TWO PRESERVATION THEOREMS OF STRONGLY PROPER
FORCING NOTIONS
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ABSTRACT. It is proved that a strongly proper forcing notion preserves the
maximality of C-indestructible mad families and non-meager sets of reals.

1. INTRODUCTION

Asper6-Mota and Neeman developed forcing iteration theory by wuse of
Todor¢evié’s side condition method (e.g. [1, 8]). The side condition method consists
of systems of models of some H (x), which is the set of sets of hereditary cardinality
less than  (e.g. [10, 11]). A basic side condition method is Todorcevié’s €-collapse,
which consists of finite chains of countable elementary submodels of H(x) for some
fixed regular cardinal x. Since the €-collapse adds a Cohen real, for example,
Asper6-Mota iteration may not force that cov(M) = Ry < 2%, And, since the
€-collapse preserves the countable chain condition of Suslin trees, it is possible
that some Asper6—Mota iterations and Neeman iterations force some weak forcing
axioms and the negation of Suslin Hypothesis simultaneously.

The €-collapse has the strong properness, defined by Shelah. In this article,
we prove two preservation theorems of strongly proper forcing notions. One is on
the almost disjointness number a and the other is on the uniformity non(M) of the
meager ideal. So it is consistent relative to the existence of a supercompact cardinal
that a = non(M) = RX; and the forcing axiom for strongly proper forcing notions
holds. And, this suggests a possibility of Asper6-Mota iterations and Neeman
iterations which force a = N; and non(M) = ¥y with some weak forcing axioms.

In §2, we introduce Shelah’s strong properness and its examples, and demonstrate
the proofs of some basic preservation theorems of strongly proper forcing notions.
In §3, we prove a preservation theorem of strongly proper forcing notions about the
almost disjointness number, and in §4, we prove a preservation theorem of strongly
proper forcing notions about the uniformity of the meager ideal.

2. STRONGLY PROPER FORCING NOTIONS

Definition 2.1 (Shelah, [9, Ch. IX, 2.6 Definition]). A forcing notion P is called
strongly proper if, for any sufficiently large regular cardinal €, any countable el-
ementary submodel N of H(#) with P € N, any countable sequence (D,;n € w)
with D,, CPN N dense in PN N and any p € PN N, there exists ¢ <p p such that
for all n € w, D, is predense below ¢ in P.

A strongly proper forcing notion is proper. The typical example of strongly
proper forcing notion is Cohen forcing. The other one is the following.
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Definition 2.2 (Todorcevié, the €-collapse, e.g. [12, Ch.7]). Let x be an un-
countable regular cardinal. The €-collapse (for the cardinal k) P, consists of finite
€-chains of countable elementary submodels of H(k), ordered by the superset rela-
tion.

Proposition 2.3. The €-collapse P, is strongly proper.

Proof. Let 6 be a large enough regular cardinal for P, N a countable elementary
submodel of H(f) with {P.,H(k)} € N, and p € P, N N. Define p* := pU
{N N H(k)}. Then p™ € P, and p™ D p, hence p* <p_ p. Let us show that pT is
strong (N, P,)-generic in the sense of Mitchell [6, Definition 2.3], that is, for any
dense subset D of P, NN in P, NN, D is predense below p* in P,., which suffices
to finish the proof.

Let ¢ <p, p". Then ¢ N N is in P, N N, so there exists r € D such that
r <p, ¢ N. Then r Ugq is also in P,; and an extension of r and ¢ in Py. ([l

The €-collapse collapses + to Ny and is Chodounsky—Zapletal’s Y-proper [3].
The €-collapse has an Ny-pic variation which does not collapse any cardinals over
the Continuum Hypothesis (e.g. [11, §4]). This variation is also strongly proper.
Strong properness is closed under countable support iterations [9, Ch. IX, 2.7A
Remark]. So, if there exists a supercompact cardinal, there exists a strongly proper
forcing notion which forces the forcing axiom for strongly proper forcing notions.

Remark 2.4. Sacks forcing and Silver forcing are strongly proper (see e.g. [13,
Lemma 4.1.6, Corollary 4.1.9]).

In the rest of this section, we demonstrate three preservation results of strongly
proper forcing notions.

Proposition 2.5. A strongly proper forcing notion preserves the Aronszajn-ness
of an wy -tree.

