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1 Introduction

Let RY == {z = (2/,2ny) € RY | 2/ € R¥~1 2y > 0}, N > 2, be the half space. In this paper,
we consider the following linear system of the compressible Stokes system with homogeneous
Dirichlet boundary conditions:

Op+~ydiva =0 inRﬂ\:,
ou— aAu — gVdiva+yVp =0 in Rﬂ\:, (1.1)
u=20 on GRf, '

(p,u)(0,z) = (po, o) in Rj-i\-['

Here, p and u = (uj,---,uy) are respective unkown density and velocity functions, while
the initial datum (pp, ug) is assumed to be given. Moreover, the coefficients «, S, and v are
assumed to be constants such that o + 5 > 0 and v > 0. The aim of this paper is to show
the generation of a continuous analytic semigroup associated with equations (1.1) and its Lq
in time maximal regularity property in Besov spaces H;, = Bg;l(Rf ) X B;;’,T(Rf )N, where
1<g<oo,1<r<ooand -1+ 1/¢ < s < 1/q. Our approach is to prove the existence of
the solution in H; ; and from real interpolation, combine some new estimates for the resolvent
problem by using ngl(RﬂY ) X B;ff" (RY) norms for some small o > 0 satisfying the condition
—14+1/g<s—o<s<s+o<l1/q.

The system (1.1) is the linearized system of the compressible Navier-Stokes equations with
homogeneous Dirichlet boundary conditions:

dro+div(ev) =0 in RY,

0(Ov+ (v-V)V) — pAv — (u+v)Vdivv+ VP(p) =0 in Rﬂ\:,
v=0 on ORY

(0,v)(0,2) = (00,vo) ~ inRY,

where ¢ and v describe the unknown density and the velocity field of the compressible viscous
field, respectively, while the initial datum (gg, vo) is a pair of given functions. The coefficients
1 and v are assumed to satisfy the ellipticity conditions p > 0 and g+ v > 0. In addition, the
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pressure of the fluid P is a given smooth function with respect to ¢, which is assumed to satisfy
the stability condition P’(p.) > 0. Here, p, stands for the reference density that is a postitve
constant, and the initial density gy is given as a perturbation from p,. As discussed in [4, Sec.8],
the coefficients «, 3, and v are defined by a = u/p«, 8 = v/p«, and v = \/ P'(ps), respectively.
Clearly, «, B, and ~ satisfy the aforementioned given conditions.

Since the 1950s, lots of mathematicians have contributed to the research on the long time
behaviors of the global solution of compressible Newtonian fluids. Matsumura and Nishida [6]
proved a unique global-in-time solution for the initial value problem of the compressible Navier-
Stokes equations with heat-conductive effects in the three-dimensional whole space with the
help of a local existence theorem together with the a priori estimates for the solution. More
precisely, the a priori estimate were constructed by the linear spectral theory and the Lo-energy
method. This result was established in the half space and exterior domains cases by the same
authors, see [8]. After that, semigroup approach has been establised. Stréhmer [13] proved
the global well-posedness by the semigroup theory. He formulated the system in Lagrange
coordinates. By doing so, the convection term g - Vv can be eliminated and the transformed
system can be regarded as a pure parabolic type system. Therefore, the derivative loss from the
mass conservation equation vanishes. Recently, the Cauchy problem of the compressible Navier-
Stokes equations has been studied in terms of the maximal L? regularity (1 < p < 0o) approach
and Enomoto and Shibata [4] obtained the global existence result in a bounded smooth domain
with a wider class for the initial data. The strategy in their study is to prove the existence of
solution operators of the generalized resolvent problem and to apply the operator-valued Fourier
multiplier theorem due to Weis [15]. On the other hand, for the endpoint case p = 1, namely
the maximal L! regularity. Danchin [2] proved the local well-posedness in bounded domains,
and Danchin and Tolksdorf [3] for the global well-posedness in bounded domains. Here, they
studied the system in the L; in time and By ; in space framework, where p and s are taken such
that 1 < p < oo and s = -1+ N/p.

1.1 Notations

Let us summerize the notations and functional spaces in this paper. Let R, N, and C be the set
of all real, natural, complex numbers, respectively, while let Z be the set of all integers. Besides,
K stands for either R or C. Set Ny := NU {0}.

