ON BEILINSON’S [-ADIC EISENSTEIN CLASSES

MASAO OI

ABSTRACT. In this paper, we will reconstruct Beilinson’s l-adic Eisenstein classes of the universal elliptic
curve. Moreover, we will give an idea to construct some elements of étale cohomology group from the
residues of differential forms.

1. MOTIVATION

This is a summary of our talk at “Algebraic Number Theory and related topics 2022” held at RIMS.
This is a continuation of our work talking at “Algebraic Number Theory and related topics 2011” held
at RIMS. Our work originated in the work of Takako Fukaya, Kazuya Kato, and Nobushige Kurokawa in
[7]. They constructed some collection of differential forms of the product of two modular curves, which
satisfies some norm relations, by restricting some collection of Siegel Eisenstein series of Sp(4) to the
diagonal.

In the author’s master’s thesis [15], we have constructed some differential Euler systems associated to
the symmetric squares of modular forms by modifying their differential forms.

In [16] (our RIMS talk in 2011), we have made a conjecture that there exist Euler systems of the
Milnor K-group K. §M) of the function fields of the product of two modular curves such that their images
by the dlog map are the differential Euler systems mentioned above.

Our strategy to prove this conjecture is to construct elements of K:)(,M) of the function fields of Siegel
modular varieties of Sp(4) such that their images by the dlog map are the Siegel Eisenstein series (not
restriction to diagonal) appeared in [16].

One of final goals of our research is to construct Euler systems in K-groups (or étale cohomology)
from some differential Euler systems constructed from Eisenstein series of some Shimura varieties.

To do this, in this paper, we will give an idea to construct some elements of étale cohomology from
the residues of differential forms. It is based on the analogy between residues of étale cohomology and
residues of differential forms. This work is incomplete but we can reconstruct Beilinson’s [-adic Eisenstein
classes of the universal elliptic curve using it. This reconstruction is the main result of this paper. We
also prove the Manin-Drinfeld theorem by the same idea.

The author would like to thank Tomokazu Kashio for his hospitality at the symposium. The author
also would like to thank Masataka Chida for teaching me the references [4], [14], [10] and [9]. Finally,
I would like to thank Yoichi Mieda for a comment to our talk (see Section 12 for the details of the
comment).

2. INTRODUCTION

In this section, we give a brief summary of this paper. Throughout this paper, for N > 3, let Y/(NN) be
modular curve over Q of level N without cusps, and X (N) be the smooth compactification of Y (N). In
this paper, we only use étale cohomology unless otherwise specified. At first, we recall the Manin-Drinfeld
theorem.

Theorem 2.1. (Theorem 4.1.)(Manin-Drinfeld theorem)
Let P be a cusp of X(N), O be the point at infinity of X(N). There exists a positive integer C' such
that C(P — O) is a principal divisor.

We will write summaries of the classical proof and our proof in Section 4. Next, we will recon-
struct the [-adic realization of Beilinson’s Eisenstein symbol, which we call Beilinson’s [-adic Eisenstein

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research
Center located in Kyoto University.
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classes, in Section 6.2. Note that Beilinson constructed the Eisenstein symbol in the motivic cohomology
H?,(E,Z(2)) using some elements of I'(E — E[m], O ), where E is the universal elliptic curve over Y (N),
E[m)] is the divisor consisting of all m-torsion sections of E, and m is some positive integer.

The idea of our reconstruction is as follows. Let X = Xj yniy(N), Z = D1 UDs, and U = X — Z.
Here X1 yniv(N), D1 and Dy will be defined in Section 5.2 (Definition 8, Definition 9). Roughly speaking
X1,univ(dV) is a “proper smooth universal elliptic curve over X (N)” and Z is the fiber of ico € X(N).
Consider the following residue exact sequence

1) - — HX(X,Z/I"Z(2)) — H2(U,Z/I"Z(2)) °5 H3(X,2/1"2(2)) 5° H3(X,Z)1"Z(2)) — - .

At first, we will construct the element Eisy ,, of Hy(X,Z/I"Z(2)) corresponding to some weight 3
Eisenstein series and show that Gys;(CnyEisy,) = 0 for some non-zero integer Cy using the Eichler-
Shimura relation. The precise statement of our reconstruction is as follows. This is the main result of
this paper.

Theorem 2.2. (Theorem 6.1.) There exist a non-zero integer C (not depending on n) and Zgisy,, €
H?(U,Z/I"Z(2)) for each positive integer n satisfying the following property.
o The equality Res(Zgisy,,) = CEisn,, is satisfied for each positive integer n, where Res is the
residue map from H?(U,Z/I"Z(2)) to H3 (X, Z/I"Z(2)).
Moreover Zgisy,,, satisfies the following properties.

o Let p be a prime such that p =1 mod N, p # 1 and p € Sx good, Where Sx gooa is defined in
Section 3. (Note that there exist inifinitely many such prime numbers p.) There exists (a Hecke
operator) T' € Z[T p, Ty p] such that T Zgsy ,, does not depend on the choice of Zgsy ,, for each
positive integer n and T Zgis = (T Zgisy ,, )nez~, € H*(U,Z(2)) is non-zero.

o Letm be an integer and q be a prime number congruent to 1 modulo N. The equalities T, 4(Zeig Bisy ) =
(® 4 1) ZeigEisy and Ty (Zeig Bisy ) = MZeig,misy are satisfied, where we put Zeig misy = T Zkisy -
Note that these eigenvalues are the same as those of weight 3 Fisenstein series.

Note that the etale cohomology class Zcig Eis is the same as Beilinson’s [-adic Eisenstein classes.

One of (conjectural) generalizations of our main theorem is to construct étale cohomology classes
corresponding to Siegel Eisenstein series of Sp(4). In Section 7, we mention the l-adic Siegel Eisenstein
classes without exact mathematical definitions.

As mentioned in Section 1, one of final goals of our work is to construct some Euler systems. In Section
8, we describe our two attempts to construct Euler systems of Kg(M) (Func(X(N) x X(N))). One attempt
is to use the elements of H2 (X (N) x X(N)), where D denotes the diagonal divisor. We also use the
elements of Z1(X(N) x X (N),Gersts), where Z! denotes the 1-cocycle and Gerst denotes the Gersten
complex. It is not related to the construction of étale cohomology classes from differential forms. But it
is the origin of the work of this paper (see Section 1 and Section 8).

The other attempt is to use the (conjectural) i-adic Siegel Eisenstein classes. As mentioned in Section
1, our strategy to construct Euler systems is to construct elements of H?3(Vs,Z/I"Z(3)) corresponding to
the Siegel Eisenstein series (not restriction to diagonal) appeared in [16], where V5 denotes some Shimura
variety of Sp(4). We have not constructed these elements yet. But, in Section 9, generalizing our idea
to construct Beilinson’s [-adic Eisenstein classes, we give the idea to construct etale cohomology classes
from the residues of differential forms. (Note that we can regard weight 3 Siegel Eisenstein series of Sp(4)
as differential forms of degree 3 (see Section 7).) It is as follows. Let X be a i-dimensional scheme, Z be
its divisor. Put U = X — Z. Consider the following residue exact sequence.

@) - = HY(X,Z/I"Z()) — H (U, Z/I"Z()) °5 HF(X, 2/1"2(5)) TS5 B (X, 2/ 260) - - |
At first, we construct an element Z; 1 supp of Hyt (X, Z/1"Z(i)) and show that Gys; 1 (CZit1 supp) = 0
for some non-zero integer C'. We hope we can construct some elements of étale cohomology corresponding
to differential forms using this method inductively. When X is a Shimura variety, main tools to show
Gys,;;1(Z) = 0 are Proposition 6 and the Eichler-Shimura relation.

The rest of this introduction, we mention some results related to our work.

e Faltings considered the Arithmetic Eisenstein classes on the Siegel space (see [4] for more details).

e The construction of the Eisenstein symbol using the polylogarithm (see [9] for more details).
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Our method to construct elements of étale cohomology is related to that of Harder’s.

e Harder constructed some elements of étale cohomology of some Shimura varieties using the theory
of Eisenstein cohomology (see [6] for more details).

3. DEFINITIONS, NOTATIONS, AND PHRASES

In this paper, we always use the following notations unless otherwise stated.

Notation 1.

Let [ be a prime number.

Let p be a prime number different from I.

Let Z denote the set of all integers, and Z>; denote the set of all positive integers.

For a field L, let G, denote the absolute Galois group Gal(L/L).

For a scheme X, we will write the function field of X as Func(X).

Let K be a number field.

Let Ok be a discrete valuation ring such that Frac(Og) = K, where Frac means the fractional
field.

Let k be the residue field of the ring O, and k be its algebraic closure.

Define X = X ®gpec(x) Spec(K) for a scheme X over Spec(K).

Let X' be a scheme over Spec(Ok) such that X ®gpec(0,) Spec(K) = X.

Define X}, = X ®gpec(ox) k for a scheme X over Spec(Of ). We also use the notation (X)j instead
of XE-

e Let Fr be the Frobenius endomorphism defined in Section 13.

e For a scheme X over K, let Sx 4004 be the set of all prime numbers p such that there exist a
discrete valuation ring O with mixed characteristic (0, p) and a proper smooth scheme X" over
Spec(Og) such that Frac(Ok) = K and X ® Spec(Q) = X.

e Define Fl(N)—{( OCL 2 > € SLy(Z)|a=d=1 (mod N),c=0 (mod N)}.

e For N > 3, let Y(V) be modular curve over Q of level N without cusps, and X (N) be the smooth
compactification of Y'(N).

e For N > 3, let Y1(IN) be modular curve over Q of level I'y (V) without cusps, and X;(N) be the
smooth compactification of Y7 (V).

e Let N be an integer greater than or equal to 3.

e For a positive integer n and an integer m, let T, ,, and Ty, ,,, denote the Hecke operators defined
in Section 12.2.

e 6 o o o o o

e o o o

Phrase 1. In this paper, every phrase like “There exists a non-zero integer C' such that (a statement
like Gys(Z) = 0)” always means “There exists a non-zero integer C' (not depending on n) such that (a
statement like Gys(Z) = 0) for any integer n” unless otherwise stated.

