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The title of my talk at the RIMS workshop was “Differential opera-
tors on Siegel modular forms and Laplace transforms”. There I talked
on the content of my paper [19]. The paper has been already published,
so instead of repeating the precise content here, I try to give a survey
in an informal style and also give some guidance for references.

1. AUTOMORPHY FACTORS

Although our theory applies to various hermitian symmetric do-
mains, here to avoid an unnecessary complication of the formulation,
we consider only the case of Siegel upper half space H,, defined by

H,={Z=X+iY € M,(C); X ='X,Y = 'Y € M,(R),Y > 0},

where Y > 0 means that Y is positive definite. Then the real symplectic
group Sp(n,R) C My, (R) of real rank n acts on H,, by

gZ = (AZ + B)(CZ + D)™! g= (é IB)> € Sp(n,R).

It is well known that the group Aut(H,) of biholomorphic automor-
phism of H, is Sp(n,R)/{£1s,}. We consider a finite dimensional
vector space V' and the space Hol(H,,V) of V-valued holomorphic
functions F' on H,. Let G be a subgroup of Sp(n,R). We consider a
GL(V) valued function J(g,Z) on G x H, such that

(1) J(g192, 72) = J(g1,922) I (g2, Z) for all g1, g0 € G.

This condition means that the operation
Hol(H,,V)> F(Z) — F|;lg) = J(g9,2) 'F(gZ) € Hol(H,,V)

is the action of the group G on Hol(H,,V). Such J(g,7) is called
an automorphy factor of G. When G = Sp(n,R), then the maximal
compact subgroup K of G is isomorphic to the n x n unitary group
U(n) and its complexification is GL,(C). For any irreducible rational
representation (p, V) of GL,(C), we may define an automorphy factor
J, by

o) =pcz+0), 9= ({ D)€ snm),
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(For a general theory, see [25].) In this case, we write F'[; [g] = F|,[g].
When p(A) = det(A)* for A € GL,(C), we also write F|,[g] = Fx[g].
For most p, the action defined by J, on Hol(H,,, V) is irreducible (holo-
morphic discrete series representation).

Now for r > 2, fix a partition n = n; + -+ +n, of n (n; > 1) and

put n = (nq,...,n,). For n, consider the following subdomain of H,,.
Zy 0 0

(2) Hyo=H, x---xH, >5Z,....Z2.)—=> |0 . 0| € Hx
0o 0 Z

Then G, = Sp(ny,R) x --- x Sp(n,,R) acts on H, and G, can be
naturally regarded as a subgroup of Sp(n,R) compatible with this em-
bedding of the domain. Here we consider representations of (p;, V;) of
GL(n;) (1 <i<r)andputp=piR--®p,,. Weput V,, = Vi®---QV,.
We define GL(V,,) valued automorphy factor

JP((glv s 7g7”>7 (Z17 R 7Z7“>) = pl(CIZI + Dl) X & pr(CrZr + Dr)

of Gy, on Hol(Hy, V). When all p; = det”, we write p = det".
Now we consider a holomorphic linear differential operator D with
constant coefficients to map Hol(H,,C) to Hol(H,, V') such that

(3) Resp, (D(Fx[9])) = (Resu,, (DF))geqt e [9]

for any holomorphic function F' on H,, and any g = (¢1,...,9:) € Gn.
Here Res is the restriction of functions on H,, to H,,

We have several motivations to consider such differential operators.

(i) This differential operator gives an easy way to construct a new
modular forms starting from given modular forms. If F'is a modular
form of weight k& w.r.t. a discrete subgroup I' C Sp(n,R), that is, if
Flg[y] = F for all v € I" , then by the differential operators as above,
we have

Resy,, (DF) = (RGSHn (DF))|JdetkW [7]

for v € I' N G,,. This means that Resy, (DF') is a modular form of
['NG,, of weight det* ® p. If we replace the pair (H,, Hy,) by (H", H,,)
where H,, is embedded diagonally in H), then the operator is often
called a Rankin-Cohen operator. This case is formulated similarly in
[10] and used very often (See [1], [9], [12]).