For N € N and a Banach space X, let S(R"; X) be the Schwartz class of X-valued rapidly
decreasing functions on RY. We denote S’ (RN ; X) by the space of X-valued tempered distri-
butions, which means the set of all continuous linear mappings from S(R") to X. For N € N,
we define the Fourier transform f +— F[f] from S(RY; X) onto itself and its inverse as
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NS = [ f@e=Can  Fllae) = gy [ a0 as

f
RN

respectively. In addition, we define the partial Fourier transform F'[f(-,zn)] = f(¢,zn) and
partial inverse Fourier transform ]-"&_, U by

FICanE) = f(¢ zn) =/ fla! an)e ™ da!,

RN-1
1 o
Fo'la(an)l@) = W/{Rng(ﬁl,wz\/)e” € qel

where we have set 2/ = (z1,---,oy_1) € RVt and ¢ = (&, ,&v_1) € RVL For N > 2,

we set (f, g)Rf = fRf f(z) - g(z) dx for N-vector functions f and g on RY, where we will write
(f,g) = (f, g)Rf for short if there is no confusion. Given function f, define Vf = (f,Vf),
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V2f = (f,Vf,V2f). By C > 0 we will often denote a generic constant that does not depend on
the quantities at stake.

Next, we introduce some function spaces on RV and Rﬂ\_f . In the following, let s € N and
p € (1,00). Bessel potential spaces HS(RY) are defined as the set of all f € S'(R") such that
HfHH;(RN) < 00, where the norm || - ||H;(RN) is defined by

Iy = [ [+ 1€PEFIA)]|

Lp(RN)

It is well-known that, if s = m € Ny, then Hj (]RN ) coincides with the classical Sobolev space
WI’,"(]RN), see, e.g., [1, Theorem 3.7].

To define inhomogeneous Besov spaces, we need to introduce Littlewood-Paley decomposi-
tion. Let ¢ € S(RY) with suppg = {¢£ € RY | 1/2 < |¢| < 2} such that Y, ., #(27%¢) =1 for
all ¢ € RV \ {0}. Then, define

o= F B2, keZ,  p=1-) ¢(27%).

keN

For 1 < p,q < oo and s € R we denote

1/q
q .
= fllz,@yy + (Z (28k||¢k * fHLp(]RN)) ) if 1 <q<oo,
HfHB;q(RN) = keN
4 fll L, @~y + sup (QSkH%*fHLp(RN)) if ¢ = oo.
keN

Here, f * g means the convolution between f and g. Then inhomogeneous Besov spaces B;,q(RN )
are defined as the sets of all f € S’(RY) such that ||f||Bg JRY) < 0.

Let D' (Rf ) be the collection of all complex-valued distributions on Rﬂ\r/ . Let s e R, p e
(1,00), and ¢ € [1,00]. Then for any X € {Hj, B}, the space X(RY) is the collection of all
f € D'(RY) such that there exists a function g € X(RY) with g|R§ = f. Moreover, the norm of
f € X(RY) is given by

Hf”X(Rf) = inf”Q”X(RN),
where the infimum is taken over all g € X (R") such that its restriction Q‘Rf coincides in D'(RY)

with f. We also define L
Xo(RY) == {f € X(RY) | supp f c RY}.

Clearly, we always have Xo(RY) — X(RY).
According to [14, Section 2.9], for s € R, p € (1,00), and ¢ € [1,00), we have the following
density result:

Xo(RY) = G (RY) X6,
Here, X (RY) and Xo(RY) may coincide if one restricts s such that —1+1/p < s < 1/p.
Proposition 1.1. Let 1 < p < 00, 1 < ¢ < o0, and =1+ 1/p < s < 1/p. Then H;(Rf) =
H;O(Rf) as well as B;Q(Rf) = B;,%O(Rf).
Proposition 1.2. Let p € (1,00). Then the following assertions are valid.

(1) ForseR, there holds
(Hyo(RY)) = Hy*(RY).



