ON FORCIBILITY OF Σ_2 SENTENCES OVER $L(V_\delta)$

DAVID ASPERÓ

ABSTRACT. We prove a reflection property, with respect to forcibility of Σ_2 sentences, for $L(V_\delta)$, where δ is the least ordinal γ which is a Woodin cardinal in $L(V_\gamma)$.

1. Introduction

Given a model M of enough of ZF and given an ordinal $\delta \in M$, let $\operatorname{Coll}(V_{\delta}, \delta)^M$ denote the partial order, ordered by reverse inclusion, of all functions $f : \alpha \longrightarrow V_{\delta}^M$ in M, for $\alpha < \delta$. If α is strongly inaccessible, $M \models V = L(V_{\delta})$, and for every $\alpha < \delta$ there is some well-order of V_{α}^M in M, then $\operatorname{Coll}(V_{\delta}, \delta)^M$ forces ZFC over M and adds no sets to M of rank less than δ . Also, if δ is Woodin in M, then δ remains Woodin in the extension of M by $\operatorname{Coll}(V_{\delta}, \delta)^M$.

The main purpose of this note is to prove the following theorem.

Theorem 1.1. Suppose δ is the least ordinal γ such that γ is a Woodin cardinal in $L(V_{\gamma})$. Let $\epsilon > \delta$ be such that $L_{\epsilon}(V_{\delta})$ satisfies enough of ZF and let M be a countable transitive model for which there is an elementary embedding $\pi: M \longrightarrow L_{\epsilon}(V_{\delta})$. Let σ be a Σ_2 sentence and suppose N is a countable transitive model of a large enough fragment of ZFC such that

- (1) $M \in N$ and M is countable in N,
- (2) N[H] is Σ_3^1 -correct in V for every set-generic filter H over N, and
- (3) there is some ordinal $\alpha \in N$ and some partial order $\mathbb{P} \in V_{\alpha}^{N}$ such that $V_{\alpha}^{N} \models \mathbb{P}$ forces σ .

Then there is a \mathbb{P} -generic filter G over N, a transitive model $M' \in N[G]$, an elementary embedding $j: M \longrightarrow M'$, $j \in N[G]$, and an ordinal $\alpha^* < \delta^* := j(\pi^{-1}(\delta))$ such that, letting $\mathbb{Q}_0 = \operatorname{Coll}(V_{\delta^*}^{M'}, \delta^*)^{M'}$,

²⁰¹⁰ Mathematics Subject Classification. 03E40, 03E45, 03E55.

Key words and phrases. Woodin cardinals, extender algebra, iteration trees, for cibility of Σ_2 sentences, Ω logic.

there is a \mathbb{Q}_0 -name $\dot{\mathbb{Q}}_1 \in M'$ for a partial order in $V_{\delta^*+1}^{M'[\dot{G}_{\mathbb{Q}_0}]}$ such that

$$M'[\dot{G}_{\mathbb{Q}_0}] \models \dot{\mathbb{Q}}_1 \text{ has the } \delta^*\text{-c.c. and forces } V_{\alpha^*}^{M'[\dot{G}_{\mathbb{Q}_0*\dot{\mathbb{Q}}_1}]} \models \sigma.$$

We will be using the following well-known fact (s. for example [4] or [5]).

Lemma 1.2. Let κ be a cardinal and let $\delta < \kappa$ be a Woodin cardinal. Suppose X^{\sharp} exists for every $X \in H_{\kappa}$. Let N be a countable transitive model such that there is an elementary embedding $\pi : N \longrightarrow H_{\kappa}$ with $\delta \in \operatorname{range}(\pi)$, and let $\bar{\delta} \in N$ be such that $\pi(\bar{\delta}) = \delta$. Let $H \in V$ be a \mathcal{P} -generic filter over N for some partial order $\mathcal{P} \in V_{\bar{\delta}}^N$. Then N[H] is Σ_3^1 -correct in V.

Theorem 1.1 and Lemma 1.2 have, as an immediate consequence, the following reflection statement, for forcible Σ_2 sentences, at the first ordinal γ which is a Woodin cardinal in $L(V_{\gamma})$.

Corollary 1.3. Suppose there is a proper class of Woodin cardinals and δ is the least ordinal γ such that γ is a Woodin cardinal in $L(V_{\gamma})$. Let $\mathbb{Q}_0 = \operatorname{Coll}(V_{\delta}, \delta)$. Suppose σ is a forcible Σ_2 sentence. Then there is an ordinal $\alpha < \delta$ and a \mathbb{Q}_0 -name $\dot{\mathbb{Q}}_1 \in L(V_{\delta})$ for a partial order on partial order in $V_{\delta+1}^{L(V_{\delta})[\dot{G}_{\mathbb{Q}_0}]}$ such that

$$L(V_{\delta})[\dot{G}_{\mathbb{Q}_0}] \models \dot{\mathbb{Q}}_1 \text{ has the } \delta\text{-c.c. and forces } V_{\alpha}^{L(V_{\delta})[\dot{G}_{\mathbb{Q}_0*\dot{\mathbb{Q}}_1}]} \models \sigma.$$

Proof. It is enough to prove that if $\epsilon > \delta$ is any ordinal such that $L_{\epsilon}(V_{\delta})$ satisfies enough of ZF, then there is an ordinal $\alpha < \delta$ and a \mathbb{Q}_0 -name $\dot{\mathbb{Q}}_1 \in L_{\epsilon}(V_{\delta})$ for a partial order on partial order in $V_{\delta+1}^{L_{\epsilon}(V_{\delta})[\dot{G}_{\mathbb{Q}_0}]}$ such that

$$L_{\epsilon}(V_{\delta})[\dot{G}_{\mathbb{Q}_0}] \models \dot{\mathbb{Q}}_1$$
 has the δ -c.c. and forces $V_{\alpha}^{L(V_{\delta})[\dot{G}_{\mathbb{Q}_0*\dot{\mathbb{Q}}_1}]} \models \sigma$.