(ii) If we apply our differential operator D on Siegel Eisenstein series
E,\ 1n,(Z) of degree ny +ny and restrict (DE,,4n,)(Z) to Hy, x H,, C
H, by the embedding (2), then this is a linear combination of the ten-
sors of Siegel modular forms of degree n; and ny,. The coefficients of
this linear combination are given by critical values of the standard L
function of Siegel cusp forms (due to P. Garrett, S. Boecherer, N. Koz-
ima and so on). So if D and the Fourier coefficients of E,,, ;,, are given
concretely, then this gives a way to calculate the critical values of the

standard L functions explicitly ([8], [13], [14]). This also gives a method
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to give a congruence between eigenvalues of Siegel modular forms ([14],
2], [3].) This kind of application on congruences was started by Kat-
surada(e.g. [22]). For this application, we often need a very concrete
formulas of differential operators beyond existence theorem.

(iii) But more than the above two reasons, this theory of differential
operators give an interesting theory of special functions. Since we as-
sumed that D has constant coefficients, we have a V-valued polynomial
P in partial derivatives d; of variables of H,, such that D = P(0z).
More precisely, for Z = (z;;) € H,, we put a symmetric matrix of

partial derivation
1+9;; 0O
o, :( J_) .
2 Oz 1<i,j<n

We consider a V-valued polynomial P(7") in components of n x n sym-
metric matrix 7" and a differential operator P(0z). Then polynomials
P such that P(0z) satisfies the condition (3) give a very interesting
special polynomials, including classical Gegenbauer polynomials. This
means that we also have a general theory of special functions of several
variables behind this, like a system of differential equations that has
our polynomials as its solutions. Then we can also ask non-polynomial
solutions similarly as Gegenbauer functions (See [20]).

General characterization of our V-valued polynomial P has been
given in [10]. The theory in [10] treat two cases: the case H,, C H,,
and the case H, C H,. In this note, we treat only the former case. In
this case, the claim of the theory is (under some mild condition on n
and k) as follows. A V-valued polynomial P satisfies the condition (3)
if and only if the following two conditions (a), (b) are satisfied.

Condition 1.1. (a) Take an n; x 2k matriz X; of variables (1 <i <r).
We put
Xy
x=1{:].
X,

and write T = X'X. Then P(X'X) is a V-valued polynomial such
that it is pluri-harmonic with respect to each X; with 1 < i < r. Here
we say that a polynomial P(Y') in y;, for an ng X 2k matriz Y = (y;,)
is pluri-harmonic with respect to Y if Ajj(Y)P(Y) =0 for

for any i and j with 1 < 1,5 < ng.
(b) Embed any A = (Ay,...,A,) € GL,, (C) x --- x GL,, (C), to
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GL,(C) by

A, 0 0
A=1o0o . 0
0 0 A,

Then we have P(AT'A) = p(A)P(T), where p=p; ® -+ & p,.

For the proof, see [10] Theorem 1. Even only by this characteriza-
tion, we can understand a lot of things. For example, since we are
taking T = X 'X, our polynomial P(X) = P(X'X) is invariant by
the action X — Xh for h € O(2k). But we know a complete clas-
sification of irreducible representations of GL(n;) x O(2k) realized on
pluri-harmonic polynomials in X; by [21]. Our polynomial is a tensor
of pluri-harmonic polynomials for each X; with X = *(Xy,..., X,),
and if we assume that each X; factor corresponds to a representation
(73, hi) of GL,,,(C) x O(2k) for each 7, then our P(X) should belong to
the trivial representations in h; ® --- ® h,. So the multiplicity of this
trivial representation is the dimension of our P. For example, when
r = 2, P exists only when 7, and 7, correspond with the same Young
diagram, and such P is unique up to constant(See [10]).