(2) For —oco < s < 1/p, there holds
(Hy(RY)) = H, % (RY).
(3) For—oco<sp<s1<00,1l<p<oo,1<qg<oo, and0<0<1. there holds

Byt O RY) = (3 RY), B (RY)),,

1.2 Main theorems

Let 1 < g<oo, —14+1/g<s<1/q, 1 <71 <oc,and Q € {RY,RY}. Let BY,(Q) denote
standard Besov spaces on a domain 2 € RY. Let

2 (Q) = Bt (Q) x By ()N

N) Bs+1 (RN) Bs+2 (Rd),

)= {(pov) € B (RY) x BE2(RY)Y | vlpey =0}, (12)
)

)

(
<M
I(f. 8
I(f &
In addition, we introduce the operator A corresponding to equations (1.1) which is defined by
setting

(@)l = 17l g1y + IElz: 00,
(

HDéT(Q ”fHBS+1 + Hg”Bg;Q(Q)

A(p,v) = (ydivv, —aAv — fVdivv +Vp) for (p,v) € D;,,(]R{ﬂ\r[). (1.3)
Using A, equations (1.1) are written as
O(p,u) + A(p,u) = (0,0) fort >0, (p,u)lt=0= (po,up) € H;jr(Rf) (1.4)

for (p,u) with
(pr ) € CO[(0, 00), 12, (RY) 1 CL((0, 00), H, (RY)) 1 CO((0, 00), DS, (RY)).
Our main results of this paper read as follows.

Theorem 1.3. Let 1 < g < oo, —1+1/qg<s<1/q, and 1 <r < co. Then, the operator A
generates a continuous analytic semigroup {T'(t)}1>0 on H27T(Rf).
Moreover, there exists a large o > 1 such that, for any v > ~vo and (f,g) € 7—[271(Rf),

oo o
/0 e TS 8)llps  wy)dt < ClI(f, )l , mry)-

To prove Theorem 1.3, we consider the following resolvent problem:
Ap+ydiva=f ian,
Au— aAu — gVdivu++1Vp=g in Rf, (1.5)
u=20 on aM ,

for X\ € A¢ . Here, A, is a subset of C defined as follows:

Y.={AeC\{0} | |arg\| <7 —¢€},
2 2 2
g 2 v
pr— >
K. {/\eC\(ReA+a+ﬁ+e> + (Im \) _(a +e) }
Ay =KNEN{AeC| A >w}.

Theorem 1.3 may be proved by real interpolation theorem with the help of the following theorem.



Theorem 1.4. Let 1 < g< oo, 1 <r<oo, -1+1/qg<s<1/q, and e € (0,7/2). Then, there
ezists a large constant v > 0 such that for every A € Ac, and (f,g) € H;}T(Rﬂ\_]), there exists a
unique solution (p,u) € Df .(RY) to (1.5) satisfying
A U)HH;T(Rf) + ”u”Bgﬁ(Rf) < C”(fvg)HHf],T(Rf)'
Moreover, let o be a small positive number such that —14+1/¢< s—o < s < s+o < 1/q. Then,
there exist uy, us € Bg}‘,Q(Rf)N such that u = w1 4+ uz and for any A € A, there hold
||u1HB;jﬂ2(Rﬁ) < C|/\|_§Hg||33f;0(]gf)v
—(1-2)

HaAU-lHB;ﬁ(Rﬁ) < O 2 ”gHB;;U(Rﬁ)
for any g € C (RN as well as

1(p, UQ)HD;T(]M) < C|)‘|_1||(fvg)||Hg,T(Rf);

10x(p, 112)”@;},"(1@% < CW_ZH(fag)”H;m(Rf)

for any (f,8) € H;,(RY).
Remark 1.1. The conditions 1 < ¢ < 00, 1 <r < oo and -1+ 1/g < s < 1/q assure that
Cg°(£2) is a dense subset of By .(€2) for Q € {RY,RY}. This fact is an important point for

our analysis in this paper. For a proof of this fact, refer to [9, pp.368-369], [10, p.132], and
[14, Theorems 2.9.3 and 2.10.3].

2 Solution formula

In this section, we shall derive solution formulas of equations (1.5). Insert the first equation into
the second equation in (1.5), we have the complex Lamé equations

Au—aAu—nVdivu=g—yA"'Vf inRY, u|aR§ = 0. (2.1)
Here, we have set
m=0+7A"
If we find a solution u of equations (2.1) and if we set p = A~}(f — ydivu), then p and u

are solutions of equations (1.5). Thus, in this section, we shall drive solution formulas of the
complex Lame equations

Au—aAu—nVdivu=g inRY, ulyay = 0. (2.2)

2.1 Whole space case

For e € (0,7/2) and X9 > 0 let A € ¥, be the resolvent parameter, where )¢ is assumed to
be sufficiently large if necessary. In this subsection, we derive the representation of the solution
formula for the following model problem in R¥:

Mu—aAu—nVdiva=g in R, (2.3)

where g € ngl(]RN)N, with 1 < ¢ < oo and —1+41/¢g < s < 1/q. Applying the divergence to
equation (2.3) yields

Adivu — (@ +ny)Adiva = divg in RY,
Applying Fourier transform and the Fourier inverse transform, we can define the solution oper-
ator So(\) of the resolvent problem in the whole space as follows:

80 | o] (€998
)‘+O‘|§|2] (OZ‘F/B))\-I-VZI O+ aléP)(p(N) + 1€2) | (2.4)

S"Ng:=u=r"!




