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Our claims of recent research jointed with PhD/Postdoc scholars in Pakistan are as follows.

Claim A The non-cyclic abelian fields K = Q(C, V/0*) are non-monogenic except for
the two classes of the fields with the conductors 3p* = | — 3| - p for ¢* = =3 or 4p* =
|4 - (=1)| - p for £* = —4 under the conditions (p*,¢*) = 1, with a prime number p and a
squarefree odd number |€] > 3 or even |(*| = 23 of the conductor p*(* for the conductor
p* = %p=1(mod 4) of a prime cyclotomic ficld k| and the conductor £* of a quadratic
subfield k = Q(VI*) C ky| with the odd field discriminat dy = (* = £ or the even
dy = 0" = +44.

The above claim applying an idea of [5] is a generalization of N. S. Khan [6] and M. Sultan
[3].

Claim B Let K be a Dihedral quartic field Q(v/a + bw), where a*+ab+b*2™ is a squrefree
integer and the quadratic subfield k = Q(w) of K has the odd conductor m with w = 1+§/E.
Then all the integral bases and monogenities of K are given in Table 1 separated into the
twelve families ,,Cy,, with m = 1,5 (mod 8), a = 1,3 (mod 4),b.t' = 1.3,2_4 (mod 4)
and a = 2,4 (mod 4),bt) = 1.3(mod 4). Here the twenty four being equal to 32 -8
empty families can be summarized into twelve types and e.g. the family 1 C} 5 is denoted
by [1,1,13] = [m = 1(mod 8),a =1 (mod 4),b = 1.3 (mod 4)].

81 Introduction. On Hasse’s problem to determine the monogenity of an algebraic
number field, we consider a non-cyclic, but abelian octic field K over the rationals Q.
This problem is proposed by W. Narkiewicz in general [7]. Let F' be an algebraic number
field over the rationals @ of finite extension degree [F': Q] = n. Zr and Z denote the ring
of integers in F' and the ring of rational integers, respectively. If there exist an integer
¢ € F such that Zp = Z[¢§] = Z[1,£,---,£"7"] of rank n over the ring Z of rational

integers, it is said that a field F' is monogenic or the ring Zr has a power integral basis.



In §2, on Claim A we shall introduce the most difficult, but simplest case of the
determination of monogenity on the field K = ks - k with conductor 5 - | — 7| among the
octic fields ks - Q(\/z) with a squarefree ¢, where ks and k denote the 5th cyclotomic
field Q(exp(2mi/5)) and an imaginary quadratic field Q(v/—7), respectively. Then this
method and the experiments by GP/PARI shall involve a deep feeling to generalize into
Claim A.

In §3, we shall describe the easiest case on the field K = ks-k with conductor 5-(22-7),
where k denotes a real quadratic field Q(v/7).

In §4, on Claim B we shall give a table to classify the families within monogenity of all
the Dihedral quartic extension fields K accoding to the quadratic subfields & = Q(y/m)
of K with odd field discriminants m modulo 8 involving a monogenic example of A. C.
Kable [3, 9]. Table 1 includes a comparison with a work of K. S. Williams et al [2]. At
present the classificatin is incomplete aginst the family of K with quadratic subfields k of

even field discriminants [1].

82 Monogenity of an octic field K with an imaginary quadratic subfield k.
The next Lemma is fundamental for the determination of monogenity of non-cyclic but,
abeian octic fields K. Namely Zj, has a relative integral basis Zk;[l, (] over the subring
Zk;.

Lemma 2.1. Let 1 be the Gauf period ¢ + (' of length 2. Then It holds that
Ly = k;rH? d = Z[L 77][17 C]

as a Z-module.

proof. Since Zk;[l, (] € Zy,, we show the converse inclusion. By ¢* +¢* +C+(+1=0
n4+n—1=0forn=C+( "= #5, Ly = Z[1,7] holds. Then we have 1-¢,n¢ = (*+1,
0= 1=CH+¢i=—1-C ¢ =—nC - ¢ = (mod Z[L,)[1,¢))

and hence Z[1,¢, 2, ¢* C Z#[1,¢). O

On the claim A, for the simplicity we choose an octic abelian but non-cyclic field K of
conductor 5| — 7|, i.e. p =5 and £ = —7. We assume that K is monogenic, namely
there exists an integer ¢ such that Zx = Z[¢]. Denote & — &P by §p for £ € K and
p € Gal(K/Q) =< 0 >< 7 > with < 0 >= Gal(k;/Q) and < 7 >= Gal(k/Q) where
o : ( + (", a primitive root 7 modulo 5, /=7 +— /=7, and 7 : /=7 —= —/=7,( — (.
Then using Hasse’s conductor-discriminant theorem, we have the norms

NK/Q(gO'j =5(1=j=3), Nk/Q(fT) = —7 and
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the product NK/k5(Nk5/Q(H1§j§3 §ai))- NK/k(Nk/Q(fT) is equal to (5%)2 - (=7)* = d.
Here dp denotes the field discriminant for a field F. Thus the partial different &2, should
be a unit in K. We note that an octic Field K is comosed by linearly disjoint subfields k5

and k. Let dr denote the field discriminant of an algebraic number field F.