Let \mathbb{P} be a partial order forcing σ and let κ a sufficiently high cardinal which is a limit of Woodin cardinals.

Let P be a countable elementary submodel of $L_{\epsilon}(V_{\delta})$ and M the Mostowski collapse of P. Let $\pi: M \longrightarrow P$ be the inverse of the collapsing function of P. Let Q be a countable elementary submodel of H_{κ} such that M, $\mathbb{P} \in Q$ and let N be the Mostowski collapse of Q. Let $\pi^*: N \longrightarrow H_{\kappa}$ be the inverse of the transitive collapse of Q and let \mathbb{P} be such that $\pi^*(\overline{\mathbb{P}}) = \mathbb{P}$. We clearly have that $M \in N$, M is countable in N, and $N \models \overline{\mathbb{P}}$ forces σ . Let $\alpha \in N$ be an ordinal such that $V_{\alpha}^M \models \text{``}\overline{\mathbb{P}}$ forces σ ''. Since κ is a limit of Woodin cardinals and $Q \preccurlyeq H_{\kappa}$, we have by Lemma 1.2 that N[H] is Σ_3^1 -correct in V for every forcing notion $\mathbb{Q} \in N$ and every \mathbb{Q} -generic filter H over

N. By Theorem 1.1 there are then a $\overline{\mathbb{P}}$ -generic filter G over N, a transitive model $M' \in N[G]$, an elementary embedding $j: M \longrightarrow M'$, $j \in N[G]$, and an ordinal $\alpha^* < \delta^* := j(\pi^{-1}(\delta))$ such that, letting $\mathbb{Q}_0 = \operatorname{Coll}(V_{\delta^*}^{M'}, \delta^*)^{M'}$, there is a \mathbb{Q}_0 -name $\dot{\mathbb{Q}}_1 \in M'$ for a partial order in $V_{\delta^*+1}^{M'[\dot{G}_{\mathbb{Q}_0}]}$ such that

$$M'[\dot{G}_{\mathbb{Q}_0}] \models \dot{\mathbb{Q}}_1$$
 has the δ^* -c.c. and forces $V_{\alpha^*}^{M'[\dot{G}_{\mathbb{Q}_0*\dot{\mathbb{Q}}_1}]} \models \sigma$.

But then the desired conclusion holds by elementarity of $j \circ \pi^{-1}$.

Remark 1.4. As will be immediate from the proof, assuming there is a proper class of Woodin cardinals, the conclusions of Theorem 1.1 and Corollary 1.3 extend to any ordinal γ such that γ is Woodin in $L(V_{\gamma})$ and the set of $L(V_{\gamma})$ -Woodin cardinals is bounded in γ .

Before proceeding to the proof of Theorem 1.1, we will point out that Hugh Woodin has proved similar results.

2. Proving Theorem 1.1

Throughout this section, a premouse is meant to be simply a transitive structure (M, \in, δ) , with M satisfying enough of ZFC and $\delta \in \mathsf{Ord}^M$, as given by [3]. We will consider iteration trees in the sense of [3], Definition 1.4.

The following is Definition 1.9 from [3].

Definition 2.1. An iteration tree \mathcal{T} is *normal* iff there are ordinals ρ_{α} , for $\alpha < \text{lh}(\mathcal{T})$, such that for all α , β with $\alpha + 1$, $\beta + 1 < \text{lh}(\mathcal{T})$,

- (1) $\rho_{\alpha} + 2 \leq \operatorname{strength}^{\mathcal{M}_{\alpha}^{\mathcal{T}}}(E_{\alpha}),$
- (2) $\rho_{\alpha} < \rho_{\beta}$ for all $\alpha < \beta < lh(\mathcal{T})$, and
- (3) for every α such that $\alpha + 1 < lh(\mathcal{T})$, \mathcal{T} -pred $(\alpha + 1)$ is the least $\gamma \le \alpha$ such that $crit(E_{\alpha}) \le \rho_{\gamma}$.

If \mathcal{T} is an iteration tree of length λ and $\alpha < \beta \leq \lambda$, then

$$\rho^{\mathcal{T}}(\alpha, \beta) = \min\{\operatorname{strength}^{\mathcal{M}_{\gamma}^{\mathcal{T}}}(E_{\gamma}) : \alpha \leq \gamma < \beta\}$$

Theorems 2.2 and 2.3 below are, respectively, Theorems 2.2 and Theorem 4.3 from [3].

Theorem 2.2. Let \mathcal{T} be a iteration tree of limit length λ , and let b and c be distinct cofinal branches of \mathcal{T} . Let $\theta = \sup\{\rho^{\mathcal{T}}(\alpha, \lambda) : \alpha < \lambda\}$, and suppose $\theta \in \operatorname{wfp}(\mathcal{M}_b^{\mathcal{T}}) \cap \operatorname{wfp}(\mathcal{M}_c^{\mathcal{T}})$. Let $f : \theta \longrightarrow \theta$, $f \in \mathcal{M}_b^{\mathcal{T}} \cap \mathcal{M}_c^{\mathcal{T}}$. Then $\mathcal{M}_b^{\mathcal{T}} \models$ " θ is Woodin with respect to f"; in other words, $\mathcal{M}_b^{\mathcal{T}}$ satisfies that there is some $\kappa < \theta$ such that f " $\kappa \subseteq \kappa$ and there is an extender E with $\operatorname{crit}(E) = \kappa$ and $\operatorname{strength}(E) > i_E(f)(\kappa)$.