2.2 Half space case

Let € € (0,7/2) and vy > 0. Let 9 > 0 be a large number such that X, + v C K. NX . N{X €
C | |A| > w}. In this subsection, we derive the solution formula for equations (2.2). To this
end, we extend g = (g1,---,gn) by even extension for j = 1,--- , N — 1 and odd extension for
j=N. We now set G := (¢7,---,9%_1,9% ), where

. g;(z) for xy > 0, o gj(x for xy > 0,
() = {97 Rl =2
gj(2', —zN) for xy < 0, —gj(2', —xnN) for zy < 0.

Let u be a solution of equations (2.2) and let w = u — S°(\)G, and then w should satisfy the
equations
AW — aAw —Vdivw =0 in RY, W|8R£ = —SO(A)G|8R§. (2.5)

In view of (2.4), we may have

| _G©) BT (€2 8G()
S‘NG =7 — F :
& AT a|e|2] @122 | Ot a0 + €D
Let w = (wy,...,wy), and we shall investigate the formula of the partial Fourier transform

F'lw;l(¢', xn) of w;. Applying the partial Fourier transform F’ to equations (2.3), we have the
ordinal differential equations in z variable, which reads as

A+ al¢ ) Flwi)(€, 2n) — adi Flw;](¢ 2n)
—mi&; (i - F'IWN( an) + OnF'lwn] (', 2n)) = 0, for 2 > 0,
A+ al€' ) Flun] (€, 2n) — a0} Flun)(€, zn)
—m\On (i - F'IW (¢ zn) + OnF [wn] (€, zn)) = 0, for zn > 0,
Fwl(€,0) = —FIS"(VGI(€,0).

Here, we have set i’ - F'[w'|(¢, zn) = Z;V:_ll i& F'w;] (&, zn).
To obtain F'[w;](¢,zn), first we derive the representation of F'[S°(A\)G](0). Applying
residue theorem in theory of one complex variable, we have the representation for h; for j =

1,...,N—1and hy = 0. According to [4, (4.9)], we have
Flwj](€,an) = hje B — "@%M(m)ig’ W, Flwn](€,an) = %M(m)ig’ s
where

—Axzn _ e—B:cN

A—-B

K=(a+m)A+aB, — My)="

and h; is the j-th component of F'[S°(A)G](¢’,0). Thus, we have

00 e 1
Pl on) = = [ Be o tmi e Flg dyy

® 2 By BA+Y? RN ik i&
_/0 B?e M(yn) allat AAT 2 Z:I A—i—JBABZ [Qk]—mf[gN])dyN

. N-1
—B(zn+yn) /8/\""7 1§58k F /
+A Be ((O&—i—ﬁ )\+"}/ zzl A—|—B AB?2 [gk](gvyN)dyN

(@)



o i&nn 1
+/0 B*M(zy)e BN ;{ ang Flg'l dyn

3 & BA+A? e S 7
_/0 B M )M =5 st AT ) ;; A+ By

€17
(A+ B)B3

g N S 2 S G W 4 ST
+ [ B Myt R 2 s p € o) da

e F gn]) dyn

K aB3
N-1

Fluy)(ay) = - /0 B M(ay)e P A L e Figldyy

F'lgx]

o) 3 A"?,\ /BA+72 |§/|2§k
+/0 M) MO e o 17 & A+ BYADS

P
(A+DB)B?

> o _BNATD\ BA+ 7 P ’fl‘ &k 2 !
- [ e BRI Y Gy pam” iy (26)

F'lgn]) dyn

3 Estimates of solution operators

3.1 Whole space case

In this subsection, we shall estimate the solution operator S°()\) defined in (2.4). To this end,
we use the Fourier multiplier theorem of Mihlin-Hérmander type [5,7]. Let m(§) be a complex-
valued function defined on R™ \ {0}. We say that m(¢) is a multiplier if it satisfies the multiplier
conditions:

|DEm(€)] < Calg| 71!

for any multi-index a € Név with some constant C, depending on . Then, the Fourier multiplier
operator with kernel function m(§) is defined by

1,1 = O mOFUNE] = oy [ mOFUNO e for £ € SBY),

Then, we have the following theorem called the Fourier multiplier theorem.