4. PROOFS OF THE MANIN-DRINFELD THEOREM

In this section, we will write summaries of the classical proof and our proof of the Manin-Drinfeld
theorem. At first, we recall the Manin-Drinfeld theorem.

Theorem 4.1. (Manin-Drinfeld theorem)
Let P be a cusp of X(N), O be the point at infinity of X(N). There exists a positive integer C' such
that C(P — O) is a principal divisor.

Proof . At first, we will give a summary of the classical proof in [3]. The Hecke operator T, acts on
(P—0) € Pic(X(N)) by T,(P—0O) = (p+1)(P — O), where p is a prime number congruent to 1 modulo
N. By the Eichler-Shimura relation and the Weil conjecture, we see the all “eigenvalues” of the action of
T, on Pico(X(N)) & H'(X(N),Ox)/H"(X,Z) are all different from p + 1, where we write Picq for the
degree 0 part of the Picard group. From these two facts, we conclude C'(P — O) = 0 € Pic(X(N)) for
some non-zero integer C.
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We will write a summary of our proof. Let X = X(N), U =Y (N) and Z = X(N) — Y(N). We will
consider the following Gysin sequence.

(3) HY(X,Z/I"Z(1)) —» H (U, 2/I"2(1)) %8 H(X,2/12(1)) 5* H2(X,2/12(1))
We regard P — O as the element of HZ(X,Z/I"Z(1)). The key of our proof is the following proposition.
Proposition 1. There ezists a positive integer C' such that Gys,(C(P — O)) = 0.

Proof . By definition, Gys,(C(P-0)) € H*(X(N),Z/I"Z(1)). At first, we will decompose H?(X (N),Z/I"7Z(1))
using the following Hochschild-Serre spectral sequence.

(4) EYY = HY (Goey), HY (X(N), Z/I"Z(1))) = H™ (X(N), Z/I"Z(1))

We use this spectral sequence in the case n’ = 2. By the definition of spectral sequence, E? :=
H*(X(N),Z/1"Z(1)) has the filtration E? = E3 5 E} 5 E3 5 E} = 0 such that E2 /E2 (= EL*)
is the subquotient of H?' (Gogen)s H?>7(X(N),Z/1"Z(1))) for each p’ = 0,1,2. For simplicity, we write
Fil® instead of E? for each i = 0,1,2,3.

Let p; be the quotient homomorphism from Fil* to Fil* /Fil"** for each i = 0, 1,2. We see po(Gys,(C(P—
0))) = 0 € HGocy), H*(X(N),Z/I"Z(1))) because deg(n(P — O)) = 0. We see p1(Gys,(C(P —
0))) = 0 for some non-zero integer C' because, by the Weil conjecture, all eigenvalues of the action of
the Hecke operator T, on H'(Gg(cy), H'(X(N),Z/1"Z(1))) are all distinct from p + 1. The equality
p2(Gysy(C(P —0))) = 0 is proved by restricting the preceding Gysin sequence to the cusp of X (N) other
than O and P. (The details are left to the reader.) This completes the proof of the proposition.

From the preceding proposition, we see C(P — O) € Im(HY (U, Z/I"Z(1)) — H%Z(X,Z/I"Z(1))). This
implies C(P — O) € ["Pic(X). Hence we see C(P — O) = 0 € N22,1"Pic(X) = 0 by the Mordell-Weil
theorem as desired.

5. EXPLICIT DESCRIPTIONS OF THE UNIVERSAL ELLIPTIC CURVE

In this section, we will give the definition of the universal elliptic curve. Our definition is slightly
different from the classical one. In the former part of this section, we will define an analytic version of the
universal elliptic curve. In the latter part, we will define an algebraic structure of the analytic universal
elliptic curve.

5.1. Analytic expression of the Universal Elliptic curve.

Definition 1. We define b and Y1 univ,anaiytic(IV) as follows.

o h:={zcC|Im(z) > 0}.
o Yl,univ,analytic(N) = Z2 X Fl(N)\(h X (C)

Here the actions of Z? and SL3(Z) on h x C are given as follows.
o (t1,t2)((2,w)) = (z,w — t12 — to) for (t1,t2) € Z?,(2,w) € h x C.

° ( OCL 2 ) ((z,w)) = ((az +b)/(cz + d),w/(cz + d)) for ( (CI Z ) € SLy(Z),(z,w) € h x C.
Definition 2. Let L be a lattice in C. We will define pr,(z) and g7 (z) as follows.
1 1 1
(5) pr(z) = — + > G- B

0#£leL

The sums converge absolutely and uniformally on any compact subset of C — L.

(6) o1(2) == (9/02)p(2)

Note that, in many papers, the notations p and @’ are used instead of p, and @ respectively. For z € b,
define L, as follows.

(7) L,:=7+ 2Z.
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Lemma 1. The following relation between the p-function and @' -function holds.
o ()" = 4(pr. () — pr.(2/2))(pr. () — pr. (2 + 1)/2))(pr. (0) — p1.(1/2))
= dpr, ()" — 7 Bu(Z)pr. () — 27 e(2)
Here E4 and Eg denote the normalized Fisenstein series of weight 4 and 6 respectively.

Definition 3. Put A(z) = ¢, _(1/N)/pr.(1/N). It is well-known that A is a modular function of weight
1.

Put z(z,w) = AM2)?pr.(w), y(z,w) = A(2)%0)_(w), cs = 37, and ¢g = 527° For simplicity of

notation, we write x (resp. y) instead of z(z, w) (resp. y(z,w)). Then the equation (8) becomes
9) y? = 42% — (caFy(2) /N (2)N)z — cEs(2)/A(2)°.

The N-torsion point (corresponding to w = 1/N) of the elliptic curve defined by the above equation
is calculated as follows.

(10) (2(z,1/N),y(2,1/N)) = (pr.(1/N)* /e (1/N)*, oL (1/N)* /o7, (1/N)?).

Definition 4. We will denote by F'(N), F1(N) the function fields of X (N), X1 (V) ®gpec(q) Spec(Q(¢n))
respectively. Namely, we put

(11) F(N) = Q({j(A2)} aesLyz).det(A)|N)

(12) Fi(N) = F(N)" (™)
Definition 5. Let by and bg be given by by = c4E4(2)/\(2)* and bs = csEg(2)/M(2)C.

Lemma 2. The functions by,bg, 2(2,1/N) = y(2,1/N) are in F1(N). The functions x(z,z/N) and
y(z,z/N) are in F(N).

Proof . Obviously, the functions by, bg, z(2,1/N) = y(z,1/N),x(z,2/N) and y(z,z/N) are modular
functions of level N. They are in F((N), because their g-expansions are in Q({n)[[g]],

5.2. Algebraic expression of the Universal Elliptic curve.

Now, we give the structure of the algebraic variety to Y1 univ,anaiytic(IN). Let Y1(NN) be the modular
curve over Q of level I'; (V) and X;(N) be the smooth compactification of Y1 (N). Put Y1(N)gcy) =
Y1(N) ® Spec(Q(¢w)) and X1(N)gcy) = X1(N) ® Spec(Q(¢n)). We choose an affine open covering
{Uit1<i<m of X1(N)g(cy) 0 that there exist A1, -, Ay € Func(X1(N)g(cy)) such that AX;(z) # 0 for
alli=1,---,m and all z € p, 1 (U;(C)), where p, is the quotient morphism from h to X;(N)(C). Here,
for a scheme Y, we denote by Y (C) the set of all C-valued point of Y (regarded as the analytic space).
Define X7 .., (Ui) = Proj(©;2,1]"). Here we put

o A = T(Ui, Ox, (Nygee ) i Yis 2il /(W7 20 — da — (ba/ N )wiz? — (b6 /A§)2}).
o Il = (Y 2)" As.

The natural inclusion I'(U;, Ox, (n)

t=1,--,m.

aeny) — Ai induces the morphism f; : X{ ;. (U;) — U; for each

Definition 6.
e Define Xy univ(N)' by X] yniv (V) = ULy X7 iy (Ui), where the open subscheme 7Y UNU;) of

X1 univ(Ui) and the open subscheme fj_l(Ul- NUj) of X{ iy (Uj) are identified by the change of
variables Tj = ()\3/)\1)2IZ, Y = ()\J/)\Z)3y“ and 25 = Z4-

e Gluing f; (i = 1,---,m) together, we obtain the morphism X7 .., (N) = X1(N)g(cy)- We will
denote by pe x, () it

Definition 7. Define the point co and the curve C as follows.

e Let oo be the point on X1(N)g(c,) corresponding to z = ioc.
e Put C, = pe_é(l(N)(oo), where p. x, (v) + X1,univ(V)" = X1(N)g(cy) 1s defined in Definition 6.

e Put Ul,uniV(N) = p;;l(N)(Yl(N)Q(CN))



Remark that it is easy to see that Ui univ(IN)(C) is isomorphic to Y7 univ,anaiytic(N) as an analytic
manifold.

Lemma 3. There exists a following “canonical” isomorphism of scheme over Spec(Q((y)).