Given a model M, an elementary embedding $\pi: (M, \in) \longrightarrow (V_{\alpha}, \in)$, an iteration tree \mathcal{T} on M, and a branch b through \mathcal{T} , we say that b is π -realizable if there is an elementary embedding

$$k: (M_b^{\mathcal{T}}, \in) \longrightarrow (V_{\alpha}, \in)$$

such that $\pi = k \circ j_{0,b}^{\mathcal{T}}$. Also, given any $\beta < \text{lh}(\mathcal{T})$ and an extender E on $M_{\beta}^{\mathcal{T}}$, we say that $\text{Ult}(M_{\beta}^{\mathcal{T}}, E)$ is π -realizable in case there is an elementary embedding

$$k: \mathrm{Ult}(M_{\beta}^{\mathcal{T}}, E) \longrightarrow (V_{\alpha}, \in)$$

such that $\pi = k \circ i_E^{M_b^{\mathcal{T}}} \circ j_{0,\beta}^{\mathcal{T}}$, where

$$i_E^{M_b^{\mathcal{T}}}: M_{\beta}^{\mathcal{T}} \longrightarrow \mathrm{Ult}(M_{\beta}^{\mathcal{T}}, E)$$

is the canonical extender embedding.

Theorem 2.3. Let \mathcal{T} be a normal¹ iteration tree on a countable model M, and let $\pi:(M,\in) \longrightarrow (V_{\alpha},\in)$ be an elementary embedding for some ordinal α . Suppose there is no maximal branch b of \mathcal{T} such that $\sup(b) < \operatorname{lh}(\mathcal{T})$ and b is π -realizable.

- (1) If $lh(\mathcal{T})$ is a limit ordinal, then \mathcal{T} has a cofinal branch which is π -realizable.
- (2) If $\beta < \gamma < \text{lh}(\mathcal{T})$, $\mathcal{M}_{\gamma}^{\mathcal{T}} \models$ "E is an extender", and $\text{crit}(E) + 1 < \rho^{\mathcal{T}}(\beta, \gamma)$, then $\text{Ult}(M_{\beta}^{\mathcal{T}}, E)$ is π -realizable.

We will now start with the proof of Theorem 1.1.

Let δ be the least ordinal γ such that γ is a Woodin cardinal in $L(V_{\gamma})$, let $\epsilon > \delta$ be such that $L_{\epsilon}(V_{\delta})$ satisfies enough of ZF, and let M be a countable transitive model for which there is an elementary embedding $\pi: M \longrightarrow L_{\epsilon}(V_{\delta})$. We also fix a Σ_2 sentence σ and suppose N is a countable transitive model of a large enough fragment of ZFC such that

- (1) $M \in N$ and M is countable in N,
- (2) N[H] is Σ_3^1 -correct in V for every set-generic filter H over N, and
- (3) there is some ordinal $\alpha \in N$ and some partial order $\mathbb{P} \in V_{\alpha}^{N}$ such that $V_{\alpha}^{N} \models \mathbb{P}$ forces σ .

We need to prove that there is a \mathbb{P} -generic filter G over N, a transitive model $M' \in N[G]$, an elementary embedding $j : M \longrightarrow M'$, $j \in N[G]$, and an ordinal $\alpha^* < \delta^* := j(\pi^{-1}(\delta))$ such that, letting $\mathbb{Q}_0 = \mathbb{Q}$

The conclusion holds actually with 'normal' replaced by 'plus two', which is more general and is in fact how Theorem 4.3 in [3] is stated. However, we will not be using the notion of plus two iteration tree and therefore we are not defining it.

 $\operatorname{Coll}(V_{\delta^*}^{M'}, \delta^*)^{M'}$, there is a \mathbb{Q}_0 -name $\dot{\mathbb{Q}}_1 \in M'$ for a partial order in $V_{\delta^*+1}^{M'[\dot{G}_{\mathbb{Q}_0}]}$ such that

$$M'[\dot{G}_{\mathbb{Q}_0}] \models \dot{\mathbb{Q}}_1$$
 has the δ^* -c.c. and forces $V_{\alpha^*}^{M'[\dot{G}_{\mathbb{Q}_0*\dot{\mathbb{Q}}_1}]} \models \sigma$.

The basic strategy for achieving this is standard (s. [2]). Let $\bar{\delta} \in M$ be such that $\pi(\bar{\delta}) = \delta$ and let \mathcal{E} be the collection of all extenders in $V_{\bar{\delta}}^M$. Let $g_0 \in N$ be a $\operatorname{Coll}(V_{\bar{\delta}}, \bar{\delta})^M$ -generic filter over M (which exist since M is countable in M). Then $M[g_0]$ satisfies (enough of) ZFC and \mathcal{E} is a collection of extenders still witnessing the Wodinness of $\bar{\delta}$ in $M[g_0]$. Hence, in what follows we will write M for $M[g_0]$.