Theorem 3.1. Let 1 < g < oo and m(&) be a multiplier. Then, the Fourier multiplier T,, is an
L,(RY) bounded operator, that is Ty, is uniquely extended to an operator on L (RYN), which is
also written by T, and there exists a constant depending on q and N such that

N
1T fl L, my < C(MSTF]\%]HOa)HfHLq(RN) for [ € Ly(R™).

Here, [N/2] denotes the integer part of N/2.

The following theorem provide the estimate of the solution operator SY(\) of the problem in
RV,

Theorem 3.2. Let 1 < ¢< oo, 1 <r<oo, —1+1/g<s<1/q, and e € (0,7/2). Let S°(\)
be the operator defined in (2.4). Then, there exists a large constant g > 0 such that for any
A€ Xy and g € BS (RY), there hold

(A A2V, VQ)SO()‘)g”Bg’T(RN) < Cllgllss, &y
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(A, >\1/2V7Vz)aASO(A)gHBg,T(RN) < C|>‘|_1HgHBg7T(RN)-

Moreover, let o > 0 be a small number such that —14+1/qg < s—o0 <s < s+o < 1/q. Then,
there exist a large number v1 > 7o and two operators TY(\) and TS (\) which are holomorphic

on A¢~, such that S°(\) = T2(N\) + T2 (A) and for any g € CP(RY) and X\ € A, there hold

12V, VT Nel; @v) < CIAL Il oo @y,
IAY2V, V)T (Nl By, mvy < CW*(P%)\\%HB;;U(RN)

as well as for any A € A, and g € B;I(RN), there hold

IOY29, V)T Vel 5, gy < A lglls; g
H(/\I/Q,V2)3A7—20()\)gHBgm(RN) < C’/\F(k%)”gHB;T(RN)-

3.2 Half space case

Let S(\) = (S?()),...,S%(N)) be the operator solution operator corresponding to equations
(2.5) defined by

SH(Ng =w;
for J =1,..., N, where the partial Fourier transform F'[w ]| of w; are defined by (2.6). In this
section, we shall estimate Sf}()\). Namely, we shall prove the following theorem.

Theorem 3.3. Let 1 < g < o0, 1 <r <oo, —1+1/g<s<1/q, e € (0,7/2) and Ny > 0.
Then, for any A € A, and g € B;’,,,(Rf), there hold
[N, V)8 Nl ) < Clglsg o)
[ A2V, V2)05S" Vgl g, ey < O gl ay- (31)
Moreover, let o > 0 be a small number such that —1+1/¢ < s—o0 < s < s+o <1/q. Then,
there exist a large number \g > 0 and two operators TP(\) and T3 (\) which are holomorphic on
Ac )y, such that SP(N) = TP(A) + T2 (N) and for any g € C§(RY)N, there hold
I AY29, VAT Vgl 55, ) < CIN™2lgllpste gy
1A, X297, V)00 TR (A glls ®y) < C|)\|_(1_%)Hg||33;”(Rf):
I\ A2V, V)T

)

)
/\)g”Bgm(Rf) < C‘M_l”gHBgm(Rﬁ)v

1A A2V, V)0 TS (A)

(
(A g”Bgm(Rf) < CW_Q”gHB;,(Rﬁ)' (3:2)
Proof. To prove Theorem 3.3, the argument based on interpolation theory plays an important
role, see Shibata [11]. Rewrite S?(\) as

N
SNg =Y THNeg+ Ve,

=1

where 7;(\)g are enssential parts of the solution formula. On the other hand, 7;(\)g are the
terms of the forms which contain A~!, which decay fast enough. In this paper, we focus on one
term of 7;(\)g, which is

1

ThNg, = [ 7 (B mn o F o)) ()



and derive the follwing estimate:

H/\’lel()‘)ngBgJ(Rf) < CHQJHB;},A(Rf) (3.3)
with the aid of the real interpolation. To do this, we first prove

H)"lel()‘)ngH(}(Rﬁ) < CHQJHH;(JM) (3.4)

and, in this paper, we especially estimate H)@N’lel()\)ngLq(Rﬁ). Since we can assume g €

C°(RY) by Remark 1.1, from the integration by parts, we have

INATH(N) gy = Fo'!