In some cases, directly from this result we can give concrete closed
formulas of polynomials P as given in [10]. But in general, to give
concrete P is not so easy. In most application in the paper we quoted
before, we need a very concrete formula of P. There are many tries
for this. For example, [11] treated the case that r = 2, p; and py are
det’. For example, when ¢ = 2, a concrete closed formula is given
in [11] p. 289 for general n, and a constructive method to give P is
explained in 4.2.1 of the same paper. This paper contains a theory
of associated system of differential equations. The paper [18] gives
a kind of generalization of the classical Rodrigues formula as in the
case of Legendre polynomial. This gives a one-line formula for the
polynomial P for general p;. This is rather a theoretical formula since if
we calculate the operator by this formula, then the computer would give
you back a mess. The paper [17] explains a certain generic differential
operator which can be regarded as a source of all the operators we
need. Still we cannot call most of the above results as a closed formula
to the extent that we can write down the coefficients of polynomials
completely.

2. OPERATION ON AUTOMORPHY FACTORS AND DESCENDING BASIS

Let’s forget for a while that we are considering a differential op-
erator that preserves automorphy under restriction. Let’s consider a
general differential operator P(0yz) for a scalar valued polynomial P in

components of n X n symmetric matrix 7. Let’s consider a simple au-

tomorphy factor Jy (g, Z) = det(CZ+ D) for g = (é g) € Sp(n,R)
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and Z € H,,. Now we ask what is P(97)det(C'Z + D)™*. For example,
when C' = 1,,, D = 0, we have Ji(g, Z) = det(Z)", and the following
Cayley type formula is known (e.g. [6]).

det(9,) det(2)° = s (s + %) e (s + 2 5 1) det(2)*",

Here s can be any complex number and a branch of det(Z)® is defined
well in a certain way. In [26], Shimura asked how to generalize this and
answered as follows. Consider a representation of GL,,(C) on the ring
C[T] of polynomials P(T") in components of n X n symmetric matrix 7'
defined by (7(g)P)(T) = P(*¢gTg) for g € GL,(C). Take an irreducible
representation (7, V;) in (7, C[T]) and assume that P(T) € V., C C[T].
Then for a certain gamma factor (,(s) we have

P(dz)det(Z)* = Bu(s)det(Z)*P(Z71).

For example, when P(T) = det(T') then this gives a representation
g — det(g)?, and P(Z7') =det(Z)7!, so det(Z)*P(Z7') = det(Z)*~,
and this is nothing but the above Cayley type formula. Here we use
det(Z)* instead of det(C'Z + D)*®, but we will explain now that this
does not give much difference. For Z = (z;;) € H,, we write
140 0

2 82,5 .

0z,ij =

If we give a general formula of derivatives of det(C'Z + D)™* by any
0z,j, then by iteration we can at least have an algorithm to calculate
P(0z)det(CZ + D)7* for any P. To write this down, we fix g €
Sp(n,R) and (C, D), and for simplicity, we write 6 = det(CZ + D)
and A = (CZ + D)7'C. Tt is well known and easy to see that A is a
symmetric matrix. For column vectors z = *(z;), y = *(y;) € C*, put

Oz, y] = 207"y = Z
1<i<j<n
Then as shown in Ibukiyama:fREJEXFfEm (FL32 4K 2018), we have
Ola,yo = o(xA'y)
Oz, y]6 % = —ké *(zA'y)
Olz,y)(A) = —A(*zy + 'yz)A/2.

iy +xjy; O
2 aZij .

This means that

Lemma 2.1. For any i, j, p, ¢ € {1,...,n} and for any complex
number k, we have

827ij5_k = —ké_kAm

1
07:jQpq = —é(Aiijq + AigAjp)
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So by iterate use of these formulas, it is clear that for any polynomial
P(T), we have some polynomial Q(7") such that

P(87)57F = 57+ Q(A).

Now the shape of the formula in Lemma 2.1 does not depend on C'
and D. So as far as A;; is generic (for example if A;; (1 < i <
j < n) are algebraically independent), the polynomial @) is determined
independently of the choice of C'; D. So ) can be determined as far as
we know P(0z) det(Z)~*. The mapping from P(T) to Q(T') (depending
of course on k) is a linear map from the vector space C[T'] to C[T] over
C, and we denote this by ¢;, as

Q= on(P).
There exists a kind of formula to describe ¢x(P) for any P(T) (see [19]
Theorem 1), but we omit it here, since we can give a better formulation
and we give a deeper property of ¢, later.