Lemma 2.2. For three rings Zk, Zy, and Zy, it holds that
ZK = Zk5 . Zk, and dK = dz5 . di

When a field K contains an imaginary quadratic field k, we consider the most difficult,
but the simplest field K = Q((,w) for the determination of monogenity using the norm
NK/Q(§U2T) of the partial different {527 = & — 5027 of a power basis candidate number

£ € Zx with a mixed embedding o?7. We select a most suitable field tower;
KODN=Q(n_-vV-T1)2>ki>Q

among three quartic subfields
ks, L=Q(nw), N=Qn_ v-7),
and three quadratic subfields
ki k= Q(V5V=T), ki, =Q(V-T)
where n_ = ( — (7' = 2isin(27/5) and n_ - /=7 € R. Here R denotes the field of real
numbers. We have Nig/n (D (E527)) = Dr(Eg2r) Dr(Ep27)° T Then using Lemma 1
and Lemma 2, the partial different §U# = & — §U2T being equal to
ap + a1 + (B + B1Q)w —{ao + ar(" + (By + B¢ Hw™}
=a1(¢ =Y+ By =T+ B,(Cw — ¢'wT™) should be a unit in K. From
Fogers = N = Q(n_ - v/=7) with n_ = ¢ — ¢~ we have Ni/n(€o2r) = Eoor - 5027' =
(€ — §U2T)(§U2T — €) = —&452,°. Here for a subgroup H C Gal(K/Q), Fy denotes the
fixed subfield {n € K; 7] =nPVYp € H} of K. Then it holds that
—Ng/v(§o27)) = 502
= ((en + 3B8)(C =) + (Bo + 3B8)(C+CTHV=T)?
= (1 + 38)(C =) + ((Bo + 3B)(C+ 7)) (=T)
+2((a1 + 568)(¢ = C - (Bo+ 380+ TV
= (a1 + 381)(2isin(31)))* + ((Bo + 38)(C + ¢ 1)) - (=7)
+2(ay + 261)(2715111(?%)) - (By + 261)(§+€ ) \/_) Put
C=—((an +38)(C =) = ((Bo + 38)(C+ ) (=7),
D =2(c + 38)(C = ¢ - (B + 380+ ¢ - V=T),
where by ((e1 + 16,)(C — C)? < 0 and (B + 36)(C+C)2(-T) g in k2, it follows
that C > 0 and C? > 0 and D, D? € R with (( —¢')? €iR and (¢ +¢ 19 € R.



Then we evaluate the next three cases.

() D 40,
(i) C=0,D#0,
(iii) C' £ 0, D = 0.
On (i) from

D] = /22(0n + 5B1)2(C — ¢ (By + 3¢+ 2| = 7],
and Ny (€g27) = (C+ D) we have Ny 0(€g2r) = Ny @ ((C' + D))
= (C'+ D)*(C? + D) = |(C + D)?| - |(C7 + D7)?|

> [20D| - [207D7| = (2141)|CC*| - |DD*| 2 22 - | hec| - | ep(~T)| 2
with 1 < co,cp € Z.

On (ii), we have

D = \/122(a1 + $81)2(C = ¢T12 - (Bo + $BD)2C +CTH2 - (=7))]

Then it follows that

PN
—_

DD7 =\ [125 2N, (o1 + 55,2 = C 2N (B + 3B)AC+ ¢ T2 7)
ZW'CQE%' §§W1th1<62€Z

On (iil), put C1 = \/=((a1 + 18,)(C = ¢ and Oy = /(8o + 15,(C + )2+ (=7),
Then it holds that | N, +/Q(C2 + C3))| = |(CE + C3)((C?)° (02)0)\
> |2201020000| == |2201CU||CQCU| > 2222 22|( )l C3 Z 272 03 Wlth 1 < Cc3 € Z.

Thus we have showed that an octic field K is non-monogenic. O

After a simple succeeded non-monogenic octic polynomial f(x) for
(Ag) E=C-weK
with ¢ = exp(27i/5) and w = H\F, we found a hard example g(z) for
(A) éE=(+weK.

(A1) The last irreducible polynomial g(x) for an octic field K = Q(§), £ = (5 + vV —T;

g(x)=(x"4+17*x"2+43) "2
+(XxTA+1T7*x72+43) % (2%x"3+X"2+16*x+7 ) — (2*%x " 3+x"2+16%x+7) "2)
\x=\z_{5}+\sqrt{-7}

gp > nfdisc(g(x))

= 37515625=[5 6] [7 4]=d_{K}

gp > poldisc(g(x))

= 1571179133492004569764000000

=[ 2 8][ 5 6][ 7 4]1[ 11 2]1[ 59 2] [623221 2]
=Ind_{K} (\x) "{2}\cdot d_{K}, wherer Ind_{K}(\x)=(Z_{K}:\Z[\x])
gp > nfbasis(g(x))