)\ oo
= /O 35(& yn)e PN (=B)e P dyN] («")

A

_ 1|7
=7 aB

§l

/Ooo 9 (& yn)e PN oy (e PYN) dyN] (z)

_ _ 1
= ‘Fé’

A 0 _— —Ban —
@/o Ong; (& yn)e Brne Bun dyN] (")

_ _ 1
= _/—-'5,

A 0 _—
—2/ Ong; (€, yn)Be Blontun) dyN] (')
OéB 0

To show the estimate (3.3), we need the following propostition.

Proposition 3.4. Let 1 < ¢ < o0, e € (0,7/2), Ao > 0, and X € A.,. Suppose that my € M.
Define the integral operators L;, i =1,--- 6, by the formula:

LS = [ 7 [mo € B M) MOm) FE€ )] () d.

LS = [ 7 [ ) B Ml )e 1 F(E )] () .
LiVf = [ 7! [moOn OB Mz )e P )] () .
LS = [ 7! [mon ) B A M) (€' )] () du,
Lsf = [ 7! [man€)BRe B M Um0 () .

Le(A\)f = /Ooo Fet :m0(/\afl)Be_JxNe_Qny(fl;yN)] (2') dyn,

respectively, where (J, Q) stands for an element of {(A, A), (A, B), (B, A), (B, B)} in the formula
of Ls. Then for every f € Ly(RY), it holds

HLZ(A)fHLq(]Rf) < CQHfHLq(]Rf) (Z = 17273747576)'

Proposition 3.5. [12, A.3 p.271]. Let 1 < q < oo. Define the integral operator G by the

formula: )
[ SN
Gf(zn) —/0 e~ dyn

Then, for every f € Lq(0,00) there exists a constant A, such that

IGfllL,(0.00)) < Agll FllLy((0,00))-
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By Theorem 3.1 and Propostiion 3.4, we deduce

> |Ong; (-, yn) I, (V-1
, A RN-1)
HaN)\Tn()‘)gj”Lq(Rf) <C H/O Ty + qu Ao

L4(0,00)
< Cllong;ll L, @yy-

Hence, we have (3.4). By duality argument, we have
INTEL(A )9ill -y @y < Cllgill- 1wy
By interpolation, for —1 + 1/q < s < 1/q, we deduce that
b , .
H/\’Tll(/\)gJHB;#l(Rﬁ) < CHQJHB;J(Rf)'

Other terms of T;(\)g and T};(\)g can be estimated in the similiar way. Moreover, we can
derive (3.1)- (3.2) by applying the the same method as above. This completes the proof of
Theorem 3.3. O

4 Proof of Main Results

In this section, we first construct solution operators of equations:
A +ydiva=f  inRY,
Au— aAu — Vdivu++9Vp=g in Rf, (4.1)
u=20 on 8Rf .

First, from the first equation in (4.1), we set p = A™1(f — vdivu). Inserting this formula into
the second equation in (4.1), we have the complex Lamé equation:

Au—aAu—mVdivu=g—~yA"'Vf in Rf, u|aR§ =0. (4.2)
From Theorems 3.2 and 3.3, we have
u=38"M)(g—A"'Vf) - SN (g - N'VS).
Thus, defining p by
p=A"f —vdiva) = AT = AT V(S (V) (8 — ATV ) = S* (W) (g — ATV ),

we see that u and p are solutions of equations (4.1). In view of Theorems 3.2 and 3.3, we
decompose u as

u=T"Ng-T'(Ng+ Ty (Ng - T3 (\g — A ' SU NV f + A7 S (V) V.

Summing up, there exist solution operators S(\), St(\), S2(\) such that u = S(\)(f,g), p =
R(A)(f, Vg), and

)
( )(f 7g) =81(A)g+82( )(f &), (4.3)
) = A" — AT divS (Mg 4+ 42A 2 div SO (W) VS

— A HdivSb (Vg + +* A 2divS (V) V £
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We see easily that

S(A) € Hol (Ac . L(BSTHRY) x By (RY), Bit2(RY))),

S'(A) € Hol (A xy, £(BS, (RY), BiF2(RY))),

S%(\) € Hol (A, <BS+1<RN>><BS (RY), By (RY) x By 2(RY))),
R(A) € Hol (A pg, £(B; 1 (RY) x By (RY), Byt (RY))).

Moreover, by Theorems 3.2 and 3.3, we see the following theorem.