Proof. Let P be a strongly proper forcing notion and 7" an (w;-)Aronszajn tree.
For v € wy, we denote by T, a set of all elements lying in the ~-th level of T, and
define T := |, <y T Assume that there are p € P and a P-name X such that

plFp“ X C T is an uncountable chain 7.
Let M be a countable elementary submodel of H(6) such that {R T,p, X} e M,
and let § := w; N M. For each t € Ty, define
D; = {qEPﬁM:38€T<5(S§(Tt&q”_]p“SEX")}.
We claim that each D; is dense in PN M. Given r € PN M, let ¥ =
{s eT :rifp“sed X ”}, whichisin M. T YNM ={s€T.s:s <rt}, then
M =Y is an uncountable branch of T' 7,

which contradicts to the Aronszajn-ness of T, hence Y N M # {s € T<s5 : s < t}.
Note that, by the elementarity of M,

ME“YE<wTn>&YNT, #£0) 7.
Thus we can find s € Y N M so that s £7 t. Since

M):“SEY”,
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there is ¢ € PN M such that ¢ <p 7 and ¢ IFp* s € X 7. Since

M ':(A T — U CZ"€ 777
E<wi
TQM:U£<5T50M:T<5, sos € Tcs.
Since Ty is countable by the wi-tree-ness of T', there exists ¢ <p p such that, for
every t € Ts, Dy is predense below ¢. Then

qIFp“ YVt e TsIs e Tes N X (s £ t) 7,

therefore
qlFp“ X CTes 7,
which is a contradiction. O

Proposition 2.6. A strongly proper forcing notion preserves the gap-ness of a
pregap in P(w)/fin.

Proof. Recall the notions of (k,\)-pregaps and (k, A)-gaps in P(w)/fin. (A,B) =
(a,bg : o € K, € A) is called a (k, A)-pregap in P(w)/fin if

o for any o € x and any 8 € A, a, and bg are infinite subsets of w,

e for any o, € &, if o < 8, then ao C* ag, which means that aq \ ag is

finite,

o for any o, 5 € A, if o < 3, then b, C* bg, and

o for any o € x and any 3 € A, an L bg, which means that, a, N bg is finite.
An infinite subset ¢ of w separates a (k,\)-pregap (A, B) = (aq,bg:x € K, € N)
if, for any a € k and any 5 € A, aq C* cand bg L ¢. A (x,\)-pregap (A,B) =
(aa,bs : o € K, € \) is called a (k, A)-gap if there are no infinite subsets of w which
separate (A, B).

Let P be a strongly proper forcing notion and (A, B) = (as,bg: @ € k,6 € A) a

(k,\)-gap. Without loss, assume that x is an uncountable regular cardinal. Let
p € P and & a P-name such that

plFp“Vbe B(b L) ”.
Let us show that p Iffp* & separates (A, B)”.
Let M be a countable elementary submodel of H(6) such that

{P,(A,B),p,z,k} € M, and let § := sup(M N k). Since s is of uncountable
cofinality and M is countable, § < k. For each n € w, define

D, ={¢ePnM:Imecas\n(glrp“m¢gz”)}.
We claim that each D, is dense in PN M. Given r € PN M, let ¢ :=

{kew:rlFp“kez”}. (Note that p IFp“c C & ”.) Then ¢ € M and for all
beB,bLec Ifas\n Cc, then

M E¥ ¢ separates (A, B) 7,
which is a contradiction because of the elementarity of M. Hence there exists
m € as \ (nUc). Since

M ':“ m € I 777
we can find ¢ € PN M such that ¢ <pr and qlFp“m & & 7.
By the strong properness of P, there is ¢ <p p such that all D,, are predense

below ¢ in P. Then

qglFp“Vn ewlas\n € &) 7,
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that is g IFp* ag £* & 7, which finishes the proof. U

By the connection between unbounded families in (w*, <*) and (b, w)-gaps, this
proposition implies that strongly proper forcing notions add no dominating reals

(c.f. [13, Corollary 4.1.7]).

Theorem 2.7 (Miyamoto, [7]). A strongly proper forcing notion preserves the
countable chain condition of a Suslin tree.

Proof. Let P be a strongly proper forcing notion and 7" a Suslin tree. Assume that
p € P and A is a P-name such that

plFp“ A is a maximal antichain in T 7.

Let M be a countable elementary submodel of H(f) such that {T7 IP’7p7A} eM

and § := w1 N M.
For t € T}, define

Dt::{qE]P’ﬂM:EIsET<5<5<Tt&qll-]p“s€/1")}.

Each D; may not be in M. We claim that each D; is dense below p in PNM. Let r €
PN M be a stronger condition of p in P. Then (inside M) {s eT:rlfp“sg A ”} is
predense in T', so we can find a maximal antichain A’ in this set. By the elementarity
of M, we may assume that A’ € M. Since T is a Suslin tree, A’ is countable, hence

A" € M. Then (outside M) there exists s € A’ compatible with ¢ in T. Since
M E=*se A7, there exists ¢ <p r in M such that

qlpse A

Since TN M = Jyc5Tar s € T<s and so s <7 t holds, hence ¢ € D;.
By the strong properness of P, there exists ¢ <p p such that D; is predense below
q for every t € Ts5. Then

qlFp“ VYVt € Tsds € A(s <rt)?,

therefore
q lFp“ A C T.s, which is countable ”.
O

It is not known whether a strongly proper forcing notion preserves the destruc-
tibility of a destructible gap like a Suslin tree.