= [1, x, x°2, x°3, 1/2*xx"4 - 1/2*%x"3 - 1/2,

1/2%x°5 - 1/2%x73 - 1/2%x - 1/2,

1/2%x76 - 1/2%x~3 - 1/2%x"2 - 1/2%x - 1/2,

1/808940858+x~7 - 13969231/404470429*%x~6 + 164687045/808940858%x"5

+ 3359403/73540078%x"4 - 31176033/404470429%x"3

+ 384609529/808940858%x"2 - 117297925/404470429%x - 21177539/73540078]
gp > factor(808940858)=[ 2 11 11 11 59 1]1[623221 1]

gp > factor(404470429)=[ 11 11[ 59 1]1[623221 1]

gp > factor(73540078)=[ 2 11 59 1]1[623221 1]

(Ap) The first irreducible polynomial f(z) for an octic field K = Q(&), £ = (5 - V—T,;

f(x)=(x"4-2%x"3+8*x"2-T*x+4) "2
—(x74-2%x"3+8*x " 2-T*x+4) *x (-2%x " 3+2*x " 2-6%x+1)
= (—2%x73+2%x"2-6%x+1) "2
=N_{k~{+}/\QF (N_{k_{5}/k~{+}}F (N_{K/k_{5}} (x-\x)))
gp > nfdisc(f(x))= 37515625=[5 6] [|-7| 4]=d_{K}
=\prod_{\r\ne\identity \in Char(Gal{K})}d_{\r}, Char(Gal{K})=<\x><\psi>
=d_{\x}d_{\x"2}d_{\x"3}d_{\psi}td_{\x\psitd_{\x"2\psi}td_{\x"3\psi}
=5\cdot5\cdot5\cdot (-7) \cdot5(-7)\cdot5(-7)\cdot5(-7) ,#<\x>=4,#<\psi>=2.
gp > poldisc(f(x))
= 129394971153765625=[ 5 6][ 7 4]1[ 11 2]1[ 19 2][281 2]
=Ind_{K}(\x) "{2}\cdot d_{K}
>gp > nfbasis((f(x))
%6 = [1, x, x°2, x°3, x°4, x°5, x76,
1/58729%x"7 - 2973/58729*x"6 + 23443/58729%x"5 + 3429/58729*x"4
- 27413/58729%x"3 - 13128/58729*x~2 + 7247/58729*x + 2063/5339]

factor(58729)=[ 11 11[ 19 1][281 1].
The other example of 5th cyclotomic field k5. Choose = = (5 + /5 € ks,

gp > nfdisc((x72-2%x+8) "2+ (x"2-2%x+8) * (5*x+1) - (5*x+1) ~2)

= 125 =[5 3]=d_{k_{5}}

gp > factor(poldisc((x"2-2*x+8) "2+ (x"2-2*x+8) * (5*x+1) - (5*x+1) "2))
=55665125=[ 5 3][211 2]

gp > nfbasis((x"2-2%x+8) "2+ (x"2-2*%x+8) * (5*x+1) - (5*x+1) "2)

= [1, x, x72, 1/211%x"3 + 43/211%x"2 + 104/211*x - 67/211].



The above experiment shows an integral basis of the 5th cyclotomic field ks under a choice
Cs + /5 of x. However we could not observe that ks is monogenic or not. On the other
hand, it is well known that for x = (; € ks;

gp > factor(poldisc((x"{5}-1)/(x-1)))=[56 3] and
gp > nfbasis((x"{5}-1)/(x-1))= [1, x, x"2, x73], i.e. $k_{5}$ is monogenic.

83 Monogenity of an octic field K with a real quadratic subfield k. In this
section for the simplicity, we may asssume that a real subfield k of K has an even field
discrimiant. The case of a real subfield k with an odd field discriminant, we may pursue
the evaluation for the monogenity of an octic field K as in §2. we consider an octic abelian
field K = Q((5,v/7) with conductor 5 - 227 and the field discriminant dg = (5%)% - (227)4,

which will generalize a work of Noor Saeed Khan [03].

Assime that a number & = o + fw € Zx with o, € Z,, w = /7 would generate a
power integral basis of the field K. For the Galois group Gal(K/Q) =< 0 >< 7 >, let
o : ¢+~ (", with a primitive root r modulo 5, and 7 : /7 — —/7,( — (. Then we
evaluate the norm of a partial different {;27 = £ — 502T with respect to K/Q. For any
integer £ = ap + a1 + (By + B1¢)w € K with ay, 3, € Z and w = V7, we prove that the
partial different &2+ would become an ‘obstacle factor’, namely it could not be a unit in
K. We choose a distinct field tower

K>ksDkioQ

from the case of an imaginary quadratic subfield & of K in §2. We have Ng i ({527)
= (5027) '(5027)7

= (01(C = ¢ + (280 + B)(C+H TNV (0(C = ¢ + (2o + B)(C + (V)
= (1(C = ¢7)? = (260 + B)(¢ +¢ 1) - 7. Then it follows that Ny/+(€527)

= NVks ke (N /ks (Eo2r)) = ((0n(C — C_1)2 — (280 + B)(C + C_l))Q - 7)?

with (a1(¢ —¢)* S 0 and —((26, + 8)((+¢71)*-T)* 0.