It is also well known that we can define the same sort of simple auto-
morphy factor for any tube domain, and Shimura developed a general
theory on that. This is a beautiful theory. But his theory does not fit
our demand. In most cases, for our differential operators D = P(0y),
the polynomial P does not belong to any irreducible representation of
GL,(C). Our polynomial should belong to a representation space of
the group GL,, (C)x---xGL,, (C) C GL,(C), and not representations
of GL,(C). In fact, we have a very nice basis of C[T] which behaves
very well on det(Z)®. Such a basis is called a descending basis, and has
been (essentially) defined in [15] by completely different motivation.
We explain this next.

Let P(T) be a polynomial in C[T]. For our differential operators, we
had two conditions on P in Condition 1.1. But let’s forget a condition
on the action of GL,,(C) x --- x GL,, (C) for a while. In this section,
we consider a general polynomial P(7") and ask what is P(0z) det(Z)®.
Let X = (2i,)1<i<ni1<v<2r be an n x 2k matrix of variables. For each
1, 7 with 1 <4, 5 < n, we put

2%k pe
A (X) = ; 9200 Dy

To see Condition 1.1 (a) on P for T, it is natural to write down the
operation of A;;(X) on P(X'X) by variables of T'= X 'X. We write
T = (t;;) and put

0

)

It has been shown in [15] that if we put
D;; = 2ko,; + Z tkeOiOje,

k=1
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then we have
Aij(P(X'X)) = (D P)(X'X),

so we can write the pluri-harmonicity condition by ¢;;. But D;; and
A;;(X) have one difference. To define A;;(X), the number 2k should
be an integer, but the operator D;; is well-defined for any complex
number k. This is a big difference in the theory we explain later.
Apparently there seems no relation between what is P(9z) det(Z)~*
and P being pluri-harmonic. But soon we will see that there exists
a mysterious relation between these, and this is explained by our de-
scending basis. To explain this, we consider the following set of indices

N ={v = (vj) = "v € M,(Z);vi; > 0,v;; =0mod 2 for 1 <i < n}.
For v € N and T = (t;;) = 'T, we write

n

(4) T — H t;’;j/QZHtZI{Zi/Q H t;l;j.

1<4,j<n i=1 1<i<j<n

Since these elements give all the monomials in C[T7], it is natural that
elements of a basis of C[T] is indexed by elements of A/ in some way. If
we consider a monomial 7% and the degree a; of (X 'X)¥ with respect
to x;, for a fixed i, then obviously we have

n
a; = E Vij.
j=1

We call a = (ay,...,a,) a multi-degree of T%. Of course a does not
determine v at all.

In [15], we considered subspace H of polynomials P(T") in C[T] such
that D P = 0 for all 2. In Condition 1.1 (a), this is the case where
r=mnandn =---=mn, = 1. In [15], we considered two canonical
bases of H. One is called a monomial basis P2 (T). This is explained
as follows. We put Ny = {v = (v;;) € N;v; = 0 for all i}. We can
show (under certain mild condition on k& and n) that for each v € N,
there exists the unique polynomial PM(T) such that Dy PM(T) = 0
for all i = 1,..., n and that PM(T) = T” mod (t1,...,tmm). The
last condition means that one of the monomials in PM(T') is T with
coefficient 1 and all the other monomials contain ¢;; for some 1.

The other canonical basis is called descending basis described in the
following theorem. In [15], this basis was given only for H, but here
we state it for the whole space C[T1], since the proof is the same.

Notation: Let Z, be the set of integers o such that @ < n. We denote
by C,, the set of complex numbers that do not belong to Z,,. We denote
by e;; the n x n matrix element whose (7, j) component is 1 and all the
other components are 0. We put e;; = e;; + ¢j;.
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Theorem 2.2. For the index 0 = (0) € N, we define PP (T) = 1.