Theorem 4.1. Let 1 < g< oo, 1 <r<oo, -1+1/g<s<1/q, and e € (0,7/2). Then, ther
exists a large number Ao > 0 such that for any A € Ay, f € Bgﬁ;l(Rf), and g € B;r(RﬂY)N
there hold

||(/\7 /\1/2V7 VZ)S(A)(fv g) ||’H3,T(Rf) < C||(f7 g) ||Bgt1(Rf)ng’r(Rf)7
H(AlﬂV?V2)31()\)g”33,r(11§f) < C‘A’_%|’g“33¢“(Rf)’
|2V, )05 Vgl gy, @) < CA0 D gl o,
|’(>\1/2V7V2)52()\)(f7 g)”Bgm(Rf)ngm(Rf) < Cw_l” /8

(s @)l gt vy, (mY )
IA29, V2)rS2 (N (- @)y, w2y, ) < CIAIIIC,

(

(

HBSF(M)XB%(M)’
IR Sl gg1 @y < CIA|

g)
/,8) ||ng;1(M)ngm(M)7
ARl st vy < CIAIN(f. 8)

g3 @) x5, 3
Theorem 1.4 follows from Theorem 4.1 immediately.
Now, we consider an initial value problem:
O +~ydivU=0  inRY xRy,
U~ aAU - VdivU+VII =0  in RY x Ry,
U=0 ondRY xRy,
(IL, U) 4= = (IIp,Up)  in RY.

(4.4)

To formulate problem (4.4) in the semigroup setting, we introduce spaces H; , (Rﬂ\_] )s D;T(Rf )
and an operator A defined in (1.2) and (1.3), respectively. Then, as was seen in (1.4), equations
(4.4) are written as

Bt(H,U) + .A(H, U) = (O, O) for t > 0, (H, U)‘t:() = (Ho, Uo) € HZ,T'
And, the corresponding resolvent problem (4.1) is written as

Ap,u) + A(p,u) = (f, )

for (f,g) € H;,(RY) and (p,u) € D;, . (RY). From Theorem 4.1 it follows that the resolvent
operator (A+.4)"! exists for any A € Ay, for sufficient large Ag > 0. In fact, (A +.4)"1(f,g) =
(R(A),S(N)(f,g) for (f,g) € H;,. Thus, the resolvent estimate: [[A(A + A)_IH[;(H;T) <C
holds for any A € A¢y,-

From these observations, by theory of Cy analytic semigroup ([16]), there exists a Cy analytic
semigroup {7'(t)}+>0 associated with (4.4) and (II, U) = T'(¢)(Ilp, Up) is a unique solution of
(4.4), which satisfies the regularity condition:

(I, U) € C°([0, 00), #3,,) N1 C°((0, 00), D,) N C((0, 00), H3,,)
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as well as
lim ”(H(vt)vU(vt)) - (HovUO)HH;T = (070)

t—0

Finally, we shall show the following theorem about the maximal L; regularity of {1'(¢)}+>o0.
Obvisouly, combining the results about continuous analytic property mentioned above and the
following theorem completes the proof of Theorem 1.3.

Theorem 4.2. Let 1 < g< oo and =1+ 1/q < s < 1/q. Then, there exists v > 0 such that for
any (o, Uo) € H; y, there holds

A e (IOT ()T, Uo)les , + IIT(#) (o, Uo) s ) dt < [|(To, o)l -

In the sequel, we shall prove Theorem 4.2. We start with the following lemma.

Proposition 4.3. Let Xy and X1 be Banach spaces which arean interpolation couple, and Y be
another Banach space. Assume that 0 < og,01,0 < 1 satisfy 1 = (1 —0)(1 — o) + 0(1 + o1).
Let v>0. Fort>0let T(t): Y — Xo + X1 be a bounded linear operator such that

IT#) flly < Ce't™ | fllxy,  f € Xo,
IT@OfIly < Ct | fllx,,  f € Xa.
Then, there holds .
|7 emizny at < il xon,
with a constant C' > 0 independent of ~.

A Proof of Theorem 4.2. Let v > 0 be a large number such that ¥+~ C A.y,. Let I' be a
contour in C defined by I' = I'y UI'_ with

Ie={A=7ret9 | r € (0,00)}.