Put A = /~(a1(¢ — ¢7)? and B = /(26 + 6,)(C +¢ )2 - 7). Then if AB # 0, we
obtain NK/Q(&TZT) > (2AB -2A9B9)? = 2%cacp > 1 with 1 < ca,cp € Z. If A =0,
NK/Q(§U27) = (BB9)? 2 T’cp > 1 with 1 £ ¢cg € Z. If B = 0, £ is not a primitive

element of K by & € k5. Therefore an octic field K can not be monogenic. O

The claim A of a general case shall be proved in [4].

84 Integral bases and Monogenity of Dihedral quartic fields K. Let K be a
Dihedral quartic field with a quadratic subfield k& of an odd field discriminant over the
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rationals Q. We shall show a table of monogenity comparing a work of K. S. Williams
eta al [2]. However,in this note we describe a part of the table, whose complete version
is written in [1]. The next lemma is basic to determine an integral basis of a Dihedral

quartic field.

Lemma 4.1. Being the same notation as above, it holds that
Zx Nk =Z,.

Proof. Let v be any element of the ring Zi. Then v € k and -y satisfics a monic polynomial
g(z) € Z[zx] such that g(v) = 0. Then v € Zx by k C K. Here for any algebraic number
field F) the ring Zp of integers in F' is defined by the set

{a € F; a satifies a monic polynomial f(z) € Z[z] such that f(a) = 0}.
Conversely assume that any number £ € Zx Nk. Then by £ € Zi there exists a monic
polynomial h(x) € Z[z] such that h(§) = 0. Then by & € k, £ € Zj, follows. O

(11611) Assume that m = 1(mod 16),6> = o = 1 + w (mod 4Z). Then we have w? =
—4+w = w (mod 4). Let £ = s+tw+ub+wvwl be any integer in Zx with s,t, u, v € Q. Then
we have Tr /€ = 2s + 2tw € Z and 4Nk ;& = (25 + 2tw)? — (2u + 2vw)*a € 427y, C Z.
Then it holds that (2u + 2vw)?a = v € Z;. Put 2u + 2vw = % with (2,%B) = 1 for
integral ideals 2/, 8. Here ¢ = X for a number ¢ and a fractional ideal X means that both
sides are equal to each other as ideals. Assume that the denominator 8 2 1. Then there
exists a prime ideal 3|B and we deduce that 2%|a from A2 = vB2. Then it holds that
Nia = 0(mod p?) for a prime number p € B, which is a contradiction. Then we have
2u + 2vw € Z,. Put 2s = 51,2t = t1,2u = u; and 2v = vy with s1,%1,u1,v1 € Z. Then for
a half integer z = & + 2w+ 40+ Lwb, choose &, = 1 + 2w+ (1 +1w)f. we take a relative
norm of &, with respect to K/k. Then it follows that Nk /&, = (5 + sw)? — (5 + sw)?a
=1(l+2w+w?) - (1+2w+w)(l4+w) = 1((1+2w+w) — (1 + 2w+ w)(l +w))
1((1+3w) = (14 3w + w + 3w)) (mod Z;) = 3(—4w) € Zj. Then we have

Zx © Z [1,@),«9, (1+ w)%, S+ 44U+ %w@} . We identify (si,t;,us,v;) and a
number % + 2w + 40 + %wh. (0,1,1,1) = 3w + (5 + sw)f is not an integer, because of
(1,0,0,0) = 1 & Z and (1,1,1,1) € Z from Tpu(1+w)S € 7 and

N (1 + w)% € Zj,. In the same way we have

(0,1,0,0) € Zk and hence (1,0,1,1) &€ Zg, (0,0,1,0) € Zk, and hence (1,1,0,1) & Zk.
On (0,0,0,1) = wg, NK/k(wg) = H(wa) = H(w(l + w)) = Hw + w) (mod Z), which is
impossible. Then we have (0,0,0,1) € Zx and (1,1,1,0) € Zk. Since (1,1,0,0) &€ Zk it

holds that (0,0,1,1) ¢ Zk. For (1,0,1,0) = % we get NK/k(H’Q) =il-0)=-tw¢

2 4
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Zi. Then (0,1,0,1) & Zi. Finally for (1,0,0,1) = 22% we have by
NK/k(#) =11l-w?a),0=1(1-wl+w)= }1(1 — (w+ w)) (mod Zj). However
%1(1 — 2w) is not an integer, it holds that (0,1,1,0) € Zg. Then except for (1,1,1,1) and

(0,0,0,0) the other 14 cases are not integers of the field K. Therefore we obtain

ZKgZ[l,w,H (1—|—w)1+9].