Recall the definition of Woodin's extender algebra on M corresponding to \mathcal{E} with $\bar{\delta}$ generators, which we will refer to by $\mathcal{W}_{\bar{\delta},\bar{\delta}}(\mathcal{E})$, or simply \mathcal{W} : $\mathcal{W}_{\bar{\delta},\bar{\delta}}(\mathcal{E})$ is the quotient Boolean algebra $(\mathcal{B}_{\bar{\delta},\bar{\delta}}/\mathcal{T}_{\bar{\delta},\bar{\delta}}(\mathcal{E}))^M$, where $\mathcal{B}_{\bar{\delta},\bar{\delta}}$ is the propositional algebra of $\mathcal{L}_{\bar{\delta},\bar{\delta}}$ -formulas (i.e., the infinitary formulas obtained from variables a_{ξ} , for $\xi < \bar{\delta}$, by closing under the usual propositional connectives, together with infinite conjunctions $\bigwedge_{\xi < \kappa} \phi_{\xi}$ and disjunctions $\bigvee_{\xi < \kappa} \phi_{\xi}$ for $\kappa < \bar{\delta}$), and $\mathcal{T}_{\bar{\delta},\bar{\delta}}(\mathcal{E})$ is the deductive closure in $\mathcal{L}_{\bar{\delta},\bar{\delta}}$ of all sentences

$$\Psi(\vec{\phi}, \kappa, \eta) : \bigvee_{\xi < \kappa} \phi_{\xi} \leftrightarrow \bigvee_{\xi < \eta} \phi_{\xi},$$

for measurable cardinals $\kappa < \eta < \overline{\delta}$, a sequence $\vec{\phi} = (\phi_{\xi} : \xi < \overline{\delta})$ of $\mathcal{L}_{\overline{\delta},\overline{\delta}}$ -formulas with $\phi_{\xi} \in V_{\kappa}$ for all $\xi < \kappa$, and a $(\vec{\phi}, \eta + 2)$ -strong extender $E \in \mathcal{E}$ such that $\operatorname{crit}(E) = \kappa$ and such that E has length η^* , where η^* is the least inaccessible above η . In M, W has the $\overline{\delta}$ -c.c.²

Let $G \in V$ be a \mathbb{P} -generic filter over N (which exists since N is countable). For the remainder of the proof we will be working mostly in N[G].

Let $\tau = |V_{\alpha}|^N$ and let $a \in N[G]$ be a subset of τ coding $V_{\alpha}^{N[G]}$. Let $H \in V$ be a $\operatorname{Coll}(\omega, \tau)$ -generic filter over N[G]. Working in N[G], we will build a certain normal iteration tree \mathcal{T} on $(M, \in, \overline{\delta})$ of length $\overline{\tau}$, for some $\overline{\tau} < (\tau^+)^N$, together with a sequence $(\rho_{\alpha} : \alpha < \overline{\tau})$ of ordinals witnessing its normality. The construction will be arranged in such a way that the following holds.

(1) For every $\alpha < \bar{\tau}$, $M_{\alpha}^{\mathcal{T}}$ is correct about sharps of sets in $V_{j_{0,\alpha}^{\mathcal{T}}(\bar{\delta})} \cap M_{\alpha}^{\mathcal{T}}$.

²See e.g. [1]. $\mathcal{W}_{\bar{\delta},\bar{\delta}}(\mathcal{E})$ is actually a mild variant of the original extender algebra. We refer to [1] for the relevant facts on the theory of $\mathcal{W}_{\bar{\delta},\bar{\delta}}(\mathcal{E})$ (whose proof is the same as for the original extender algebra).

- (2) For every nonzero limit ordinal $\gamma < \overline{\tau}$, $j_{0,\gamma}^{\mathcal{T}}(\overline{\delta})$ is the minimum ordinal μ with the property that there is, in V, a cofinal well-founded branch b through $\mathcal{T} \upharpoonright \gamma$ such that
 - (a) $j_{0,b}^{\mathcal{T}}(\bar{\delta}) = \mu$ and
 - (b) $M_b^{\mathcal{T}}$ is correct about sharps of sets in $V_{j_{0,b}^{\mathcal{T}}(\bar{\delta})} \cap M_b^{\mathcal{T}}$.
- (3) $\sup\{\rho^{\mathcal{T}}(\alpha, \gamma) : \alpha < \gamma\} < j_{0,\gamma}^{\mathcal{T}}(\bar{\delta})$ for every limit ordinal γ such that $\gamma + 1 < \bar{\tau}$.

If $\bar{\tau} = \gamma_0 + 1$, we will get a $j_{0,\gamma_0}^{\mathcal{T}}(\mathcal{W})$ -generic filter $g \in N[G]$ over $M_{\gamma_0}^{\mathcal{T}}$ such that $a \in M_{\gamma_0}^{\mathcal{T}}[g]$, which will yield the desired conclusion since then $V_{\alpha}^{M_{\gamma_0}^{\mathcal{T}}[g]} = V_{\alpha}^{N[G]}$ as $a \in N[G]$ codes $V_{\alpha}^{N[G]}$ and $M_{\gamma_0}^{\mathcal{T}} \in N[G]$. If $\bar{\tau}$ is a limit ordinal, we will obtain a cofinal branch $c \in N[G]$ through \mathcal{T} such that $M_c^{\mathcal{T}}$ is well-founded up to $j_{0,c}^{\mathcal{T}}(\bar{\delta})$, together with a $j_{0,c}^{\mathcal{T}}(\mathcal{W})$ -generic filter $g \in N[G]$ over $M_c^{\mathcal{T}}$ such that $a \in M_c^{\mathcal{T}}[g]$. This will again yield the desired conclusion for the same reason as in the previous case.

We start out by iterating linearly in length τ . From stage τ onwards, the construction proceeds as follows. Let $\gamma < (\tau^+)^N$, $\gamma \geq \tau$, and suppose $\mathcal{T} \upharpoonright \gamma$ has been defined.

If $\gamma = \gamma_0 + 1$, then $\mathcal{T} \upharpoonright \gamma$ is given by the following specification.