3. C-INDESTRUCTIBLE MADFAMILIES

A subset A of [w]™ is called almost disjoint if any two elements of A is pairwise
disjoint, and an almost disjoint family .4 on w is called a mad family if A is infinite
and is maximal with respect to almost disjoint families, that is, any infinite subset
of w has an infinite intersection with some element of A. For a forcing notion P,
a mad family is called P-indestructible if P forces that A is still a mad family. A
Cohen forcing is denoted by C in this article.

Theorem 3.1 (Brendle-Yatabe [2, Theorem 2.4.8], Hrusdk [4, Theorem 5], Kurili¢
[5, Theorem 2]). A mad family A is C-indestructible iff, for any function f from
C into w, there exists a € A such that f~1[a] is somewhere dense in C.
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Theorem 3.2 (Hrusdk, [4, Proposition 6 (2)]). If b = 2%, then there exists a C-
indestructible mad family.

Theorem 3.3. A strongly proper forcing notion preserves the mazximality of a C-
indestructible mad family.

Proof. Let P be a strongly proper forcing notion, A a C-indestructible mad family,
p € P, and & a P-name for an infinite subset of w. Let us find ¢ <p p and a € A
such that
q lFp“ £ Na is infinite ”.
Denote § = (2/F |)+. Take a countable elementary submodel M of H(#) such
that {P, A, p, 2} € M. If there exists ¢ <p p such that

by:={kew:qlkp“kez”}

is infinite, then the maximality of A follows the existence of our desired a € A. So
we assume that any extension ¢ of p in IP satisfies that b, is finite.

For each r <p p, define k, := max (b, U {0}). Let C be a subset of PN M which
is dense below p in PN M. Since C is a dense subset of the countable forcing
notion P N M, by shrinking C' if necessary, we may assume that there exists an
order-isomorphism % of (a dense subset of) C onto C. Define the function f from
C into w such that, for each o € C, f(0) = k(5. Since A is C-indestructible, there
are a € A and o € C such that f~![a] is dense below ¢ in C. Then h(c) <p p and
h(c) € M.

Let us show that, for each n € w,

D, ={¢ePnM:n<k;and k4 € a}

is dense below h(o) in PN M. To show this, let n € w and s € PN M be such
that s <p h(c). Since & is a P-name for an infinite subset of w and belongs to M,
by the elementarity of M, there exists 7 € C such that » <p s and k, > n. Since
h~Y(r) <c o, there is 7 € f~![a] such that 7 <c h~1(r). Then f(7) € a, h(1) <p 1,
h(7) <p h(o), and
n <k, < kh(T) = f(T)7

hence h(7) € D,,.

By the strong properness of P, there exists ¢ <p h(o) such that, for all n € w,
D,, is predense below ¢ in P. Then

qFp“ £ Na is infinite ”.

4. NON-MEAGER SETS OF REALS
Theorem 4.1. A strongly proper forcing notion preserves non-meager sets of reals.

Proof. Let P be a forcing notion. For each o € w<*, denote [0] := {f € w* : 0 C f}.
For r € P and a P-name F for a nowhere dense subset of w*, define

G(r, F) := {onJ“’:VkEw,rH-]p“Fﬂ[f [ k] 7&@”}.

We claim that G(p, F ) is nowhere dense. To show this, the strong properness of P
is not necessary. Let 0 € w<“. Then there are s <p 7 and 7 € w<* such that ¢ C 7
5



and s IFp“ F'N[7] =07, Then G(r, F') N [7] is empty. Because, if f € G(r, F) N [7],
then there is k € w such that 7 C f | k, and then
slkp“ FO[f 1kl #0and FN[r] =07,
which contradicts to the fact that [f | k] C [7].
Suppose that P is strongly proper, X is a non-meager subset of w*, p € P, and
Fn 'n € w} is a set of P-names for nowhere dense subsets of w*. Let us show that

ples X C | Fa

new

Suppose not. Denote 0 := (2“1]")-’_7 and take a countable elementary submodel

M of H(#) such that {R X, p, {Fn in € w}} € M, and take f in the set

X\<U U G(nFn)).

new rePNM

For each n € w, define
Dy = {sEPﬁM:EIkEw(SH-P“ E,0f [k]:(Z)”)}.

Each D,, may not be in M. We claim that D,, is dense in PN M. Let r € PN M.
Then f & G(r, F,,), which means that there exists k € w such that

rlfpc a0 [f TR #07.
This implies that there exists s € PN M such that s <p r and
slkp“ By N[f 1 k] =07,

because of the fact that {]P’7 rE,, f [k} € M and the elementarity of M. Then

s€D,.
By the strong properness of P, there exists ¢ <p p be such that all D, are
predense below ¢ in P. Then ¢q IFp“ f € X C |J F,,”, so there are s <p ¢ and

1 ncw - "
n € w such that s IFp“ f € F,,”. Since D, is predense below p in P, there are
r € Dy, k € wand t <p s such that r IFp“ F, N[f [ k] =07 and ¢t <p r. But then

Ll fe By and f By,
which is a contradiction. O
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