As was well-known in theory of Cy analytic semigroup (cf. [16]), we have

T(t)(Ty, Uy) = % /F+ (S(\), RO (I, Up) dA  for ¢ > 0.
Y

In order to show the L; integrability of T'(t), we use Theorem 4.1. According to the formulas in
(4.3), we divide T'(¢) into three parts as follows.

Ty (U, = % [ s'yuan (4.5)
g Y

T(t) (o, Uo) = % - S*(A) (1o, Ug) dA, (4.6)
vy

T5(t) (1o, Ug) = % - R(A) (1o, Up) dA. (4.7)

We have T'(t)(Ily, Ug) = (T5(t)(Io, Up), T1(t)Uo + T>(t) (o, Up)).
We first show that

/O T (Vo2 df < Ol U0l gs ). (4.8)
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To this end, in view of Proposition 4.3, we first prove that for every ¢ > 0 and Uy € C’go(Rf W
there hold
HTI (t)UOHB;ﬁQ(Rf) < CeVt—1t+3 HUOHB;jU(RfV (49)
HTl(t)UOHB;ﬁ(Rf) < Oewtt—1—§||U0\|B;30(R§). (4.10)
Notice that for A € T+, A = v+ 7reT (™9 and thus |eM| = eVtes(T—)t = gYe=rteose Gince

HSl(A)UHBSf(Rm < C|)‘|_%HUHB;T’(Rf) as follows from Theorem 4.1, using (4.5), for ¢ > 0 we
have

o0
172 () Uoll gs 12y < Cewt/o el dr([Uoll sty

[ee]
—1+¢ — —0/2
=Ce't +2/0 g~teosey=al deUOHBgﬁo(Rﬁ)y

which yields (4.9). To prove (4.10), by integration by parts we write

1

N0 = —5 =

/ eMONSH(\)Ug dA.
T+y
Since ”8>\Sl(/\)U0”B;j2(R§) < C‘)“_(l_%)HUO”BS;’(Rf) as follows from Theorem 4.1, we have

oo
IT2(8) U0l ez vy < O™ /0 et =D dr [ Uoll oo g

— ytp—1-% > —fcosep—1+2

=Ce"t 2 /0 e Y4 2 d¢ HUOHBSH"(M)’

which yields (4.10). Choosing § = 1/2 in Proposition 4.3 and using the fact that
(B33 (RY), Byy7 (RY))1/2.1 = By 1 (RY),

by Proposition 4.3, we have (4.8) for Uy € Cg°(RY)N. But, since Cg°(RY)Y is dense in
Bs (RY)N, the estimate (4.8) holds for any Uy € B;l(Rf)N.
We now show that

/0 e I Ta(®)(ho, Vo) | o5z dt < Cll(TTo, Vo)l sy 20 (4.11)

[e.e]
| e IO M0, V)0 < IR0 U)o sy oy
In fact, using Theorem 4.1 and |A| > Ao, we have

|’(>‘1/2v>VQ)SQ()‘)(fvg)HB;T(Rf) < CIAITHICS, g)HBg,tl(Rf)ng,T(RN)

+
—(1-¢ o
< O TP B @)t g )
IA2V, V)OS (N 8) 5, vy < CIN T2 I 8) g gy )
~(1+8) |y |~(1-%
<CON A 2)H(fvg)HB;jl(Rf)ngm(Rf)’

HR()‘)fHB;j;l(Rg) < C|)‘|_1H(f» g)Hngl(Rf)ngm(Rﬁ)

—(1-¢ _ga
<O TP INE N @) g g
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IOXRONS | gy < OIS @) g ey g, ey
—(142),y —(1—¢2
<ON Y 2)H(fag)”ng;l(M)ng,r(M)

for any A € ¥¢ + v and (f,g) € H; ;. In view of (4.6) and (4.7), employing the same argument
as in the proof of (4.9) and (4.10), we have

I72(t) (Lo, Uo) | o2y < CAg 2™t~ 5 | (T, Uo) |34z,
—(1+% _1_¢<

I75(8) (Mo, Vo)l gaszayy < CAg 175 (TTo, Uo) e,

175(#) (Mo, Uo)ll o1 ) < Cg 27155 |(T0o, Ug) s,

—(1+3) 1<
“T3(t)(HO’UO)“B;j1(Rf) < C>\O 2/ vty—1-3 H(H07U0)HH¢SJ,1'

Thus, using Proposition 4.3 and noting that (H ,H; 1)1/21 = Hy 1 = B;J[l (RY) x Bg,(RY),
we have (4.11). This completes the proof of Theorem 4.2.
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