Suppose there is some extender $E \in j_{0,\gamma_0}^{\mathcal{T}}(\mathcal{E})$ which, in $M_{\gamma_0}^{\mathcal{T}}$, is a witness to the existence of some $\Psi(\vec{\phi}, \kappa, \eta) \in j_{0,\gamma_0}^{\mathcal{T}}(\mathcal{T}_{\bar{\delta},\bar{\delta}}(\mathcal{E}))$ such that $a \not\models \Psi(\vec{\phi}, \kappa, \eta)$ and $\eta > \rho_{\bar{\gamma}}$ for all $\bar{\gamma} < \gamma_0$. Let \mathcal{F} be the set of all extenders $E \in M_{\gamma_0}^{\mathcal{T}}$ as above with η minimal and let ρ_{γ_0} be that minimal value of η . Note that all extenders in \mathcal{F} have strength, in $M_{\gamma_0}^{\mathcal{T}}$, at least $\eta + 2$. We then pick E_{γ_0} to be a member of \mathcal{F} of minimal Mitchell rank in $M_{\gamma_0}^{\mathcal{T}}$, which is possible as the Michell order on the class of short extenders is well-founded (s. [6]). We also extend $\mathcal{T} \upharpoonright \gamma$ to a tree order on $\gamma + 1$ by setting the \mathcal{T} -predecessor of γ to be the least $\bar{\gamma}$ with $\operatorname{crit}(E_{\gamma_0}) \leq \rho_{\bar{\gamma}}$. We then have, thanks to Theorem 2.3 (2), that $M_{\gamma}^{\mathcal{T}} = \operatorname{Ult}(M_{\bar{\gamma}}^{\mathcal{T}}, E_{\gamma_0})$ is well-founded and correct about sharps of sets in $V_{i(j_{0,\bar{\gamma}}(\bar{\delta}))} \cap \operatorname{Ult}(M_{\bar{\gamma}}^{\mathcal{T}}, E_{\gamma_0})$, where $i: M_{\bar{\gamma}}^{\mathcal{T}} \longrightarrow \operatorname{Ult}(M_{\bar{\gamma}}^{\mathcal{T}}, E_{\gamma_0})$ is the canonical extender embedding, so we preserve condition (1) of our construction.

If there is no E as above, then we set $\bar{\tau} = \gamma$ and stop the construction. Now suppose γ is a limit ordinal.

Claim 2.4. There is a cofinal π -realizable branch through $\mathcal{T} \upharpoonright \gamma$.

Proof. This is essentially the proof of Corollary 5.11 from [3]. If the conclusion fails, then by Theorem 2.3 (1) there is a maximal branch b through $\mathcal{T} \upharpoonright \gamma$ such that $\lambda := \sup(b) < \gamma$ and b is π -realizable. In particular, $M_b^{\mathcal{T}}$ is correct about sharps of sets in $V_{j_0^{\mathcal{T}} b}(\bar{b}) \cap M_b^{\mathcal{T}}$. Let

 $\mathcal{T}' = \mathcal{T} \upharpoonright \lambda$ and let $c = \{\alpha < \lambda : \alpha <_{\mathcal{T}} \lambda\}$. Since b is a maximal branch through $\mathcal{T} \upharpoonright \gamma, b \neq c$. Let

$$\theta = \sup \{ \rho^{\mathcal{T}}(\alpha, \lambda) : \alpha < \lambda \} < j_{0,c}^{\mathcal{T}}(\overline{\delta}) \le j_{0,b}^{\mathcal{T}}(\overline{\delta}),$$

where the first inequality holds by condition (3) in the construction since it did not stop at stage $\lambda + 1$ and the second inequality follows from condition (2) in the construction.

By Lemma 2.2 we know that for every function $f:\theta \to \theta$, if $f \in \mathcal{M}_b^{\mathcal{T}} \cap \mathcal{M}_c^{\mathcal{T}}$, then $\mathcal{M}_b^{\mathcal{T}} \models \text{``θ is Woodin with respect to f''}$. In order to finish the proof it suffices to show that θ is Woodin in $L(V_\theta)^{M_c^{\mathcal{T}}}$ (this of course yields a contradiction since it holds in $M_c^{\mathcal{T}}$ that $j_{0,c}^{\mathcal{T}}(\bar{\delta})$ is the least ordinal μ such that μ is Woodin in $L(V_\mu)$). The Woodinness of θ in $L(V_\theta)^{M_c^{\mathcal{T}}}$ will be established if we show that $(X^\sharp)^{M_b^{\mathcal{T}}} = (X^\sharp)^{M_c^{\mathcal{T}}}$, where $X = V_\theta^{M_b^{\mathcal{T}}} = V_\theta^{M_c^{\mathcal{T}}} \in M_b^{\mathcal{T}} \cap M_c^{\mathcal{T}}$. But $(X^\sharp)^{M_b^{\mathcal{T}}} = X^\sharp = (X^\sharp)^{M_c^{\mathcal{T}}}$ since $M_b^{\mathcal{T}}$ and $M_c^{\mathcal{T}}$ are both correct about the sharp of X.

Let μ be minimal such that, in V, there is a cofinal well-founded branch b through $\mathcal{T}\upharpoonright \gamma$ such that $j_{0,b}^{\mathcal{T}}(\bar{\delta})=\mu$ and such that $M_b^{\mathcal{T}}$ is correct about sharps of sets in $V_{j_{0,b}^{\mathcal{T}}(\bar{\delta})}\cap M_b^{\mathcal{T}}$. Using the $\widetilde{\Sigma}_3^1$ -correctness in V of N[G][H], we have that in N[G][H] there is a cofinal well-founded branch b trough $\mathcal{T}\upharpoonright \gamma$ such that $j_{0,b}^{\mathcal{T}}(\bar{\delta})=\mu$ and such that $M_b^{\mathcal{T}}$ is correct about sharps of sets in $V_{j_{0,b}^{\mathcal{T}}(\bar{\delta})}\cap M_b^{\mathcal{T}}$.