(13) Coo S {(m:y:2)€ P%)(CN) | yPz =22 (x4 1/42)}.
Proof . By definition, there exists a canonical isomorphism
(14) Coo > {(z:y:2)€ IE%(CN) | y?2 = 4a® — by(ico)xz? — bg(ico)z3}.
Note that
(15)

4a® — by (ico)wz? — bg(i00)2® = 4(x — (4¢(2)/A(ic0)?)2) (z + (2¢(2) /A (i00)?)2) (z + (2¢(2) /A (i00)?)2) € Qlx, 2]
= 42"(2' — (6¢(2)/A(io0)?)2) € Ql', 4

Here we put 2’ = x + (2¢(2)/A(ic0)?)z. By the above computation and the fact A(ico) € 2miQ((w), we

see the Lemma.
Definition 8.
o Let X1, univ(IV) denote the blow-up of X{)uniV(N ) at the point pexcep. Here Pexcep is the singular
point of Co, corresponding to (z : y : z) = (1: 0: 0) by the isomorphism in the preceding lemma.
o Let py @ X1 univ(N) = X7 455 (V) be the blow-up morphism at the point pexcep, which is the
isomorphism on X7 i, (N)\Pexcep-

Proposition 2. The scheme X1 yniv(N) is a proper smooth scheme over Spec(Q(¢n)).

Proof . This propositon easily follows from the fact that v (b)) = veo(bs) = 1. Here we define
the three elements b, b}, by of Fi(N) by x® + bya?® + bz + by = (4(x + t)3 — by(z + t) — bg)/4 with
t = —2((2)/A(ic0)?, and vs denotes the normalized discrete valuation corresponding to the point oo of
X3 (N)Q(CN)'

We use the following definitions in this section and the next section.

Definition 9. Define Dy and D as follows.
o Dy := the Zariski closure of pb_l(Coo — pcxccp) in X1 univ(IN), where py is the blow-up morphism
in Definition 8.
o Dy = pb_l(pexcep) = P}@(CN)'
We easily see the following Lemma.
Lemma 4. Let D = pe_;(l(N)(oo). Here p. x,(n) is defined in Definition 6. Then D = Dy U Dy is
satisfied. Moreover, D1 U Dy is a simple normal crossing divisor and Dy N Dy consists of two points.

Definition 10. We call D (in the preceding lemma) the boundary of the universal elliptic curve.

6. CONSTRUCTION OF BEILINSON’S [-ADIC EISENSTEIN CLASSES OF THE UNIVERSAL ELLIPTIC CURVE

In this section, we will reconstruct Beilinson’s l-adic Eisenstein classes. At first, we describe a general
theory. Let X be a scheme, Z be its divisor, and F' be a sheaf on X. Put U = X — Z. The following
exact sequence exists (see [13] for the details).

(16) o= H(X,F) —» H(U,F) " HI (X, F) U (X F) 5 HFYU,F) -
We call this long exact sequence the Gysin sequence or the residue exact sequence in this paper.

Our method is to construct some elements Z; upp, 0f H?l (X, F) at first, and prove Gys, 1 (Z; supp) = 0.
This implies that there exists an element Z; of H*(U, F) such that Res(Z;) = Z; supp. The details will be
explained in Section 9.

In universal elliptic curve’s case, we use the preceding residue exact sequence in the case X =
X1univ(N) and Z = D; U Dy, where Xj ynip(N), Di, and Dy are defined in Section 5.2 (Definition
8 and Definition 9). We construct the element Eisy of H}, |5 (X1,univ(N), Z/I"Z(2)) at first and prove
Gys3(CEisy) = 0 for some non-zero integer C, where Eisy will be defined in Section 6.1. This implies
that there exists Zgisy € H?(U,Z/I"Z(2)) such that Res(Zgisy ) = CEisy for some non-zero integer C.
The explicit statement is mentioned in Theorem 6.1. This is the main result of this paper.
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6.1. Construction of some elements of etale cohomology of the universal elliptic curve with
support on the boundary.

In this subsection, we will construct the element Eisy of H}, |, p. (X1 univ(N), Z/1"Z(2)) corresponding
to some weight 3 Eisenstein series. Throughout this section, we use the notations D; and Dy in Section
5.2 (Definition 9).

Definition 11.

e Let Q1 be the point at infinity of the elliptic curve Cy defined in Section 5.2 (Definition 7).
o Let Q2 be the intersection point of X yniy[2] and Do, where X1 yniy (N)[2] is the divisor consisting
of all 2-torsion sections of X1 yni (V). Note that the point Q2 is determined uniquely.

Definition 12.

o f1:=(y/xr—1/2)/(y/x+ 1/2) € Func(Dy).
Here we use the symbols z,y in Lemma 3. Note that f;(Q1) = 1.

Lemma 5. There exists a function fo in Func(Ds) such that ordp(f1) = —ordp(f2) for any point P
in Dy N Dy and f2(Q2) =1.

Proof . 1t is obvious from the fact Dy & I%“N).

To construct some elements of étale cohomology of the universal elliptic curve with support on the
boundary from f; and fo, we use the following homomorphisms.
H%)IUDQ (Xl,univ (N)a Z/an(2))

res

(17) — H%l—DlmDQ ('X - D27 Z/an(2)) @ H%Q—DlmDQ (X - ‘D17 Z/an(2))
S HY(Dy — Dy N Dy, ZJI"Z(1)) & H'(Dy — Dy N Dy, ZJI"Z(1))

We will denote by rp,up, the composite of the above two homomorphisms. Here the first homomor-
phism sends e € H}, |, p, (X1,univ(N), Z/I"Z(2)) tores(e) := (resx_p,(€),resx_p, (€)) € HY, _p ~p, (X —
Dy, ZJI"L(2)) ® H},, _p ~p,(X — D1, Z/I"Z(2)) and resx _p, is the restriction homomorphism from X
to X — D; for each i = 1,2, and the second isomorphism is induced by the purity theorem.

Using the homomorphism 7 p, up,, we can determine the group H3, |, p, (X1 univ(IV), Z/I"Z(2)) explic-
itly (see the lemma below).

Lemma 6. The homomorphism rp,up, s injective, and the image of rp,up, s determined as follows.
Im(TDlUp2) = {(Cl, CQ) S Hl (Dl — D1 n DQ,Z/Z”Z(].)) (5] Hl(DQ — D1 n DQ, Z/an(l))

| RGSP(Cl) = —RQSP(CQ) (VP eDiN Dg)},
where Resp is the residue map from H*(Dy — Dy N Do, Z/1"Z(1)) (or HY(Dy — Dy N Do, Z/1"Z(1))) to
H(P,Z/I"Z).

We write (D1 — Dy N Dy, ¢1) + (D2 — Dy N Dy, ¢3) for the element of H%luDQ (X1 univ(N),ZJI"Z(2))

corresponding to (c1,cz) in the above equality if (c1,ca) belongs to the right hand side. Namely, we put
(D1 — D1N Dy,c1) + (Dy — D1 N Dayea) = TB}UDQ((Clv c2)) if (c1,c2) belongs to the right hand side.

Proof . Well-known.

(18)

By definition, f; and fs have the opposite orders of zero at the points of D1 N Dy. Hence we can apply
the above lemma to construct the element Eisy, (defined below) of H%IUDQ (X1,univ(N), Z/I"Z(2)) as
follows.

Deﬁnition 13. Define EZSNn = (Dl —DlﬁDQ, kum(fl))+(D2—DlﬂD2, kum(fg)) € H%l UDs (Xl,univ (N), Z/an(Q))
for each positive integer n, where kum : H(X1 univ(N), Gpn) = H' (X1 univ(N), Z/1"Z(1)) is the Kummer
map. We will write Eisy,, simply Eisy when no confusion can arise.

Proposition 3. Let q be a prime number congruent to 1 modulo N and m be an integer. The equalities
T..Eisn = (¢* + 1)Fisy and T,y mEisy = mEisy are satisfied, where T, , and Ty, ,, are the Hecke
operators defined in Section 12.2.

Proof . This proposition follows from the direct computation. The details are left to the reader.
7



6.2. Reconstruction of Beilinson’s /-adic Eisenstein classes.
In this subsection, we will reconstruct the Beilinson’s I-adic Eisenstein classes. Throughout this section,
we use the following notations unless otherwise stated.

Notation 2.

o Let X = X1 yniv(N), Z=D1UDy,and U = X — Z. where X yni(N), D1 and Dj are defined
in Section 5.2 (Definition 8 and Definition 9).

e Let p be a prime number such that p = 1 mod N, p # [, and p € Sx good; Where Sx good is
defined in Section 3. (There are infinitely many p satisfying these properties.) Let p be a prime
ideal of Z[(n] above p.

o Let K = Q(¢n) and Ox = Z[(n]p, where Z[(n], is the local ring of Z[(n] at p. Let k = Z[{n]/p
and k be an algebraic closure of k.

e Let X be a proper smooth scheme over Spec(Og ) such that X = X ® Spec(Q). Note that there
exists such X because p € Sx good-

Proposition 4. Let K be a field, Ox be a discrete valuation ring such that Frac(Og) = K and k be
the residue field of O . Assume that the characteristic of k is not equal to l. For any proper smooth
scheme X over Spec(Of ), there exists a canonical isomorphism H'(X,7/I1"7) 5 HY (X%, Z)I"Z), where
we put X = X @ Spec(Q) and A, = X RSpec(Ox) Spec(k). Moreover this isomorphism is functorial and
commutative to any correspondence.

Proof . The former statement follows from the proper base change theorem and the smooth base
change theorem, and the latter statement follows from these two theorems and results in Section 12.