Assume that 2k € C,,. Then there exists a basis of C[T] consisting of
unique polynomials PP(T) (v € N') such that

D _ pD
DZ]PI/ (T) - Pu—ez-j (T)
Here, if any component of v — e;; is negative, we regard PIP_% (T) =0.

We see an example. Put n = 3 and put

010
v=1[10 0
000

Then P = PP(T) is characterized by the following conditions.
D11 P = DyP = D33P =0,
DypP =Py =1,
D3P = Dy3P = 0.

It is easy to see that such a polynomial is uniquely given by ¢15/2k.

A proof of Theorem 2.2 is not so easy. If we consider only indices v €
N, then polynomials PP (T) for v € N give a basis of H, and this basis
is the dual basis of the monomial basis with respect to a certain natural
inner product of H. The two bases of H we described above were
introduced independently by two authors of [15], the monomial basis
by Zagier and the descending basis by Ibukiyama. Since it turns out
that they are dual, we were convinced that we can call them canonical
bases.

A basis suited for our purpose here is the descending basis, so we
do not talk on monomial basis from now on. There are many good
surprising properties of the descending basis, and we will explain some
of them.

For any index v = (v;;) € N, we write

deg(v) = % Z Vij = %ZVZZ + Z Vij.
1<i,j<n i=1 1<i<j<n

If we put a; = Z?:l Vij, then this means that

1 n
deg(v) = 3 Zai
i=1

For the matrix A and an index v € N/, we define A” as in (4). We also

put
n
I/! = HV”” H Vij!>
i=1

1<i<j<n
where we put
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Theorem 2.3. We assume that 2k € @
(i) For an index v € N and the descending basis PP(T) of index v,

we have o)
D R o
Py(0z)(07%) = 07" x 5T

(ii) The linear map ¢y from C[T] to C[T] defined by P(d7)d * =
0 *r(P)(A) is an isomorphism and commutes with the action T of
GL,(C) on C[T] defined by (n(A)P)(T) = P(*ATA). That is, we have

Or(m(A)P) = m(A)(¢r(P)),  P(T) € C[T].

The first equality means that P?(9;) on §7* gives essentially a mul-
tiplication of monomial A¥ of A;;, and this is very striking. We explain
the meaning of (ii) more. As seen in (i), the images of P? by ¢ are
monomials. So among the images of descending basis, the action of
GL,(C) on RHS of (ii) means the action on monomials. Since ¢y, is an
isomorphism, the action on monomials reflects on the action of GL,,(C)
on polynomials PP (T). For example, for the sake of simplicity, we first
consider the case n = 2. For a matrix

tir tio
T = ,
(t12 t22>

consider the case Q(T) = t£,. Then by Theorem 2.3 (i), the polynomial
P such that ¢, (P) = @ is given up to constant by

P,(T)

- (00)

Then by Theorem 2.3 (ii), for A = (al 0

v

where

0 (45}

or(m(A)P)) = ¢r(P) (‘AT A)) = m(A)(t1,) = ajagly, = aiaz0(P)(T)).

Since ¢y, is a linear isomorphism by Theorem 2.3 (i), we have
T(A)P)(T) = PJ("ATA) = ajay P, (T).

This is nothing but Condition 1.1 (b) on GL;(C) x GL:(C). Besides,
by the definition of the descending basis, it is clear that Dy, P,(T) =
Dy P,(T) = 0. This means that P, satisfies the necessary pluri-
harmonicity condition. So for any holomorphic function F(Z) on Z €

) , we have

Hj, any g; = (Z’ Z’) € SLy(R) (i =1, 2), and
aq 0 bl 0
. A B . 0 Qo 0 bg
9= (C D) “la 0 a4 o SPER
0 Co 0 dg
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we have

(5) Resm,xm P (92)(F(92)det(CZ + D)™")