If $\sup\{\rho^{\mathcal{T}}(\alpha, \gamma) : \alpha < \gamma\} = \mu = j_{0,b}^{\mathcal{T}}(\overline{\delta})$, then the construction of \mathcal{T} stops and we set $\overline{\tau} = \gamma$.

Now suppose that $\theta' := \sup \{ \rho^{\mathcal{T}}(\alpha, \gamma) : \alpha < \gamma \} < j_{0,b}^{\mathcal{T}}(\overline{\delta}).$

Claim 2.5. In N[G][H] there is exactly one cofinal well-founded branch b through $\mathcal{T} \upharpoonright \gamma$ such that $j_{0,b}^{\mathcal{T}}(\overline{\delta}) = \mu$ and such that $M_b^{\mathcal{T}}$ is correct about sharps of sets in $V_{\mu}^{M_b^{\mathcal{T}}}$.

Proof. Assume, towards a contradiction, that in N[G][H] there are two distinct cofinal well-founded branches b_0 and b_1 through $\mathcal{T} \upharpoonright \gamma$ such that $j_{0,b_0}^{\mathcal{T}}(\bar{\delta}) = j_{0,b_1}^{\mathcal{T}}(\bar{\delta}) = \mu$ and such that for each i, $M_{b_i}^{\mathcal{T}}$ is correct about sharps of sets in $V_{\mu}^{M_{b_i}^{\mathcal{T}}}$. Since $\theta < \mu$, by Lemma 2.2 we have that θ is Woodin with respect to f for every function $f: \theta \longrightarrow \theta$ in $M_{b_0}^{\mathcal{T}} \cap M_{b_1}^{\mathcal{T}}$. As in the proof of Claim 2.4, and using the correctness about the sharp of $V_{\theta}^{M_{b_0}^{\mathcal{T}}} = V_{\theta}^{M_{b_1}^{\mathcal{T}}}$ of both $M_{b_0}^{\mathcal{T}}$ and $M_{b_1}^{\mathcal{T}}$, it follows that θ is Woodin in $L(V_{\theta})^{M_{b_0}^{\mathcal{T}}}$. But this is a contradiction since $\mu > \theta$ is the least ordinal $\mu^* \in M_{b_0}^{\mathcal{T}}$ which is Woodin in $L(V_{\mu^*})^{M_{b_0}^{\mathcal{T}}}$.

 $[\]overline{{}^{3}V_{\theta}^{M_{b}^{\mathcal{T}}} = V_{\theta}^{M_{c}^{\mathcal{T}}}}$ follows from the definition of θ as $\sup\{\rho^{\mathcal{T}}(\alpha, \lambda) : \alpha < \lambda\}$.

By the homogeneity of $\operatorname{Coll}(\omega, \tau)$, the unique branch b given by Claim 2.5 is an actual member of N[G]. We then extend $\mathcal{T} \upharpoonright \gamma$ to an iteration tree of length $\gamma + 1$ by letting $\alpha <_{\mathcal{T}} \gamma$ if and only if $\alpha \in b$.

A standard reflection argument shows that the construction cannot run in length $(\tau^+)^N + 1$ (s. for example the proofs of Lemma 3.7 and Theorem 4.1 in [1]). Hence $\bar{\tau}$ exists and is at most $(\tau^+)^N$.

Suppose first that $\bar{\tau}$ is a successor ordinal, $\bar{\tau} = \gamma_0 + 1$. Let us see that, letting $\delta^* = j_{0,\gamma_0}^{\mathcal{T}}(\bar{\delta})$,

$$g = \{ \phi \in \mathcal{L}_{\delta^*, \delta^*} \cap M_{\gamma_0}^{\mathcal{T}} : a \models \phi \}$$

is a $\mathcal{W}_{\delta^*,\delta^*}(j_{0,\gamma_0}^{\mathcal{T}}(\mathcal{E}))$ -generic filter over $M_{\gamma_0}^{\mathcal{T}}$. That will finish the proof of the theorem in this case as then of course $a \in M_{\gamma_0}^{\mathcal{T}}[g]$.

Assuming otherwise, by the general theory of the extender algebra, there is some extender $E \in j_{0,\gamma_0}^{\mathcal{T}}(\mathcal{E})$ which, in $M_{\gamma_0}^{\mathcal{T}}$, is a witness to the existence of some $\Psi(\vec{\phi}, \kappa, \eta_0) \in j_{0,\gamma_0}^{\mathcal{T}}(\mathcal{T}_{\bar{\delta},\bar{\delta}}(\mathcal{E}))$ such that $a \not\models \Psi(\vec{\phi}, \kappa, \eta_0)$ (s. [1]).

Claim 2.6. $\eta_0 > \rho_{\gamma} \text{ for all } \gamma < \gamma_0.$

Proof. Let us assume, towards a contradiction, that this is not the case. Let us suppose first that there is some $\gamma < \gamma_0$ such that $\eta_0 < \rho_{\gamma}$. We then have that $E \in M_{\gamma}^{\mathcal{T}}$ since $\eta_0^* < \rho_{\gamma} < \rho_{\gamma}^*$ and since $M_{\gamma}^{\mathcal{T}}$ and $M_{\gamma_0}^{\mathcal{T}}$ agree below ρ_{γ}^* . But this contradicts the minimality in the choice of ρ_{γ} at stage $\gamma + 1$ of the construction.

