a Li-definable real.

Acknowledgements: The author thanks Daisuke Tkegami, Hiroshi
Sakai, and Hugh Woodin for their comments.
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