0
— (PP(0,)F) (910zl gm> (crzn + i) ™oz + dy)*

for z1, 23 € Hy;. So by our theory, we can describe the property of
PP(87) without knowing ¢ or PP precisely. Any differential opera-
tor satisfying (5) is a constant times P?(9;). The actual formula for
PP(T) in this case is given by the homogenized Gegenbauer polynomi-
als that will be explained below. For the sake of simplicity, we write
PP(T) = PP(T) for v defined above for each ¢. To describe a neat
generating function of PP for all £ > 0, we must change P” by constant
times for each ¢. This is a bit tricky point. The differential operator is
determined only up to constant for each ¢, but we have various ¢, so we
can multiply various different constants to PP depending on /. So as
a whole, we have infinitely many different normalization. But to give
a neat generating function, we should define a certain nice normaliza-
tion, and there is no definite theory for such choices. We may say if the
result is beautiful, then it is a good normalization. Anyway, we have a
well known formula in this case. We consider the following series.

A
(1—2tz+z2 ZC

Here z and t are variables. Then C(t) is a polynomial in ¢ of degree a
and called a Gegenbauer polynomial of degree a. More explicitly this
is given by

- E ) o

0<s<a/2

If we put
t
PyT) = (tite)?CH | —2= ),
Z( ) ( 11 22) /4 m
then we see that P(T) is a constant times PP(T). (The constant can
be calculated but omitted here.) The generating function of Py(T') is
given by

1
P(T
Z Z 1 — 2t122 + t11t2222>k L

Here ¢ (PP) = t‘iQ is simple, but we see PP (T) itself is not so simple.
In the same way, put
Ty Thip
T =
(tle T

for a 2m x 2m symmetric matrix 7" and m x m symmetric matrices 11,

and Ty, of variables. For A;, Ay € GL,,(C). we have det(*A,T12A5)" =
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det(A;)* det(Ay)" det(Ty2)". Consider the polynomial P(T) € C[T] such
that ¢4 (P(T)) = det(T12)*. Then by Theorem 2.3 (ii), we have

P(PATA) = det(A) det(As) P(T)  for A= (“él 22> |

Of course P(T') is a certain linear combination of the descendind basis
corresponding to indices of monomials in the expansion of det(7}s)".
The indices v = (v;;) € N appearing here satisfy

vij=0forall1 <7 <m,and m+1<1,75 <2m.
This means that we have
DijP=0fol<i4,j<m,m+1<47j<2m.

These conditions mean that P(T') satisfies Condition 1.1 for p = det’ ® det’.

So for any function F'(Z) on Z = tZH Zi2 € Hy,,, any elements
Zhy  Zoo
9i = (CZ Dz) S Sp(maR) (Z =1, 2)7 and
A 0 B 0
(A B\ [0 Ay 0 B
9= <c D) “|lc o b, oo |€PEMR)
0 Cy 0 Dy
we have
(6) Resy, xm, P(07)(F(gZ)det(CZ + D)™")

oz 0
= (P F
( (32) >< 0 92222

The explicit closed formula for P is not known except for the case
n = 2, n = 4 for general ¢, or for the case ¢ = 1, 2 for general n = 2m,
but there are several algorithm to obtain P(T") explicitly ([11],[19]).
In the above, we explained the case r = 2 and p = det’® det,
but the general cases are essentially the same. We continue a little
more on the case r = 2 and ny = ny = m. To adjust notation for a
later use, we change the notation from 7" to an 2m x 2m symmetric
matrix S = (S;;) with m X m symmetric matrices Sy and consider
polynomials P(S) € C[S] in components s;; of S. Then the pluri-
harmonicity conditions on a vector P in Condition 1.1 suggest that
the components P; of P (i.e. coefficients of a vector P with respect to
some basis) should satisfy that the polynomial ¢ (F;) is a linear span
of monomials S¥ with v = (v;;) such that v;; = 0 for 1 < 4,5 <m
and m 4+ 1 < 4,5 < n. Now consider the ring C[S}2] of polynomials
generated by s;; with 1 <i <m and m+1 < j <2m, i.e. components
of Si2. The ring C[S}2] can be regarded as a representation space of
GLm(C) X GLm((C) by 812 — tA15'12A2 for Al, AQ € GLm<C) It is
11
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well known that this representation on C[Sj5] is decomposed into the
sum of irreducible representations pp, x ® pma of GL,,,(C) x GL,,(C)
corresponding to a Young diagram A = (Aq,..., \,) with Ay > Ay >
<o+ > Ay > 0. We will describe the representation space Vy in C[Sis]
of pm ® pm much later, but here we prepare notation. We write
W = Si5. For any integer ¢ with 1 < i < m, denote by W; the 7 x ¢
principal minor of W (i.e. the determinant of the first i rows and
columns of W). We put