Since $\eta_0 \leq \rho_{\gamma}$ for some γ , $(\rho_{\gamma} : \gamma < \gamma_0)$ is strictly increasing, and there is no γ such that $\eta_0 < \rho_{\gamma}$, it follows that $\gamma_0 = \bar{\gamma}_0 + 1$ and $\eta_0 = \rho_{\bar{\gamma}_0}$. Let $\bar{\gamma}$ be the \mathcal{T} -predecessor of γ_0 , so that $M_{\gamma_0}^{\mathcal{T}} = \text{Ult}(M_{\bar{\gamma}}^{\mathcal{T}}, E_{\bar{\gamma}_0})$. But $\text{Ult}(M_{\bar{\gamma}}^{\mathcal{T}}, E_{\bar{\gamma}_0})$ and $\text{Ult}(M_{\bar{\gamma}_0}^{\mathcal{T}}, E_{\bar{\gamma}_0})$ agree below $i(\text{crit}(E_{\bar{\gamma}_0})) + 1 > \eta_0^* + 2$, where $i: M_{\bar{\gamma}}^{\mathcal{T}} \longrightarrow \text{Ult}(M_{\bar{\gamma}}^{\mathcal{T}}, E_{\bar{\gamma}_0})$ is the canonical extender embedding (since necessarily $i(\text{crit}(E_{\bar{\gamma}_0})) > \eta_0^* + 1$). In particular $E \in \text{Ult}(M_{\bar{\gamma}_0}^{\mathcal{T}}, E_{\bar{\gamma}_0})$, which violates the minimality of $E_{\bar{\gamma}_0}$ in the Mitchell order.

But now, by the claim, we are in a position to extend \mathcal{T} one more step as given by the successor step of the construction, which contradicts the fact that the construction already stopped.

It remains to consider the case that $\bar{\tau}$ is a limit ordinal. In this case, we know in particular that in N[G][H] there is a cofinal well-founded branch b through \mathcal{T} such that $\sup\{\rho^{\mathcal{T}}(\beta,\bar{\tau}):\beta<\bar{\tau}\}=\mu$ for $\mu=j_{0,b}^{\mathcal{T}}(\bar{\delta})$. Let $\dot{b}\in N[G]$ be a $\mathrm{Coll}(\omega,\tau)$ -name for b and let $Q\in N[G]$ be a countable elementary submodel of some large enough $H_{\theta}^{N[G]}$ such

that $\dot{b} \in Q$. Let $h \subseteq Q$, $h \in N[G]$, be a $\operatorname{Coll}(\omega, \tau)^Q$ -generic filter, and let $b^* = \dot{b}_h$. Let $\alpha = \sup(Q \cap \overline{\tau})$.

Claim 2.7. $\alpha = \bar{\tau}$

Proof. Suppose, towards a contradiction, that $\alpha < \bar{\tau}$.⁴ We will prove that $\sup\{\rho^{\mathcal{T}}(\beta,\alpha): \beta < \alpha\} = j_{0,\alpha}^{\mathcal{T}}(\bar{\delta})$, which is a contradiction as then the construction has stopped at stage α .

We note that $(j_{0,\beta}^{\mathcal{T}}(\bar{\delta}) : \beta \in b^*)$ is not eventually constant. It follows that

$$\sup(j_{\beta,b^*}^{\mathcal{T}} "j_{0,\beta}^{\mathcal{T}}(\bar{\delta})) < j_{0,b^*}^{\mathcal{T}}(\bar{\delta})$$

for every $\beta \in b^*$. Let us fix $\beta \in b^* \cap Q$. There is then some $\gamma \in \alpha \cap Q$ above β such that

$$\sup(j_{\beta,h^*}^{\mathcal{T}} "j_{0,\beta}^{\mathcal{T}}(\overline{\delta})) < \rho^{\mathcal{T}}(\gamma,\alpha) = \rho^{\mathcal{T}}(\gamma,\overline{\tau}) \in Q,$$

where the equality holds by the fact that $\rho^{\mathcal{T}}(\gamma, \tau_1) \leq \rho^{\mathcal{T}}(\gamma, \tau_0)$ for all $\tau_0 < \tau_1 \leq \overline{\tau}$, the correctness of Q, and the fact that $\gamma \in Q$. We then of course have that also

$$\sup(j_{\beta,\alpha}^{\mathcal{T}} "j_{0,\beta}^{\mathcal{T}}(\overline{\delta})) \leq \sup(j_{\beta,b^*}^{\mathcal{T}} "j_{0,\beta}^{\mathcal{T}}(\overline{\delta})) < \rho^{\mathcal{T}}(\gamma,\alpha)$$

Since

$$j_{0,\alpha}^{\mathcal{T}}(\overline{\delta}) = \sup \{ \sup(j_{\beta,\alpha}^{\mathcal{T}} "j_{0,\beta}^{\mathcal{T}}(\overline{\delta})) : \beta \in b^* \cap Q \}$$

and $\rho^{\mathcal{T}}(\gamma, \alpha) < j_{0,\alpha}^{\mathcal{T}}(\bar{\delta})$ for all $\gamma < \alpha$, it follows that

$$j_{0,\alpha}^{\mathcal{T}}(\overline{\delta}) = \sup\{\rho^{\mathcal{T}}(\beta,\alpha) : \beta < \alpha\}$$