Definition 14. We give the action of Fr on H*(X,Z/I"Z) using the isomorphism in the preceding
proposition.

We use the following residue exact sequence to reconstruct Beilinson’s [-adic Eisenstein classes.
(19) -+ — HX(X,Z/I"Z(2)) — H(U,Z/I"Z(2)) 5 H3(X,2/1"Z(2)) “%° H3(X,Z/I"Z(2)) — - -
Proposition 5. There exists a non-zero integer Cy such that Gyss(CnyEisy) = 0.

Proof . By definition, Gys;(CnEisy) € H3(X,Z/I1"Z(2)). At first, we will decompose H?(X, Z/I"Z(2))
using the following Hochschild-Serre spectral sequences.

(20) H" (Gg,HY (X,Z/I"Z(2))) = H" (X, Z/I"Z(2))

o E" := H"(X,Z/I"Z(2)) has a decreasing filtration E” = Ej' > Ef > ... > E" D El,_ = 0.
We often write Fil'(X) instead of E for i =0,1,--- ,n’ + 1.
o Fil” (X)/Fil” ' (X)(= E,,_,) is isomorphic to the subquotient of H? (G, H" 7' (X, Z/I"Z(2)))

determined by the spectral sequence for p’ = 0,1,--- ,n/.

We treat the case n’ = 3. To prove the theorem, it is sufficient to prove, for each i = 0,1,2,3, that
there exists a positive integer C’ (depending only on N and i) such that Gys,(C'Eisy) € Fil'™(X) under
the assumption that Gys;(CEisy) € Fil'(X) for some non-zero integer C' (not depending on n).

(1) We may assume i > 1, because, by the Weil conjecture, there exists a constant C' not depending
on n such that H(Go(cy), H*(X, Z/1"Z(2)), which includes Fil®(X)/Fil'(X), is C-torsion.
(2) In the case i = 1 (i.e. Gysy(CEisy) € Fil'(X)).
We put Vx = Fil'(X)/Fil*(X) ¢ H'(Gg, H*(X,7/1"Z(2))). Recall that the Eichler-Shimura
relation is the equality

(21) T.p=Fr+ Twprr*

as a correspondence on X ®Spec(F,,) (see Section 13). This implies (Fr+pT,, ,Fr~ ' ~T, ,)(Vx) =
0. Hence (Fr? — T, ,Fr+pT,, ,)(Vx) = 0. Especially ggis(Fr)(CGys;(CyEisy)) = (Fr? — (1+p?)Fr+
p?)(Gys3(CnEisn)) = 0. Here we put ggis(7) = (v — 1)(z — p?).
Moreover, by the Weil conjecture, the absolute value of every eigenvalue of the action of Fr on
H?(X,7,(2)) is p. Hence there exists a positive integer C’ such that Gys,(C'Eisy) € Fil*(X).
8



(3) In the case i = 2. (i.e. Gys;(CEisy) € Fil*(X)).
We can prove Gys;(C'Eisy) € Fil*(X) for some non-zero integer C’ completely the same as
above using the fact that the absolute value of every eigenvalue of the action of Fr on H'(X,7Z;(2))
is p'/2.
(4) In the case i = 3. (i.e. Gys;(CEisy) € Fil*(X)).
Using the fact K is totally imaginary, we see that the g-cohomological dimension of G is 2
for all prime numbers g. This implies H? (G, H*(X,Z/I"Z)(2)) = 0. Therefore Gys;(CEisy) €
Fil*(X) = 0. This completes the proof of the proposition.

Theorem 6.1. There exist a non-zero integer C' (not depending onn) and Zgs,,, € H*(U, Z/I"Z(2))
for each positive integer n satisfying the following property.

o The equality Res(Zgisy,,) = CEisy,, is satisfied for each positive integer n, where Res is the
residue map from H?(U,Z/I"Z(2)) to Hy (X, Z/I"Z(2)).

Moreover Zgis ., satisfies the following properties.

o Let p be a prime such that p =1 mod N, p # 1 and p € Sx good, Where Sx gooa is defined in
Section 3. (Note that there exist inifinitely many such prime numbers p.) There exists (a Hecke
operator) T' € Z[T p, Ty p] such that T Zgsy ,, does not depend on the choice of Zgsy ,, for each
positive integer n and T Zgisy = (T Zgisy ,, Jnez=, € H?%(U,7Z,(2)) is non-zero.

o Letm be an integer and q be a prime number congruent to 1 modulo N. The equalities T, (Zoig Eisy ) =

(q2 + 1)Zcig,EisN and Tw,m(Zcig,EisN) = chig,EisN are satisfied, where we put Zcig,EisN =T Zgisy -
Note that these eigenvalues are the same as those of weight 3 Fisenstein series.

Proof . By the preceding proposition, there exist a non-zero integer C' (not depending on n) and
Zrisn., € H*(U,Z/1"Z(2)) (for each positive integer n) satisfying Res(Zgisy,,) = CEisy, for each
positive integer n. This is the former part of the theorem. To show the latter part, it is sufficient to show
that there exists (a Hecke operator) T € Z[T, p, T, ] such that T(Vx ) = 0 for all positive integers n
and TZgis,, € H*(U,Z(2)) is non-zero. Here we put Vy y = Im(H?(X,Z/I"Z(2)) — H*(U,Z/I"Z(2))).
This follows from the following three facts.

e By the Weil conjecture, we see H°(Gx, H*(X,Z/I"Z(2)) is C-torsion for some non-zero integer
C not depending on n.
e The absolute value of every eigenvalue of the action of Fr on H' (G, H (X, 7(2)) is p'/2.
e The Hecke operator Ty, , acts trivially on H*(G, HY(X,Z/I"Z(2)).
In fact, by these three facts, we see that there exists (a Hecke operator) T' € Z[T. ,, Ty p] such that
all eigenvalues of the action of T' on Vx y are all distinct from that of Eisy,, for some n € Z>;. This
completes the proof of the theorem.

Remark 1. The element Zeig gisy € H?(U,Z;(2)) is the same as Beilinson’s l-adic Eisenstein classes.

7. THE [-ADIC SIEGEL EISENSTEIN CLASSES (WITHOUT EXACT MATHEMATICAL DEFINITIONS)

In this section, we introduce [-adic Siegel Eisenstein classes without exact mathematical definitions.
Throughout this section, we use the following notations.
Notation 3.
e Let Hy be the Siegel upper half-space of degree 2. Namely

H, := {( 2 Zz ) € Ms(C) | S(z) is positive definite }

[ ]

Define Sps(Z) = {A € My(Z) | AJsA = J}, where J := ( oo ) with 1, = ( - )
—12

Define I'y(N) = {v € Spa(Z) | v = ( 102 102 ) mod N}.

Let V5 be the Shimura variety corresponding to the analytic space Hy/T'o(N).

[ ]

Let V5 be a smooth compactification of V5 obtained from the toroidal compactification of Vs by
blow-ups. See Faltings-Chai [5] for the toroidal compactification.
Let D be the divisor of V» defined by “{q; = 0}”, where we put ¢; = e27%1.

9

°



We choose \72 so that Vg\VQ is a simple normal crossing divisor. We may assume Vg\VQ = Ui<i<mDs,

where D1 = D and D; is a divisor of ‘72 for each i = 2,--- ,m. It is well-known that there is a following
canonical isomorphism.
Notation 4.

o Let Egp4),3 be a Siegel Eisenstein series of degree 2, weight 3, level N (see [20] for more details).
e Put wo = Egp),3dz1 Ndzz A dzs.

The differential form wy is the algebraic differential form on V5 (see Lemma 5.1 in [14]), and the residue
of wp on D is “corresponding to” an Eisenstein series of weight 3, level N.

Roughly speaking, some Siegel Eisenstein series of weight 3, degree 2 corresponds to Zg;s € H*(D—DnN
(Us<icmDy), ZJ1MZ(2)) = HE (Vo —Us<icm Dy, )1V Z(3)), where Zg, is some l-adic Eisenstein class of the
universal elliptic curve, and a [-adic Siegel Eisenstein class is its (Hecke eigen) lift to H3(Va, Z/I"Z(3)). We

write a picture about [-adic Siegel Eisenstein classes of degree 2 without exact mathematical definitions.

) ) ) , . id , ) ) .
some Siegel Fisenstein series of weight 3 rezgue some FEisenstein series of weight 3

37 Siegel Eisenstein class € H3(Va, Z/I"Z(3)) TSN O T € H{ (Vo — Ug<jcmDiy ZJIL(3)).
To construct them, we have to show Gys,(Cn Zg;s) = 0 for some positive integer Cy, where we regard
Zgis as the element of H}) (Vo — Us<;<, Di, Z/1"Z(3)). But we have not proved this yet.

8. EULER SYSTEMS

In this section, we will describe our attempts to construct Euler systems without proofs. We haven’t
constructed “True” Euler systems related to the Galois representation of the symmetric squares of mod-
ular forms yet, but we hope our attempts is useful to construct “True” Euler systems.

We describe two attempts to construct Euler systems. The first attempt is to use some elements
of HY(Y(N) x Y(N),Gerst3) or H3(Y(N) x Y/(N),Z/I"Z(3)), where Z run through some divisors of
Y(N) x Y(N). It originated in the discussion of the seminar of author’s master’s thesis with Kazuya
Kato in 2007.

Second attempt is to use conjectural l-adic Siegel Eisenstein classes. This is the main theme of the
paper.

There are several works related to the first attempt. For example, Lei, Loeffler and Zerbes constructed
Euler systems of H*(Y(N) x Y(N), K,) associated to the tensor products of modular forms (see [11]
for more details). Loeffler, Skinner and Zerbes constructed Euler systems for GSp(4) (see [12] for more
details).