Since Zx 2 Z |1,w,6, (1 +w)%} it is deduced that Zx = Z [1,w,9, 1+wf]. o

To prove a non-monogenity of an algebraic numbe Fields F it is enough to show the
divisible fact that for a prime factor p of the field discriminant dp such that p¢|| dp,
p“TdpE follows for any integer € in F. The next proof includes the ezact divisibility
22| Ng(Eg2) for the second partial different £,2 = & — 502 of any generator £ of a power
basis in K. To avoid the possibility of Zx = Z[], it is necessary for us to deduce

Nk (zg) = 0 (mod 2') for the first partial different &, namely dx€ = (mod 2121, After
the strict obsevation within the restriction on the quadratic subfield k = Q(y/m),m < 0
of K, we show a moderate proof of non-monogenity, i.e. dgé = (mod 2'7*1) for any

integer £ in a Dihedral quartic field K, whose quadratic subfield k is real or imaginary.

Strict observation of non-monogenity. Assume that Zx = Z[¢] for an integer £ = s+tw+
ubl +v(1+w)=5~> 140 .8, t,u,v € Z. We evaluate the intermediate partial factor {52 = & — 502
= 2uf +v(1 + w)ﬁ. By Nijioe = g2 - (€52)7" = (2u+ v + vw)?0(—0)

= ((2u+v)* + (2u + v)v + V(=12 4+ w))(—«), it holds that Nx&s=

= ((2u+v)?+ 2u+v)v+v*(—52))? Ny Put U = 2u+v and V = U? +Uv+ 0?2 for
m = 1(mod 16), m < —15. Then there exists (u,v) = (1,—1) or (even, 1) such that 2%|| V/
and V' = 22, where on Hasse’s symbol || , a|| b° means a = 0 (mod b¢), but a # 0 (mod b°*1).
Then we are obliged to evaluate the norm of first partial factor £, = £ —£€7 of the different
Dk (&) of a number &. Let (t,u,v) = (¢,0,1) = tw+ (1 + w)% Put p, = (1 + w)#
Then it holds that for

£ =tw+ (1+w)S — (1w + (1 +w0)ﬁ) —tymt (L rwl - 1w

= 2w —t 4 py — L2 +puf — 1+w we have 5 =t + py +pf — 1 (mod 27},).

Let t be odd and m =1+ 16m1. Then it follows that NK/k§U =¢-69 =y, - ,uﬁfz

= (1 +w) 52+ (1+o) ) - (1 +w) 55+ (1 +07) )
(1—1—&))2%—1—((1—!—0:1)21 04) +Ny <1+w)1+9 9 99 +Ny <1+w)1+9 60— «9 0
(1420 4w — dm) &+ (1420 +w — 4m)2)7 +N (1 + w)2200”

o
— w+3w4—4m1w + (w+3w4—4m1w) F(1+1+ —1im1)1 929 =(1- le)(% + %) +(1-




007) (mod 27},). Ngéy = —aa® = 0 (mod 2). Therefore it deduces that

Ng®Dg(€) = 0(mod 2721 which is a contradiction.

Next t be even. Then using the case of an odd ¢, it follows that NK/k§U

= (1+ (1 + )2+ (14020 (14 (14 w) 5l 4 (14 w0) =87
=1+(1+w)+(1+w)?

_‘_{(1+w)2%+((1+w)21 Oz) +N(1—|—w)1+9 9 99 +N(1—|—w)1+9 «9«9 9}
=1+2(1+3)+ {—aa} = —aa (mod 2Z;). Then we get Nx&s = 0 (mod 2).

In the same way, for (t,u,v) = (t,1,—1) = tw+ 6 — (1 + w)1+ = ¢ it follows that
Nk€s; = 0(mod 2). Then we have deduced that any Dihedral field K in the family

(116)11), m < 0 is non-monogenic. 0

Moderate observation of non-monogenity.

By way of Lemma 4.2, we show a moderate proof of non-monogenity for three families
m=1(16)C1, m=1(8)C3 and ,,=9(16)C; without the restriction under the imaginary quadratic
field

r=0=/q, a=1+w,w=H—V2_15, Nio = 6.

gp > nfdisc((x"{2}-1)"{2}-(x"{2}-1)+4)

= 5400=[2 3] [3 3][5 2]=2"{2}\cdot d_{k}"{2}\cdot N_{k}\a
gp > poldisc((x~{2}-1)"{2}-(x"{2}-1)+4)

= 21600=2"{2}\cdot d_{K}

gp > nfbasis((x"{2}-1)"{2}-(x"{2}-1)+4)

= [1, x, x"2=\o+1, 1/2%x"3 - 1/2%x"2=(1+\o)\frac{\x-1}{2}]

On a real quadratic subfield k£ of K, with x = 0 = /o, « = 1 +w, w = %ﬁ, Npa = =2
GP/PARI shows that

gp > nfdisc((x~{2}-1) "{2}-(x"{2}-1)-4)

= -2312=[-1 1]1[ 2 3][17 2]=2"{2}\cdot d_{k}\cdot N_{k}\a
gp > poldisc((x~{2}-1)"{2}-(x"{2}-1)-4)

= -9248=[-1 1][ 2 5][17 2]1=2"{2}\cdot d{K}

gp > nfbasis((x"{2}-1)"{2}-(x~{2}-1)-4)

= [1, x, x"2=1+\o, 1/2*x"3 - 1/2*x"2=\o\frac{\tt}{2}]

(916)11) On the subfamily m = 9 (mod 16) in 1C} it follows that (16 C] = ) because of
Nia = 0 (mod 2%).