(7) Wy = Wh— e o jpdm,

Up to now, we assumed that r = 2 and also ny = no, = m. Now we
treat the case that n; might be different from ny. For a Young diagram
A= (A1, Ag,...,), we put m = max{d : Ay # 0} and call this a depth
of A. Then there exists a vector P(T') for an n X n symmetric matrix
T with n = n; + ng satisfying Condition 1.1 only when p; = pp, a,
P2 = Pnyx With m < min(ny, ne). We write an n x n matrix 7" as

T — Ty Tho
- t
Tz T2
for an n; X ny matrix 7T1; and an ny X ne symmetric matrix Ths.
We prepare an m x ny matrix U and an m X n, matrix V' and put

o= (4 0).

Then we have 2m x 2m matrix

UTy tU  UTys tv)

Ty —
v = (VtletU VT 'V

As before, we consider an 2m x 2m matrix S and

S = <[Z,11 ?2) S11, Soo are m x m matrices.
12 022

Now, for a Young diagram A\ with depth m, we consider a polynomial
PyA(S) € C[S] such that ¢p(Py ) = (S12)a, Where (S12), is defined as
(7). Then put

t t
PAUV.T) = B (UT11 U UTy, V)

VITR'U V'V

Then this is a realization of the representation \,,, \&A,, » of GL,, (C) x
GL,,(C) with respect to a basis of the tensors of bideterminants of U
and V. Here bideterminants realization is explained as follows. For
any subset of I C {1,...,m} and J C {1,...,ny} with |I| = |J|, we
denote by Uy the minor of U taking rows whose numbers are in I and
columns whose numbers are in J. For any ¢ with 1 < < m, we put

i = {1,2,...,i}.
12



For A, we consider a vector space V of polynomials p(U, V') in compo-
nents of U and V' spanned by

m Aq—)\q+1

p(U7 V) = H H U[q]Jl(Q) ‘/[q],JtPIh

qg=1 (=1

where I!” and J{ run over A, — Ag41 subsets of [n;] and [n,] such

that |I”| = [J| = ¢ (here put Apsr = 0). These are called bide-
terminants. Then p(U,V) — p(UA;,V Ay) for (A1, As) € GL,,(C) x
GL,,(C) on (p) gives a realization of p,, » ® pp, . For example, if
M ==X, =/Land ny = ng = m, then V= Cdet(UV)". In
general we have ¢ (P(U,V,T)) = (UT},V ). Here P\(UA;, VA, T) =
P\(U,V,AT*A) for A = diag(A;, As). This is a linear combination of
bideterminants with polynomial coefficients in C[T]. The bidetermi-
nants themselves are not linearly independent, so if we want to write a
vector w.r.t. a basis, we should choose some basis, but we omit details.

Now notation being as above, the differential operator Py(0z) gives
a differential operator from weight det* to detkpnh \ ® det” PraA-

Next we consider the case that r > 2. In this case, if we write

T = (T}j)1<ij<r where T}; is an n; x n; matrix

then for the polynomial P(7T) satisfying Condition 1.1 for the partition
ni, ..., n,, the polynomial ¢;(P) should be a polynomial in compo-
nents of T;; for ¢ # j. The group GL,,(C) x --- x GL,,(C) acts on
the space C[T};;i # j], and the irreducible decomposition of this repre-
sentation is given in principle by using the Littelwood-Richardson rule
but it seems not so simple(see [17] Theorem 3.4).