There are several results related to the second attempt. For example, Harder constructed some elements
of étale cohomology of Shimura varieties using the theory of the Eisenstein cohomology (see [6] for more
details).

8.1. Construction of some elements of H'(X,Gerst3(X)). We recall the definition of the Gersten
complex.

Definition 15. Let F be a field. Suppose that X is a smooth variety of finite type over a field F. For
a non-negative ingeger i, define the Gersten complex Gerst;(X) as follows.

(23) Gerst;(X) : 0 = @pexo Ki(k(2)) = Brex1 Ki—1(k(z)) = -+ = @rexiKo(k(X))) — 0.

Here, for any integer j, X7 denotes the set of all codimension j points of X, K; denotes the j-th
Quillen (or Milnor) K-group, and (z) denotes the residue field of the local ring Ox .

Throughout this section, we use the following definitions unless otherwise stated.

Definition 16.

e Write X =Y(N) ®Spec(Q(Cn)) Y(N).

e Let D be the diagonal divisor of X. Namely we put D = {(z,2) € X | z € Y(N)}.

e Let Zy be the element of H'(X, Gersts(X)) corresponding to the element {¢Siegely n,0(2), “Siegelo,1/n(2)}
of Ka(k(D)) (C @rex1 Ka(k(x))), where ©Siegel is the Siegel unit defined in [8]. By the same
way, we can define the element of Z1(X, Gerstz(X)), where Z' means the 1-cocycle. By abuse of
notation, we use the same symbol Zy for this element.
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The elements Zy (N € Zx1) constructed above satisfy the following norm relations.

Theorem 8.1. Let p be a prime number. Then, the following norm relations hold for all positive
integers n.
(24) NoTmx (Npn 1) X (Npn 1)/ X (Npm) x X (Npm) Npr+t = ZNpr
Note that these norm relations also hold as elements of Z*(X, Gersts).

We can also construct an Euler system by generalizing the element Zy (see [17] for more details).
8.2. Construction of some elements of H} (X, Z/I"Z(3)).
In this subsection, we will define Z} € H$(X,Z/I"Z(3)) (an analogy of Zy), and state theorems on

norm relations without proofs (for the proofs, we refer the reader to [17]).
The following lemma is well-known (use the purity theorem).

Lemma 7. LetNX be a scheme over a field of characteristic 0. There exists a canonical isomorphism
H2(Z,7]I"7(2)) = HL(X,Z/I"Z(3)) for each smooth divisor Z of X.

Definition 17. Define Z}y = {“Siegeli n o(z), “Siegelo1/n(2)} € H*(D,Z/1"Z(2)) = Hj (X, Z/1"Z(3))

Theorem 8.2. Let p be a prime number relatively prime to N. Then, the following norm relations
hold for all positive integers n.
(25) NOTILY (Wpnt1)x X (Np+1) /X (Npm) x X (Npm) Znpn+1 = Ziypn

Moreover we can construct the elements Z; v, € Hzl,p (X ® Spec(Q(&p)), Z/1"Z(3)) (See [17] for more
details.) satisfying the first step of Euler system relations (see the following theorem). Here we put
D, = DU < p > T2, where < - > means the diamond operator and T),> is the Hecke operator (regarded
as the divisor of X).

Theorem 8.3. Let p be a prime number relatively prime to N. The following norm relation holds.
(26)  Normxgspec(@(e,)/x Z1,np = (1 = @ ) (1 =y @ ) (1 — By @ ap)(1 — By @ By) Zly
Here we put “ap, + Bp =Ty, apfp =p < p >" (see [16] for the meaning of the right hand side).

We consider the following residue exact sequence to construct Euler systems.
= H3(X,Z)1"Z(3)) — H*(U,Z/1"Z(3)) — Hy(X,Z/1"Z(3))

— HYX,Z/I"7(3)) — HYU,Z/I"Z(3)) — - - -

Here Z is some union of Hecke operators (regarded as the divisor of X) of Y(N), and U = X — Z.

Let T be an element of the Hecke ring of X such that T(H3(X,Z/1"Z(3))) = 0 and T(H*(X,Z/I"Z(3))) =
0. We can construct an Euler system of K?EM) (Func(X))/(I") from TZ] y,, and so on (see [17] for more
details).

(27)

8.3. Dream. We hope that there exists an element corresponding to“{ D, “Siegel; n,0(21), “Siegely 1 /n(22)}"
in the Milnor K-group KéM)(Func(X )). Note that D is not a principal divisor. Can we use the function

j(z1) — j(z2) € Func(X) ?, where j is the j-invariant and (z1, 22) € b x b.

8.4. Dream to construct Euler systems using (conjectural) Siegel Eisenstein classes. If we
can construct the “l-adic Siegel Eisenstein classes of degree 2” (see Section 7) corresponding to the Siegel
Eisenstein series in [16], it may happen we get an Euler system of the Galois module Sym?(H (X (N), Z;))(3)
by restricting the preceding Siegel Eisenstein classes to the diagonal.

Probably, we can construct an element Z3 gupp of Héz_w (Va,Z/1"7Z(3)) corresponding to the Siegel
Eisenstein series in [16] by using l-adic Eisenstein classes constructed from the polylogarithms. But, to
construct the l-adic Siegel Eisenstein class corresponding to it, we have to show Gys,(Z5 supp) = 0. We
haven’t proved it yet.

9. CONSTRUCTION OF SOME ELEMENTS OF ETALE COHOMOLOGY FROM THE RESIDUES OF
DIFFERENTIAL FORMS

In this section, we describe a general strategy to construct some elements of étale cohomology from
(the residues of) differential forms.
11



9.1. General Strategies.
Throughout this section, we will use the following notations unless otherwise stated.

Notation 5.

Let ¢ be a non-negative integer.

Let X be an i-dimensional proper smooth scheme over a number field K.

Let wp be a differential form of degree ¢ on an open dense subscheme of X.

Put Sies = {D | D € Div(X), the residue of wy on D is not identically zero}, where Div(X)

denotes the set of all irreducible divisors of X.

e PutSi = {D/n-- ‘ND} | Dy € Sres(1 <Vk <), Dy, # Dy, (1 < Vky < Vko <j),D{N---NDY #
P} for j =0,1,--- ,i.

e o o o

e Let Dj € Si,, (j =0,1,--- ,4) be codimension j smooth irreducible subschemes of X such that
Dj 3Dj+1 (] =0,1,--- ,i—l).
e Define w; (by induction on j) to be the residue of w;_1 on D; for each j =1,--- 1.

e Put D’y = D; N (Upes,.,p£D; D).
Throughout this section, we will make the following assumption.
Assumption 1. The divisor Upeg,. D is a simple normal crossing divisor.

res

By definition, it is obvious that there exists a canonical (uniquely determined) isomorphism
(28) Tsomg : I'(D;,0,) > H'(D;, Op,).
Throughout this section, we will make the following assumption.

Assumption 2. The image of w; by the isomorphism Isomgo is contained in H°(D;,Z) (Cc H°(D;,0p,)).
Here, by abuse of notation, Z denotes the constant sheaf of the group Z (consisting of all integers).

Definition 18. We will denote by Zo the element Isomgo (w;) (mod I") (€ H°(D;,Z/I"7Z)).

We hope that we can construct the elements of the étale cohomology group H*(X — D}, Z/I1"Z(i)) by
the following inductive method. At first, we construct Z from w; (as above), and construct Z; ¢upp from
Z;_1 and construct Z; from Z; qupp for j =1,2,--- 4 inductively (see the following picture).

X wo Z; € H(X — D}, Z/I"Z(1)) — Zisupp € Hpy,' (X, Z/1"L(3))
) _ / _

Dy wi Zisy € HTY(Dy = Dy, ZJIMA(i = 1)) = Zicasupp € Hip, (D1, Z/1"Z(i = 1))
) _ / _

Dy wy Zip€H *(Do—D4Z/I"L(i—2)) < Ziasupp € Hpy, (D2, Z/IML(i — 2))

(29) ! 4
A /
Di 1 wiy Zy € HY(D; | — D}, Z/I"Z(1)) —  Zisupp € HE(Di 1,Z)1"Z(1))

i} /

D; Wi Zy € HO(DZ', Z/an)

We hope we can construct Z; € HY(D;_;j — D}_;, 1, Z/I"Z(j)) and Z; supp € ng_lHl(Di_j,Z/l"Z(j))

forany j=1,---,1.

Remark 2. We have to show Gys; (Zjsupp) = 0 to construct Z; from Zjq,pp. We hope that it is
proved by the Eichler-Shimura relation when X is a Shimura variety (we have to replace wy by Cwy for
some non-zero integer C' if necessary). The Eichler-Shimura relations for many cases are proved in [18]
and the reference given there.
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9.2. General method using an analogy of the Eichler-Shimura relations.
In this section, we use the following notations unless otherwise stated.

Notation 6.

e Let p be a prime number different from I.

e Let K be a number field, and Ok be a discrete valuation ring with mixed characteristic (0, p)
such that Frac(Og) = K.

e Let g be the number of all elements of the residue field of Og. Note that this notation is different
from that of other section.

e Let X be a proper smooth scheme over Ok such that X ® Spec(Q) = X.

e For each D € S,.s, we choose a closed subscheme D of X’ such that D ®x X = D. For D" =

DYnDyNn---NDY e S, weput D = Df @x --- @x D, where Df,--- D} are the closed
subscheme of X chosen above.

e Let j be an integer such that 0 < j <.

o Let Zyjy=1{j'€Z|2(i—j)<j <2i—j+1}

In this section, we will make the following assumption.