(1(16)12) On a famlly 1(16)(;% with m < 0 and m > O, referring



gp > nfdisc((x"{2}-1)"{2}-2x(x"{2}-1)-16),
\a=1+2\o, \o=\frac{l+\sqrt{-15}}{2}
= -15028=[-1 1][ 2 2]1[13 11[17 2]1=2"{2}\cdot d_{k}\dot N_{k}\a
gp > poldisc((x~{2}-1)"{2}-2*(x~{2}-1)-16)
= -961792= (27{3}) "{2}\cdot d_{K?}
gp > nfbasis((x~{2}-1)"{2}-2x(x~{2}-1)-16)
= [1, x, 1/2*%x"2 - 1/2, 1/4*x"3 - 1/4*x"2 + 1/4xx - 1/4]

it holds that Zx = Z[1,w, 6, (1 +w)%]. Then it is shown that this field is non-monogenic

by way of the moderate observation.

Lemma 4.2. Let {1,w,0,(1 + w)%} be an integral basis of a Dihedral quartic field
K = Q(09) in the families y=116)C1, m=1(8)C3 0 m=9016)C} with

f=va, a=14+w,142w or 3+ w(mod4) € 1316C1U 1(5C3Ug16)C} and w = #
Then it holds that for any & € Zk

(1) Ngmég2 = 0(mod 27Z;),

and

(2) N i€ = 0(mod 2Zy,) except for o = e m=9(16)C.

Sketch of a proof. Assume that Zy = Z[¢] for an integer £ = tw—l—u@—l—v(l—i—w)%, t,iu,v €
Z. We evaluate the intermidiate partial factor &2 = £ —£9° = 2uf+v(1+w)f (mod 27y,).
For a €1016) CTU Ug16)C3 by Ni/uéor = g2 - (€52)7° = v (1 4 w)?(0(—0)

=0’ (1+0+w)(1—0a) = v(1+w)(14+w) = v(w+w) = 0 (mod 27},). On the other hand, let
o €116 Cy and £ = tw+u«9+v(1+w)%. On the partial differents &5 = §—§Uj,j =1,2,
we have Nk /r€y2 = 0 (mod 2) and Ng/éy = 0(mod 2) for (¢,u,v) = (0,u,v)
and (1, u, ’u)uw mod 2
(1—|—w)% out of eight cases, it is deduced that Ny x5 = 2(1—007) (mod 4Z;), and hence
Ng&y = 0(mod 4), whose 2th power is sufficient. Thus NgDg(¢) = 0 (mod 211,
which contradicts to 22| dx-. O

w,v (HlOd 2)
. For instance, on a concrete evaluation of Ng&, of € = (0,1,1) = 60+

Remark 4.1. From Lemma 4.2, the condition m < 0 can be removed for the three
families. On the excluded family ,,=916)C5 3 Q(€) in (2), it is deduced that Nx& is odd.
But we have Ng&, = (mod 2%) in (1).

gp > ((x7{2}-5) "{2}-(x"{2}-5) * (2*x+1) +4* (2*x+1) “{2})

= x74 - 2%x"3 + 5xx"2 + 26*xx + 34, m=-15
\x=\o+\tt=\frac{1+\sqrt{-15}}{2}+\tt, \tt=\sqrt{\a}, \a=1+2x\o

gp > nfdisc((x~{2}-5) "{2}-(x"{2}-5) * (2xx+1) +4* (2*x+1) ~{2})

= 17100=[ 2 2] [ 3 2][ 5 2][19 11=2"{2}\cdot d_{k}"{2}\cdot N_{k}\a
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gp > poldisc((x~{2}-5) "{2}-(x"{2}-5) * (2kx+1) +4* (2*x+1) “{2})
= 24692400=[ 2 4][ 3 2][ 5 2] [19 3]=(2%19)~{2}d_{K}

gp > nfbasis((x~{2}-5) "{2}-(x"{2}-5) * (2kx+1) +4* (2*x+1) “{2})
= [1, x, x"2, 1/38*x"3 + 7/38%x~2 - 4/19%x - 4/19]

(91) Along the same process of the proof for the family 1(16)(]%, it is deduced that an
explicit integral basis Zx = Z[1,w,0,(1 + w)%] and that by Lemma 4.2 the family
1(8)(3% is non-monogenic. O

An example of m = —7 for 9(16)C% is shown that

gp > nfbasis((x"{2}-1) "{2}-2*«(x"{2}-1)+8), \x=\sqrt{\a}, \a=1+2\o
= [1, x, 1/2%xx"2 - 1/2=\o, 1/4*x"3 - 1/4*x"2 + 1/4*x - 1/4]

[1, x, 1/2*x"2 + 1/2, 1/4*x"3 - 1/4*x"2 + 1/4%x - 1/4

[1, x, \o, (1/2%x"2 + 1/2)*(1/2%x - 1/2)

\equiv (1+\o)\frac{-1+\x}{2} \equiv (1+\o)\frac{1+\x}{2}]

= [1, x, \o, (1+\o)\frac{1+\x}{2}] with \a=1+2\o, m=-7.

gp > nfdisc((x~{2}-1) "{2}-2*(x~{2}-1)+8)

= 2156=[ 2 2] [(-7) 2]1[11 11=2"{2}\cdot d_{k}"{2}\cdot N_{k}\a.