As a conclusion, in any case, Theorem 2.3 characterizes the differen-
tial operators that satisfies Condition 1.1.

3. A GENERATING SERIES OF DESCENDING BASIS

We have a sort of universal generating series of descending basis.
Since basis is indexed by indices in N, we use a dummy n X n symmetric
matrix X = (x;;) of variables and we define X* for v € N as before
by (4). We consider a formal power series

Gu(T,X) =Y P,(T)X"
veN

in variables x;; such that P,(T) is a constant multiple of P”(T). In
order to obtain a neat generating series, we must put

P, (T) = 2"(k),(2k — 2), P, (T),
where v = deg(v) = (1/2) Y7 ., vij and (x), = z(z+1)--- (z+v—1).

ij=1
Then there exists a formula to describe the series G,,(T', X). Since this
is explained in other places several times (e.g. [15], [17]), we do not

repeat the details, but we state the essence very shortly.
13



For eachi =0, ..., n, we define a polynomial ¢;(7, X) in components
of T"and X by

det(al, — TX) = (=1)'oy(T, X)a"".
i=0
So we have oo(T,X) =1 and 0,(T, X) = det(T) det(X). We assume
2k € C. Then G, (T, X) has the following property.
(1) G,, is a formal power series G, (071, ...,0,) in 07 to g,. In particular,

we have
o 22k
gl(Ul) = (1—?> .

Go(or, 03) = ((1 S 02>1_k.

This G, can be regarded as the generating function of Gegenbauer
polynomials. We also have a nice closed formula for Gs(o1, 09, 03), but
we omit it here (See [15]).

(2) We may regard o, ..., 0, as algebraically independent variables
below. Then we have

and

G 1(00,- - On 1) = Gnl01, 0 1,0).

Here the original meaning of o; depends on n, but we are ignoring
the difference. In other words, the above equality means as a formal
equality, as well as the equality between series in o; defined for n — 1.
(3) We define the partial derivative 0, = 6%,1 for each a. For each n,
we have a certain explicitly written second order differential operator
M,, of 9, (1 <a <n—1) whose coefficients are constants or constant
times oy, for some 1 < b < n — 1, such that for some explicit constants
¢; we have

o0
Gu(o1,. .o 0n) = Zcz-afr/\/lflgn_l(al, ey Opt)-
=0

Since G, is obtained by iteratedly differntiating generating series of
smaller degrees in a unified way, our generating function would be
called a wniversal generating series. If we consider G, (07, X), then
this is a generic differential operator since it is a source of any dif-
ferential operators satisfying Condition 1.1 under some representation
theoretical mapping (See [17] Theorem 3.1).

4. PULLBACK FORMULAS

Finally we explain pullback formulas that is one of the strong mo-

tivations to our theory. For any even integer k£ with £k > n 4+ 1 and
14



any partition n = ny +ng (n; € Zs1), we denote by E}(Z) the Siegel
Eisenstein series of degree n of weight k of I';, = Sp(n,Z) defined by

Ej(Z) =) _ det(CZ +D)™*,
(C,D)

where (C, D) runs over representatives of coprime symmetric pairs by
the multiplication by GL,(Z) from the left.

Theorem 4.1 ([7],[4],[27],[23],[24],[19]). Let P be a polynomial satisty-
ing Condition 1.1 for (ni,ns) for a Young diagram A of depth m > 1.
Then we have

min(ni,n2) er
P 2) (7)) = 3 @ X DU @elf )

t=m

for some explicitly given constants ¢; for P = PP independent of

Jtj-

Here, for each ¢, we fix an orthonormal basis { f; ; }1<j<e, of Saetrpy» (L't)-
Of course this depends on a choice of the Petersson inner product of
Setk p, , (I't), but we have some standard choice, and we can give ¢

explicitly for that choice. We denote by [f;;|;* the Klingen lift of f; ;
t0 Agert p,  (In;). We put

t

D(frs) = (k) [T ¢2k = 20) " L(k — ¢, fo, 1)

i=1
where L(s, f, St) is the standard L function of a Siegel modular form
f. For the details, see [19].
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