Assumption 3. For any j' = 0,1,2,--- i and any D = D{ N Dy N---N DY, € S’

Jes, D 1s a proper
smooth scheme over Spec(Ok).

It is convenient to introduce the following notations.

Notation 7. Let T/(D;_;, D;_; ), T/D;_;, T/(Di_j,j') (for each j’ € Z(; ;)), and T/((Di—;)z, j') (for
each j' € Z(; j)) be endomorphisms of &, i ]H2Z ]_;H(X Z/IML(i)), ©p, esi- ]H% ]+1(X 7] (1)),

Op, ,esiz JHE J(X ZJI"Z(1)), and @Di,jesi;st(Di,j)E(XE’Z/ZHZ( i)) respectively. By abuse of nota-
tion, we let T' stands for all these endomorphisms, and by abuse of language, we say T is an endomorphism
of Dp,_jesini H: in this situation.

Note that there are following canonical isomorphisms obtained by the purity theorem.

Isom(p, | pr . :Hfj;ﬁll(x, ZJI"7(i)) — H”lHl(Di_j,Z/l"Z(j))
0 Isomp, , :Hp "THX,Z/I"Z(i)) 5 HITH(D;_;, Z/1"L(5))
30 o

Isomp— ., :Hgi_j(X'Z/l"Z(i)) S HI' 200Dy, Z)1"L(5)) for each §' € L

crrd’
CHip,

We often regard T/(D;_;,D;_ J+1) T/D;_;, T/(D;_; 5»3) (4" € Zgy) and T/((Ds—j)z,5") (5" €
Z(ij)) as the endomorphisms of &, - JHJHJ_H( i—js ZJIL(7)), @Difjesz‘;stjH(Di_j,Z/Z"Z(j)),
Op, ,esi; i HI 200Dy, Z/1"L(j )), and ©p cgi- JHI' =200 ((Dy_ )z, Z/1"Z(5)) respectively using

the above isomorphisms.

Definition 19. Endomorphisms T/(D;_;,D;_;,,), T/D;_j, T/(D;_;,5') (for all j' € Z ;) and
T/((Di—j)5,j") (for all j" € Z; ;)) are said to be compatible if the following three properties hold.

Isom(p, ). ; (X, Z/1"2(3)) S HI =209 ((Dy_ )7, ZJIVL(5)) for each §' € Ly -

e The following diagram is commutative.

. G S -
i—j €Sres’ YSj+1

®p,_esia ij“M( i3, Z/1"Z(5)) O, esii BT (Dis s Z/IML()))
(31) ‘I’T/( i—J 'L g+1) \LT/DZ—J
 GYSj41 _ _
@Dz je8in 3HJ+1j+1(Di—jaZ/an(j>) EBDF]'ESﬁ;jHJ-Fl(Di—jvZ/an(]))

@ i
Di—j esres‘7
—

e The Hochschild-Serre spectral sequence is “compatible” with the action of 7. Namely,
Fil' =@, o Fil' (H IYU(D;—;,Z)1"Z(5))) is preserved by T/D;_; for each i’ = 0,1, ,j+
1 and the action of T/Dl ; on Fil” /FllZ "+1 is induced by the action of T/(D;—j,2i —j +
1—14) on Op,_,esiziH’ (Gg,HIT' =" (D D;—j,ZJI"Z(35))) for each i’ = 0,1,---,j + 1. Here
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Fil' (Hi+1(X,Z/1"Z()) denotes the usual filtration of H/*'(X,Z/I"Z(j)) determined by the
Hochschild-Serre Spectral sequence for ¢/ = 0,1,--- ,j+ 2. (In many papers, the notation Eg,“
is used instead of Fil’ (H/*+1(X,Z/I"Z(5)).)

e The following diagram is commutative.

Op,_esiys 1 (Dizj /1" L(j)) Op,_esis H (Dizy)ps Z/1L(5))
(32) LT/ (D 3" + 200 - ) YT/(Dicj)g " + 20 — 5))
Op,_esizs B (Dizj, ZJIML(j)) Op,_esier " (Dimy)p Z/1(5))

res res

e

L

for each j” = 0,1,---,7 + 1. Here the two horizontal isomorphisms are induced by the proper
and smooth base change theorem (see Proposition 4).

By abuse of language, we say T is a compatible endomorphism of p, jesizi H!if T/(D;—;, D} a1
T/D;_;, T/(D;—j,j") (for all j' € Z; ;) and T/((Di—;)z,5") (for all ] E Z(;,5)) are compatible. It
is expected that every correspondence T’ (satisfying some assumptlons) of X induces a compactible
endomorphism of ©Op,_,esic HZ

Let d be an integer and T4, - - - , Ty be compatible endomorphisms of &, _gi—; H: In this subsection,
we will make the following assumptions.

Assumption 4.

e The compatible endomorphisms 77, --- , Ty are commutative each other.

e There exists a polynomial f(X7y, -, Xg4, Xg41) € Z[X1, -+, Xg41] such that f(T1,T5, -, Ty, Fr)

induces the zero map on &5, i (j,DFj)E(X,;,Z/Z”Z(i)) for each j" € Z(; ;). Here the action
of Fr is the usual action (see Section 13 for the definition of Fr).

e There exist Zjsupp,n; ; € ngw(Di_j,Z/znZ(j)) (= HY™ T( X,Z/1"Z(:))) for all D;_; €

Si~J and A\i,---,Ag € Z such that

res
(33) Tij,supp,all = A7nZ‘,supp,all

for each m =1,--- ,d, where we put Z; supp,aii = (Zj7supp7Di7j)Di_]_esze—sj.

We want to show that there exists a non-zero integer C' such that Gys;;(CZjsupp,n, ;) = 0 for any
D;_; € Si27. We will prove this below under some assumptions (see Proposition 6). Before stating the

proposition, we introduce the following definition.

Definition 20. Let K be a field such that [ is invertible in K, C be a smooth curve over K, and Z be
a finite union of closed points of C'. Let deg denote the composite of the following three homomorphisms

HZ(C,Z/I"Z(1)) — HZ(C,Z/I"Z(1)) 5 DpezZ/I"Z X Z/1"Z, where the first homomorphism is the
pullback by the HlOI‘phlSHl C — C, the second isomorphism is induced by the purity theorem, and the
third homomorphism is the summation homomorphism. Here we put C = C Pspec(K) Spec(K ) and the
morphism C' — C used above is induced by the structure morphism Spec(K) — Spec(K). We call deg
the degree map.

Proposition 6. Let us assume Assumption 8 and Assumption 4. If j # 1 and the absolute value of
every root of f(A1,Aa, -+, Aa,x) = 0 (with respect to x) is different from both ¢(**=9)/2 and ¢(>=7-1/2,
then there exists a non-zero integer C such that Gys;,1(CZ;j supp,p,_;) = 0 for any D;_; € SiJ. Ifj =1,
deg(Z1 supp,p; 1) = 0 for any D;_1 € Sres, and the absolute value of every root of f(A1, A2, -+, Ag,z) =0
(with respect to x ) is different from q*=1)/2 | then there exists a non-zero integer C' such that Gysy(CZ1 supp.0i 1) =
0 for any D; 1 € SiL.

res

Proof . We follow the notations used in Assumption 4. At first we treat the case j # 1. To prove
the proposition, using the spectral sequence and the fact H™(Gg,Z/I"7Z(j)) is 2-torsion for m > 3, it is
sufficient to show H%(Gy, H'+(D;_;,Z/I"Z(35))) is C-torsion for some non-zero integer C' (not depending
on n) and f(A1, A2, -+, Ag, ¢ /Fr) induce injections on both H’(D,_;,Z;(5)) and HI=*(D;_;,7Z(j)) (cf.
the proof of Proposition 5).
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The former part of the sufficient condition of the previous sentence is satisfied because of the Weil
conjecture if j # 1, and the latter part is satisfied because the absolute value of every eigenvalue of the
action of Fr on H’(D;_;,7(5)) (vesp. HI=Y(D;_;,7:(3))) is ¢’/? (vesp. ¢¥~1/2) by the Weil conjecture.

If j = 1, it is sufficient to show Gysy(CZ1 supp.p; ;) is contained in Fil'(H?(D;_y1,Z/1"Z(1))) for
any D; 1 € SiZt and f(Ty,---,Ty4,q" 'Fr) induces an injection on H (G, H(D;_1,7Z;(1))) (cf. the
proof of Proposition 1). The former part of the sufficient condition of the previous sentence follows
from the fact deg(Z1 supp.p; ,) = 0 for any D, € Si.', and the latter part follows from the fact that
the absolute value of every eigenvalue of the action of Fr on H'(D;_1,Z;(1)) is ¢'/2. Remark that,
by considering the restriction to a suitable point, we see that we doesn’t need to consider the term

H?(Gg,H°(D;_1,7/I"7Z(3j))) of the spectral sequence.

Summary 1. (The summary of this subsection, the preceding subsection, and so on)

Let T be a correspondence on X satisfying some assumptions. If Twy = Awy with A € Z, it is expected
that the method of the preceding subsection enable us to construct Z;supp,n, ; corresponding to Cw;
(in the sense of the preceding subsection) for any j = 1,2,--- ,i and any D;_; € Si;7. Here C is some
non-zero integer. Moreover it is expected we can construct Z; supp,p,_; 80 that T'Z; supp.ali = AZj supp,all
is satisfied, where we put Z; supp,ati = (Zj’suppyDiij)Diijeszc—sj.