(116)31) For the family 116)C? we have
ZK::Z[Lauawgl

Proof of an integral basis for 1(16)C5.
For & = (0,0,0,1) = w? it holds that
Nipéy = w?i(—a) = Fw(B3 +w) = (3w + w) = 0(mod Z). Then we have
Z [1,0,6,08] € Zic and Zc € Z [1,0,0,08, 5 + fw + 50 + 3u0)
Since (1,0,0,0), (0,1,0,0), (0,0,1,0) & Zx, we have
(1,0,0,0) + (0,0,0,1) = (1,0,0,1),(0,1,0,1),(0,0,1,1) & Zx. By (1,1,0,0) = =& & 7,
(1,1,0,0) 4 (0,0,0,1) = (1,1,0,1) € Zk holds. On & = (1,0, 1,0) it follows that Ng /&
:iﬂ—wzl(2—@¢ZKdeMeﬂQL@+®O£J%#LQLD¢Z@We
have & = (0,1,1,0) = 2 & 7, by Nyjut = LH(w? —a) = H(=2+w — (3+w)) & Zk and
(0,1,1,0) + (0,0,0,1) = (0,1,1,1) & Zx. From (0,1,0,1) + (0,0,0,1) = (0,1,0,0) & Zx
it follows that (0,1,0,1) &€ Zk. Then 14 representatives (s,t,u,v) are not integers in K
except for (0,0,0,1),(0,0,0,0). Therefore we have deduced that (9(16)31)

ZKCZ[lewQ}. O
Proof of non-monogenity for 116)C}. Let € be an integer tw + uf + vw—, which would

s7t7u7v€Z .

generate a power integral basis and £, the second partial factor & — €9 * of the different
Dk () of a number &. On the relatie norm Ng/kége = (2u + vw)?)Ni /b put 2u + vw

11



by U. Then it holds that N U = 4u? + 4uv + v21 ™ = () (mod 2?), and hence we get
N,U? = 0 (mod 2%), which contradicts against 22| dK. Then any number in Zx can not

generate a power integral basis. O

(9(16)31) On the familly g(16/C3, m = 9 (mod 16),
we have (0,0,0,1) = w? & Zx. But (1,1,1,1) = (1 + w)52 € Zi. Then it deduces that
ZKZZ[m%aa+wﬁ¥]Laa=3+ww=k%3Jwa=ﬁ§ﬂzﬂ&mw=z

gp > nfdisc((x"{2}-3)"{2}- (x"{2}-3)+2)

= 2744=[2 3] [7 31=2"{2}\cdot d_{k}"{2F\cdot N_{k}a
gp > poldisc((x~{2}-3)"{2}- (x~{2}-3)+2)

= 10976=2"{2}\cdot d_{K}.

(116)32) On the familly 116)C3, m = 1(mod 16) and w? = w(mod 2), We find ¢ =
(0,1,0,1) = 9 In fact, it holds that Tk = w, Ngpé = w?5% = Zw(l + w)
= F(w+ w) = O(mod Zy). Then & € Zk, which deduces that Z [1 w, 0 w”e} C Zk
Conversely, let { be any half integer x = % + -zlw + 50 + Swl with s, ¢, u1,v1 € Z.
Since (s1,t1,u1,v1) = (0,0,0,1),(1,1,1,1) &€ Zk it deduces that (0,0,0,1) + (0,1,0,1) =
(0,1,1,0) = @ ¢ 7 and (1,1,1,1) 4 (0,1,0,1) = (1,0,1,0) = % & 7, Here
(a,b,c,d) = (s,t,u,v) means that (a,b,c,d) = (s,t,u,v) (mod Zg). By
(1,0,0,0),(0,1,0,0), (0,0,1,0) & Zg, it holds that (1,1,0,1),(0,0,0,1),(0,1,1,1) & Zy.
For € = (1,1,1,0) = B0 Ny pe — 1((1 4 w)? —a) = 1((1 4 2w + w) — 3+ W)
= 1(—2+w) (mod Zj,) which is not an integer. Then (1,1,1,0)+(0,1,0,1) = (1,0,1,1) &
Z, holds. Since (1,1,0,0) & Z, it follows that (1,0,0,1) & Z. For € = (0,1,1,0) = <+,
from Ngpé = 1(w? —a) = 1(w— 3+ 2w)) = 1(-3 —w) # 0(mod Z;), we have
(0,1,1,0) + (0,1,0,1) = (0,0,1,1) & Z;. Thus, 14 representatives (sl,tl,ul,vl)(mOdQ)
are not integers in K except for (0,1,0,1),(0,0,0,0). Therfore it is deduced that for
116)C3,