By the same argument as in the proof of Claim 2.7, it follows that $\sup\{\rho^{\mathcal{T}}(\beta,\bar{\tau}): \beta < \tau\} = j_{0,b^*}^{\mathcal{T}}(\bar{\delta})$. We note that $M_{b^*}^{\mathcal{T}}$ is well-founded up to $j_{0,b^*}^{\mathcal{T}}(\bar{\delta})$. Since

$$\sup \{ \rho^{\mathcal{T}}(\beta, \bar{\tau}) : \beta < \bar{\tau} \} = \mu = j_{0, b^*}^{\mathcal{T}}(\bar{\delta}),$$

by the same argument as in the previous case we have that

$$g = \{ \phi \in \mathcal{L}_{\mu,\mu} \cap M_{b^*}^{\mathcal{T}} : a \models \phi \}$$

is a $j_{0,b^*}^{\mathcal{T}}(\mathcal{W})$ -generic filter over $M_{b^*}^{\mathcal{T}}$: otherwise there is some extender $E \in j_{0,b^*}^{\mathcal{T}}(\mathcal{E})$ which is a witness to the existence of some $\Psi(\vec{\phi},\kappa,\eta) \in j_{0,b^*}^{\mathcal{T}}(\mathcal{T}_{\delta,\delta}(\mathcal{E}))$ such that $a \not\models \Psi(\vec{\phi},\kappa,\eta)$; but $\eta > \rho_{\gamma}$ for all $\gamma < \bar{\tau}$ by the same argument as in the proof of Claim 2.6, which is impossible as then $\eta \geq \mu$ whereas $E \in V_{\mu}^{M_{b^*}^{\mathcal{T}}}$. This finishes the proof in this case, and hence the proof of the theorem, since $a \in M_{b^*}^{\mathcal{T}}[g]$.

⁴Equivalently, $cf(\bar{\tau})^{N[G]} > \omega$.

10

3. A Local form of Ω -logic

Corollary 1.3 motivates a local version of Woodin's Ω -logic ([7]) for which we can prove a reasonable completeness theorem.⁵

Definition 3.1. Let W and M we models of set theory.

- (1) M is a 1-step local forcing extension of W in case there is some ordinal $\delta \in W$ such that M is a set-forcing extension of $L(V_{\delta})^{W}$.
- (2) Given $n \geq 1$, M is a n + 1-step local forcing extension of W in case there is an n-step local forcing extension M_0 of W and there is an ordinal $\delta \in M_0$ such that M is a 1-step local forcing extension of M_0 .

M is an iterated local forcing extension of W if there is some $n \geq 1$ such that M is an n-step local forcing extension of W.

Our local version of Ω -logic is the following.

Definition 3.2. Given a set T of sentences in the language of set theory and a sentence σ in the language of set theory, we write $T \models_{\Omega^{\ell}} \sigma$ in case for every iterated local forcing extension M of V and every ordinal α , if $V_{\alpha}^{M} \models T$, then $V_{\alpha}^{M} \models \sigma$.

Thus, $\models_{\Omega^{\ell}}$ is a weak version of Ω -logic. We refer to $\models_{\Omega^{\ell}}$ as local Ω -logic.

A simple variation of the proofs of Theorem 1.1 and Corollary 1.3 establishes the following.

Theorem 3.3. Suppose there is a proper class of Woodin cardinals. Let σ be a sentence. Then the following are equivalent.

- $(1) \emptyset \models_{\Omega^{\ell}} \sigma$
- (2) Suppose δ is an ordinal such that δ is Woodin in $L(V_{\delta})$ and the set of $L(V_{\delta})$ -Woodin cardinals $\gamma < \delta$ is bounded in δ . Then $L(V_{\delta}) \models "\emptyset \models_{\Omega^{\ell}} \sigma"$.
- (3) There is a real r such that for every countable transitive model N of ZFC, if $r \in N$ and $N[H] \preceq_{\widehat{\Sigma}_3^1} V$ for every set-generic filter $H \in V$ over N, then N models " $\emptyset \models_{\Omega^\ell} \sigma$ ".

The equivalence between (1) and (3) can be seen as a completeness theorem for local Ω -logic in the spirit of the Ω -conjecture for the original

⁵We recall that the Ω -conjecture is the completeness theorem for Ω -logic relative to the calculus in the definition of \vdash_{Ω} in terms of A-closed models M for fixed universally Baire sets $A \subseteq \mathbb{R}$ ([7]).

⁶The ' ℓ ' superscript in Ω^{ℓ} is for 'local'.

 Ω -logic. This equivalence also yields the following corollary on the complexity of Ω^{ℓ} -validity.

Corollary 3.4. Suppose there is a proper class of Woodin cardinals. Then $\{\sharp \sigma: \emptyset \models_{\Omega^{\ell}} \sigma\}$ is a Σ_5^1 -definable real.

Acknowledgements: The author thanks Daisuke Ikegami, Hiroshi Sakai, and Hugh Woodin for their comments.

References

- [1] I. Farah, The extender algebra and Σ_1^2 -absoluteness, in Large cardinals, determinacy and other topics, The Cabal Seminar, vol. 4, A. S. Kechris, B. Löwe, J. R. Steel, eds., 2021.
- [2] P. B. Larson, *Three days of* Ω *logic*, Annals of the Japan Association for Philosophy of Science 19 (May 2011), 57-86.
- [3] D. A. Martin and J. R. Steel, *Iteration trees*, J. American Math. Soc., 1994, vol. 7, no. 1 (1994), 1–73.
- [4] I. Neeman, *The determinacy of long games*, De Gruyter Series in Logic and its Applications, vol. 7, Walter de Gruyter and Co., Berlin, 2004.
- [5] I. Neeman, Determinacy in $L(\mathbb{R})$, in Handbook of Set Theory (Foreman, Kanamori, eds.), pp. 1887–1950, Springer, 2010.
- [6] J. R. Steel, The well-foundedness of the Mitchell order, The J. of Symbolic Logic, vol. 58, no, 3 (1993), 931–940.
- [7] W. H. Woodin, The Axiom of Determinacy, forcing axioms, and the nonstationary ideal, 2nd. ed., De Gruyter (2010).

David Asperó, School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK

Email address: d.aspero@uea.ac.uk