In addition, it is expected that there exist non-zero integer C' (not depending on n and D;_;) and
Zj D; S HJ+1(DZ'._]“— D;_J+1,Z/an(j)) (fOY any Di_j S S;(;J) such that RGS(ZJ‘,DF].) = CZj,supp,Di,j
(for any D;_; € Si.7) and “TZ; ai” = AZjau, where we put Z; o = (Zj,Di—j)Di_jesﬁe‘sj' Furthermore

it is expected that we can choose Z; p, , “uniquely” (for any D;_; € Siz7) in the sense of the main
theorem (Theorem 6.1) of this paper.

9.3. Examples.
Throughout this subsection, we use the notation X7 univ(IN) defined in Section 5.2 (Definition 8).

Ezample 1. (The universal elliptic curve).

Let X = X1,univ(IN), U be the open subscheme of X7 univ(IN) defined in Section 6.2 (Notation 2), and
wo = B3 nydz A dw € QF,. Here we define F3 n(z) = Do (ed)ez? (e.d)=1,(e,d)=(1,0) mod N(CZ T d)~3 for z in
the upper half plane, and z,w are the coordinates in Section 5.1 (Definition 1). Using the method of the
preceding subsection, we can construct the element Zy sypp,p, € HQQ(Dl,Z/l"Z(l)) corresponding to wq
(in the sense of Section 9.1) for any Dy € S,es. For simplicity, we put Z1 supp,ait = (Z1,supp, D1 ) D1 €Suee -

Let p be a prime number such that p =1 mod N and p € Sx good, Where Sx 4004 is defined in Section
3. Then, we put f(X1, X2, X3) = X2—X; X3+pX,. By the Eichler-Shimura relation, as a correspondence
on X @ Spec(Fp), f(T% p, Tw,p, Fr) = 0 is satisfied. Moreover, Hecke eigenvalues of the actions of T , and
Twp o0 21 supp,ail are calculated as follows.

Lemma 8. Let p be an odd prime number such that p =1 mod N, p # I, and p € Sx good, Where
Sx,good 15 defined in Section 3. Then, there exist compatible endomorphisms T , and T, , of @DGSSCSH;
such that Tz/,pzl,sumo,all = (p2 +1)Z1 supp.anr and Tt/u,pZLSHPP@ll = PZ1 supp,all -

Proof . We easily see 1), , and T}, , are both finite-to-finite correspondences on Upcg, . D. Using the
assumption that p is odd, we see both T}, and T, , preserve D; and Dj for any Dy € S,es. Here we put
Dy = Dy N (Upes,..,p#p, D). Hence there exist compatible endomorphisms 77 , and T}, , “canonically”
induced by T, and T, , respectively. (The details are left to the reader.) These endomorphisms satisfy

T. pZ1supp.att = (P* + 1) Z1supp.an and Ty, , Z1 supp,att = P21 supp,ait a8 desired.
Lemma 9. There exists a non-zero integer C' such that Gys, (CZLSUPPHDI) =0 for any D1 € Sies-

Proof . Let p be an odd prime number such that p =1 mod N, p # [, and p € Sx gooa- (It is easy
to see that there exists such p.) Note that we see ¢ = p because p =1 mod N. To prove the lemma, it
is sufficient to verify the assumption of Proposition 6. Obviously, deg(Z1 supp,n,) = 0 for any D; € Syes.
Moreover, by the preceding lemma, f(A1, Ao, z) = f(1+p?,p,z) = (z — 1)(z — p?) is satisfied. Hence, the
absolute value of every root of f (with respect to ) is different from p3/? as desired.

The statement of Lemma 9, which is the main result of this example, is already proved. For example,
it follows from the results of Section 6.1 (Definition 12 and Lemma 5). But the method of the proof is
important. The general strategy in this section can apply to general Shimura varieties.
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Ezample 2. (The powers of the universal elliptic curve)

Let k be a positive integer. To construct Beilinson’s [-adic Eisenstein classes of the k-th power of
the universal elliptic curve, we have to consider the case X = X univ(NV) ®X(N) X1, univ(V) Qx(N)
< @x(N) X1,univ(NV) (k-times) and wy = CEjqo ndz A dwy A dwy A --- A dwy, where z is the coordinate
of X(N) and dw,--- ,dwy are the coordinates of the fiber. (We omit the exact definition.) Here
we define En n(2) = 3. a)ez2,(e.d)=1,(c.d)=(1,0) mod n(€z + d)~™ for each integer m greater than 2
and all z in the upper half-plane. Put X{“’umv(N) = X1uniw(N) @ -+ @ X1 univ(N) (k-times) and
D¥ = D®---® D (k-times), where D is defined in Lemma 4. We regard D* as the closed subscheme

of Xf .iw(N). By the universal property of the tensor product, we obtain the natural morphism i :
X — X{,.u(N). By this morphism, we regard X as the smooth closed subscheme of XY, ;. (N).

We also regard D* as a closed subscheme of X. Put Eisxr vy = Eisy U--- U Eisy (k-times) €
H3, (XiuniV(N),Z/l"Z(Qk)), where U means the cup produc’t. By the purity theorem and the Leray
spectral sequence (of the composite of the functors i' and Ker(I'(X,-) — I'(X — D, ")), we see that there
(N), Z/I"Z(2k)) 5 H?,;Q(X, Z)1"Z(k +1)). We define Eisk,

to be the element of H?f (X,Z/1"Z(k+1)) corresponding to EiSXf,umv(N) by the preceding isomorphism.

exists the natural isomorphism H2k (X funiv
For a positive integer m, let Ty 1, Ty m, =+ * 5 Tw,,m denote the Hecke operators. (The definitions of these
Hecke operators are similar to those of the Hecke operators T, ,,,, T\ m of the universal elliptic curve and
we omit the definition.) The following lemma holds.

Lemma 10. Let g be a prime number congruent to 1 modulo N. Then, the equalities Tz’qus]fV =
("' + D)Eish, Ty, (Fisk; = qEisk, (for each i =1,2,--- k) are satisfied.

Proof . This lemma is proved by direct computations. The details are left to the reader.
Lemma 11. There exists a non-zero integer C such that Gysyo(CEish) = 0.

ProoF. Let p be a prime number such that p =1 mod N and p € Sx gooq- The Eichler-Shimura
relation of the powers of universal elliptic curve is the following relation as a correspondence on X ®

Spec(F,).

(34) T.p=Fr+Ty pTu, pFr’.

Put d = k+ 2 and f(Xl,XQ, s 7X/€+2) = X]3+2 — Xle-i-Q + pX2X3 . 'Xk-i-l- The Eichler-Shimura
relation implies f(T% p, Tw, ps- - > Twy,ps Fr) = 0 as a correspondence on X’ ® Spec(F),), and easy compu-
tation (using the preceding lemma) show f(Z% p, T, ps -+ s Lwg.ps z)Eisk, = f(p* 1 +1,p, -+ ,p,x)Eisk; =
(z — 1)(z — p**1)Eisk,. Hence we see Gysj,o(Eisk;) = 0 by Proposition 6 as desired. d

9.4. Problem. To construct some elements of étale cohomology using the methods of subsection 9.1 and
subsection 9.2, the following problem appears.

Problem 1. (Algebraic geometry)
Let X be a Shimura variety.

(1) Find a Hecke operator T such that T is finite-to-finite. Here we regard T' as a correspondence.
(2) Find a Hecke operator T' such that there exists a compatible endomorphism of & Di_jesict H!
“corresponding” to T'7

10. DETERMINATION OF THE CONSTANT C'
Let X be a scheme, Z be its divisor, i be an integer and Eisx be an element of HLM (X, Z/I1"Z(i)).

Problem 2.

1) Does Gys,, ;(CEisx) = 0 hold for some non-zero integer C'?
( YSit1 g
2) If (1) is true, determine C such that Gys,,;(CEisx) = 0. Especially, determine C' when X is the
y i+1 Y.
universal elliptic curve (or the powers of the universal elliptic curve).
(3) Determine the set of all Hecke operators T such that TH**(X,Z;(i)) = 0 when X is a Shimura
variety.
4) Determine the set of all Hecke operators T such that TH?(X,Z;) = 0 for each non-negative
( p : g
integer j when X is a Shimura variety.
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Comment 1. Probably we can prove (1) of Problem 2 in many cases of Shimura varieties using the
Eichler-Shimura relations.

Ezample 3. Let X = X(N). Then, C is related to special values of the Dirichlet L-functions. The
details are left to the reader.

Problem 3.

(1) Determine the set of all Hecke operators T such that T(H'
related to the Galois representation Ggcy) — End(H'(X(N),
endomorphism group.

(2) Let Divcysp be the group consisting of the divisors of X (V) generated by all cusps. Determine
the group Diveysp/ < Siegel >, where < Siegel > is the group generated by all Siegel units of
X(N).

X(N),Z/1"Z(1))) = 0. This is
I"7Z(1))), where End means the

X
Z/1

11. REMAINING TOPICS

In this section, we describe some remaining topics of this paper.

(1) Over Spec(Q) vs. Spec(Z[1/NI]). What is a difference?

To construct “True” Euler systems, we have to construct “True” elements of étale cohomol-
ogy of a certain scheme not over Spec(Q) but over Spec(Z[1/NI]) whose structure morphism is
surjective. Harder obtained some results in [6]. (He obtained some motivic elements.)

(2) Euler systems.

Construct “l-adic Siegel Eisenstein classes of degree 2” (see Section 7) and determine the
constant C' exactly. If we can do that, then it may happen that we get an Euler system of the
Galois module Sym?*(H"'(X(N),Z;)(3) by restricting the preceding Siegel Eisenstein classes to
the diagonal.

(3) An proof of the Shimura-Taniyama conjecture.