Zi S 7 [1w,0,00]. 0
Proof of non-monogenity for (1 (5. Assume that Zx = Z|[¢] for a suitable integer &
=tw+ulb + vw% € K. On the second partial factor {2 = £ — 502 = 2ul + vwb of the
different D (&) of a number &, we have N kg2 = (2u + vw)?(—a). Put U = 2u + vw.
Then it follows that NyU? = (4u® 4 4uv + v*15%)? = 0 (mod 2*), which is impossible
by 2%|| dg. Then there exit infinitely many non-monogenic Dihedral octic fields in the
subfamily 116)C3 C 1(5)C3. O
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(541) The monogenic familly 5C{ of m = 5(mod 8) includes a Dihedral quintic field
K = Q(0) with w = %59 = \/& of A. C. Kable [3].

Proof. Let & = 04 w(mod 4) and § = /a with m = 5(mod 16). We note that
w? = —1 +w (mod 4). Then we have (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) = £ & Zx.
In fact, Ngpé = jw?(—a) = F (-1 +w)(w) = F(~w+ (=1 +w)) & Z. It follows that
(1,1,0,0),(1,0,1,0), (1,0,0,1),(0,1,1,0), (0,1,0,1),(0,0,1,1) = £ 4+ 90 — ¢ ¢ 7 Tn
fact, Nxé€ = 1(1+ w)?(—a) = (1 + 2w + (-1 4+ w))(w) # FBw)(w) = F (=3 + 3w)
=0 (mod Z). On (1,1,1,1) = (1 + w)5 = ¢, it holds that Ni/pt = (1 +w?)(1 — )
= 1(1+2w+(—1+w))(-3-w) = F(3w)(3+w) = F(9w+3(—1+w)) # 0 (mod Z;). THen
all the 15 cases (s, t,u, v)si’w (mod 2) ¢an 1ot be integers except for (0,0,0,0). Therefore
we deduced that Zx = Z [1,w,0,0w] = Z [1,«92,«9,93} ) O

~|L

gp > nfdisc(x"{4}-x"{2}-1)= -400 \o=\frac{l+\sqrt{5}}{2}, \a=0+\o
gp > factor(-400)=[-1 1]1[ 2 4]J[ 5 2] \x=\sqrt{\a}, N_{k}\a=-1

gp > poldisc(x~{4}-x"{2}-1)= -400

gp > nfbasis(x"{4}-x"{2}-1)=[1, x, x72, x73]

> which coincides with the example of A. C. Kable [3].

gp > nfdisc((x"{2}-4) "{2}-(x"{2}-4)-1)= 7600 \x=\sqrt{\a}, \a=4+\o
gp > poldisc((x~{2}-4) {2}-(x"{2}-4)-1)= 7600

gp > factor(7600)=[ 2 41[ 5 21[19 1] N_{k}\a=(81-5)/4=19

gp > nfbasis((x~{2}-4) " {2}-(x"{2}-4)-1)= [1, x, x72, x73]

(543) The last familly 5C3, m = 5 (mod 8) is a disjoint monogenic one against (54;). We
have Zx = Z [1,w,0,0w] = Z [179, «92,«93] as in (544).

For w = %5,04 =4—w,Nya=(7*-5)/4=11 and = = 0 = \/a, GP/PARI shows that
gp > nfdisc((x"{2}-4) {23+ (x"{2}-4)-1)

= 4400=[ 2 4][ 5 2][11 1]1=2"{4}d_{k}"{2}N_{k}\a

gp > nfbasis((x"{2}-4) "{2}+(x"{2}-4)-1)

= [1, x, x°2, x73].

A complete classification of Table 1 for 18 families shall be written in [1] comparing [2].
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Table 1: Integral bases of Dihedral quartic fields of the odd field discriminants dp = m

m a b family Zy di 2]

18) | 1) | 109) 116CH | Z[L,w,6,(1+w) 4] Non | m =1016),22m? Nya D4, m = —15
9(16)C1 =0 Nja = 0 (mod 2?)

18) | 14) | 234 1 CL Z[1,0.0, (1 +w)$2] Non 22m2Nj.a Dy, m = —15

1(8) 3(4) 1(4) 1(16)C:13 Z[170J7970Jg] Non m = 1(16), 22m2Nka Dgﬁ, even though 22“ Nipa

18) | 3(4) | 1(4) 016)C? | Z[1,0,0, (1 +w) 2] Non | m = 9(16), 22m?Nya Digy,m=—7

18) | 3(4) | 234 1(16)C3 Z[1,0,0,010] Non m = 1(16), 22m? Ny Dy, m =17

5(8) | 4(4) | 1(4) 5Ct Z1,w=0%0,w0 = 6°] 24m? Ny Ce, m=5

5(8) | 4(4) | 2,4(4) | 5C3, =10 Nia = 0 (mod 22)

5(8) | 4(4) | 3(4) 5Ch Z,w=62,0,w0 = 67 24m2 N Cr,m=5
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