If we can construct the Siegel Eisenstein classes of degree 2 corresponding to the Siegel Eisen-
stein series in [16], it may happen that we can get the “True” upper bounds of the “True” Selmer
groups of the symmetric squares of modular forms.

(4) The l-adic Eisenstein classes of general Shimura varieties.

It is expected, under some assumptions, there exists an element of étale cohomology corre-

sponding to each Eisenstein series of general Shimura varieties.
(5) The pullback formula (general degree).

The restriction to the diagonal of some conjectural [-adic Siegel Eisenstein class of Sp(4g) is
(conjecturally) related to some special values of L-functions by the pullback formula. How to
interpret this algebraically (such as the Beilinson conjecture or Euler systems) ?

(6) The Beilinson conjecture.

Some Siegel Eisenstein series of Sp(4) is related to some special values of the symmetric square
L-functions of modular forms by the pullback formula (see, for example, [19], [15] or [16]). It is
expected that the restriction to the diagonal of some [l-adic Siegel Eisenstein class of degree 2
is the element of H3(Y(N) x Y(N),Z/I"Z(3)) predicted by the “l-adic Beilinson conjecture” of
X(N)x X(N).

12. CORRESPONENCES

In this section we define the action of correspondences on étale cohomology. Especially we will define
the action of Hecke operators on étale cohomology.

12.1. The definition of the action of correpondences on étale cohomology. The results of this
subsection originated in a comment of Yoichi Mieda to our talk. In our talk, we assume the finiteness
to define the action of correspondences on étale cohomology, but he teach me the assumption is not
necessary. The author would like to thank him for the comment.

In this section, we use the following notations unless otherwise stated.

Notation 8.

e Let [ be a prime number and K be a field such that [ is invertible in K.
17



e Let X be a smooth equidimensional scheme over K, X’ be an equidimensional scheme over K,
f: X" — X be a morphism over K, and g : X — Spec(K) be the structure morphism.

e Let ¢ be a non-negative integer and j be an integer.

o Put A=Z/I"Z.

We will make the following assumption in this section.

Assumption 5. The morphism f : X’ — X is a compactifiable morphism (see [1] (tome 3, Chapter 17,
Section 3, Definition 3.2.1. (pp305)) for the definition of compactifiable morphism).

This assumption is necessary to define Rf; and Rf' (see the definitions below).
In this section, we only treat the sheaves of A-module, and use the following definitions. For simplicity
we call the reference [1] SGA 4.

Definition 21. For a scheme Y, let D(Y) and D (Y) denote the derived categories defined in SGA
4, tome 3. Let Rfy : D(X’) — D(X) be the functor defined in SGA 4, tome 3, Chapter 17, Section 6
(pp224) and Rf' : DT(X) — DT (X') be the functor defined in SGA 4, tome 3, Chapter 18, Section 3
(pp316). We write Ax for the complex --- —0— A — 0 — --- € Ob(D" (X)) (put A in degree 0). By
abuse of notation, we write A instead of Ax when no confusion can arise.

Remark that, to be precise, for a scheme Y, we have to write D(Y,A) and DT (Y, A) following the
notations of SGA 4. But for simplicity of notations, we write D(Y) and D' (Y) instead of D(Y,A) and
DT (Y, A) respectively.

Lemma 12. Let F € Ob(D(X’)) and G € Ob(D*(X)). The following “canonical” isomorphism

exists. Hompx (F), Rf'G) 5 Hompx)(RAF,G). (For the precise statement and the proof, see Remark
3.1.5. in SGA 4, tome 3 (pp571).)

Lemma 13. For any smooth morphism g : X — Spec(K) and any compactifiable morphism f : X' —
X, the following equalities hold. (Note that every morphism X — Spec(K) is compactifiable.)

Rg'A = g*A(d)[2d] = A(d)[2d]. Rf'A = Rf'(Rg'A(—d)[—2d]) = R(g o f)'A(—d)[2d]. Here we put
d = dim(X).

Proof . The former statement of the lemma follows from the fact g is the smooth morphism (see
Theorem 3.2.5 (Poincaré duality) in SGA 4, tome 3 (pp585)), and the latter statement follows from the
former statement and the fact Rf' o Rg' = R(go f)".

Definition 22. For any morphism h : X’ — Spec(K) and F' € Ob(D™ (Spec(K))), let t, : Rh*F(d)[2d] —
RR'F be the homomorphism defined in SGA 4, tome 3, (3.2.1.2) (pp583) or Lemma 3.2.3. (pp583). Here
we put d = dim(X"’). (Note that every morphism X’ — Spec(K) is compactifiable.)

Definition 23. Let ca s : A — Rf'A be the morphism of the derived category D(X') obtained from the
map t,07 : A(d)[2d] — R(go f)'A by twisting (—d)[—2d]. Here we put d = dim(X’). Let ¢/ : RAA — A
be the morphism of the derived category D(X) corresponding to ca,r by the adjoint property of the
functors f' and f (see Lemma 12).

Definition 24. Let t' : Rf.A(j) — A(j) be a morphism of the derived category D(X). By taking I'(X, -
(resp. Ker(I'(X,-) — I'(X — Z,))), the homomorphism ¢’ induces the homomorphism H®(X’ A(j)) —
HY(X,A(j)) (vesp. Hy/ (X', A(j)) — Hy (X, A(j))), where Z is a closed subscheme of X and Z’ = f~1(Z).
Let f.(t') denote both the above two homomorphisms. For a proper morphism f, Rf.A(j) = R fu (j) is
satisfied, and by abuse of notation, we write simply f, instead of f.(ca,f(j))-

Proposition 7. Let C be a schemes over K. Let ¢ : C — X x X be a morphism of scheme over K, py :
C — X be its first projection and py : C — X be the second projection. Assume that p1 is compactifiable,
proper and dim(C) = dim(X). Then two homomorphisms p1, o p5 : H'(X,A(j)) — H'(X,A(j)) and
Hy(X,A(y)) — le(pgl(z)))(X,A(j)) are defined.

Proof . The pullbacks p3 : HY(X,A(j)) — H'(C,A(j)) and HL(X,A(j)) — Hl_l(Z)(C,A(j)) are

always defined. Moreover, under the assumption of the proposition, we can define py, : H YO, A>G)) —
Hi(X,A(j)) and H;‘I(Z)(C’ A(j)) — H (o3 1(2) (C,A(4)) (see Definition 24). This completes the proof.
2
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12.2. Hecke operators as correspondences.

We will define the closed subschemes T, ,, open (for n € Z>1) and Ty m, open (for m € Z) of Uy yniv(N) x
U1t ,univ(IN) using the modular interpretation, where Uj univ (V) is the open subscheme of Xj upniv(N)
defined in Section 5.2 (Definition 7). Let F be a field extension of Q(¢x), F be an elliptic curve defined
over F'| ey be its F-point of exact order N, and P be a F-point of E. We regard (E, ey ) (resp. (E,en, P))
as the F-point of Y1(N)g(¢y) (resp. Ut univ(V)).

Definition 25. Let n be a positive integer and m be an integer.
o Tz,n,open = {((E7P7 eN)u (E/Ln,P, 67\[)) S Ul,univ(N) X Ul,univ(N) | (E,GN) S le(N)Q(CN)u Pe

E, L, : order n subgroup of E}, where P (resp. €x) denotes the point of E/L,, corresponding to
P modulo L,, (resp. ey modulo L,).

® Towmoopen :={((E,P,en), (E,mP,en)) € Ut univ(N) X Ut univ(N) | (E,en) € Y1(N),P € E}.

o T, , is the Zariski closure of T ,, open I X1 umiv (V).

o Ty m is the Zariski closure of Ty open I X1 univ(IV).

Definition 26. Using Proposition 7 in the case ¢ is the closed immesion T, ,, — U1 univ (V) X U1 univ (V)
(resp. Twm — Ut univ(IN) X Ut univ(N)), we get the actions of T, ,, (resp. Ty, ) on Hi(Xl)uniV(N), A(y))
and H}, | p. (X1,univ(N), A(j)). Here Dy and Ds is defined in Section 5.2 (Definition 9).

Remark 3. The argument in the preceding subsection works for a proper smooth scheme X over
Spec(Ok ) such that X ® Spec(Q) = X1 univ(IN). Here Ok is defined in Section 6.2 (Notation 2). The
details are left to the reader.

13. FROBENIUS ENDOMORPHISM, DUAL CORRESPONDENCES, THE EICHLER-SHIMURA RELATION

Definition 27.

e For a scheme X over a finite field &, let Fr denote the Frobenius endomorphism Fry/;, defined
n [13] (Chapter VI, Section 13 (pp290)). For example, for a ring A over k, Frgpec(a)/x is the
morphism of scheme induced by the |k|-th power map of A, where |k| is the number of all elements
of k. By abuse of notation, we use the same symbol Fr for the morphism Fry ggpec(i) s defined

in [13], where k is an algebraic closure of k. We often regard Fr as the correspondence on X x X
(Namely, Fr = {(z,Fr(z)) € X x X | x € X}).

e Let C be a closed subscheme of X x X. Define C% = py x p;(C), where p; (resp. po) is the
first (resp. second) projection. Namely, C% = {(y,x) € X x X | (z,y) € C}. We often write
C* instead of C%% In many papers, the notation Ver is used instead of Fr*. But in this paper,
we use the notation Fr*.

Theorem 13.1. We follow the notation of Section 6.2 (Notation 2) (we may ignore the condition
p#1)

As a correspondence on X @ Spec(F,), the relation T, , = Fr + T, ,Fr* (the Eichler-Shimura relation
of the universal elliptic curve) is satisfied.

Proof . See [18] for the proof.
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