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Abstract

From the viewpoint of large deviation, the Bahadur efficiency based on the information
inequality for the tail probability of estimators is well known in the asymptotic theory of
estimation. On the other hand, the large deviation efficiency up to the second order was
introduced in Akahira (2006, 2010) from a different viewpoint from the Bahadur efficiency.
In this article, from the latter viewpoint, the lower bound for the large deviation probability
for asymptotically median unbiased estimators is obtained for flattened distributions in a
middle part, which do not belong to an exponential family. The influence of the flat part of
distributions on the bound with its relation to the large deviation efliciency is investigated.

1 Introduction

The asymptotic efficiency of estimators up to the higher order has been studied under suitable
regularity conditions from the viewpoint of the concentration probability around the true param-
eter (see e.g., Akahira and Takeuchi 1981, 2003, Ghosh 1994, Pfanzagl and Wefelmeyer 1985).
Indeed, in such a case the Edgeworth expansion for estimators is useful, and the bias-adjusted
maximum likelihood estimator (MLE) is shown to be third order asymptotically efficient in some
class of estimators under the regularity conditions.

On the other hand, the large deviation efficiency of estimators is also considered up to the
second order (see Akahira, 2006, 2010). In such a case the saddlepoint approximation plays
an important role, and the MLE is shown to be second order large deviation efficient for an
exponential family of distributions. The spirits are near to the above higher order asymptotics.

Historically, the Bahadur efficiency is well known as a concept considered from the viewpoint

of large deviation. Indeed, for any consistent estimator 8, of an unknown real-valued parameter



0 and any € > 0, the tail probability
@ (8,6, ¢€) := Py, {|§n - 9| > &}

tends to zero as n — oco. Under suitable conditions it is shown that the rate of convergence is

exponential and has an asymptotic expansion of the form
A j c
a (Qn, 9,8) = e_nﬁ(Qn,G,E) (CO + a 4o ) ,
n

where 3 (6,,, 6, €) is positive and c¢;’s are constant. Here the constant j (6,, 6, €) is called an
exponential rate. Bahadur (1971) gave the upper bound for the exponential rate of consistent
estimators by use of the amount of Kullback-Leibler (K-L) information and showed that the MLE
attained the bound in the Laplace distribution case, which was called the Bahadur efficiency of
the MLE (see also Fu, 1973). Using the asymptotic expansion of the amount of K-L information,
the Bahadur type second order efficiency is also considered by Fu (1982).

In this article, from a different viewpoint from the Bahadur efficiency we give the lower bound
for the large deviation probability of asymptotically median unbiased estimators for flattened
normal and Laplace distributions in a middle part. We also investigate how the bound are affected

by the flat part of each distribution and consider the large deviation efficiency of estimators.
2 Definitions and the lower bound for the large deviation
probability for estimators

Suppose that Xi, X»,...,X,,... is a sequence of independent and identically distributed
(i.i.d.) random variables with a probability density function (p.d.f.) f(x;6) with respect to a
o -finite measure, where # € ® and © is an open interval in R!. Put X = (X;,...,X,). If an

estimator § = §(X) of @ satisfies
N 1 A 1
Py {0, <0} = 5 +o(), Py, {6, >0} = 5 +o()

as n — oo, then @, is said to be weakly asymptotically median unbiased (WAMU) for 6. Let A

be a class of the all wWAMU estimators of 6.

Definition If there exists % = §*(X) in A such that for any §, € A, any # € ©® and any a > 0

Pon{|6, - 6] > a} =Py, {|6; - 6] > a} {1 +0(1)}

=B,(a,0){1 +o(1)} (say)



as n — oo, then é; is said to be (first order) large deviation efficient (LDE). If there exists

6% = 6% (X) in A such that

. . Pﬁ,n {lé;_9| > a}
lim lim =1,
a—0n—o0 B, (a,0)

then 5; is said to be (first order) weakly large deviation efficient (WLDE).

It is clear that the LDE estimator is wLDE. Second order weakly large deviation efficiency
can be also defined in a similar way to Akahira (2006, 2010). In order to get the lower bound
B, (a, 0), we take the following approach introduced by Akahira (2006, 2010). First, we assume
that {x | f(x;0) > 0} is independent of §. Let 6y be any fixed in ® and @ > 0. Then we
consider a problem of testing the hypothesis H: 6 = 6y + a against the alternative K: 6 = 6,
where 6p + a € ©. Let ¢*(X) be the most powerful (MP) test of level 1/2+ 0(1) as n — oo and

8, be any wAMU estimator. Putting
Aén = {x | én(x) <6 +a} ,

we see that the indicator XA, (x) of A; is atest of the level 1/2 + o(1) as n — oo, because of

0, € A, where x = (xy,...,x,). Since

Egy(¢*) = Egy|xa,, | = Poyn {0 < 60 +a},

it follows that
Poyn {00 — 00 > a} > 1 - Eg)(¢") 2.1)

for large n. In order to obtain the lower bound, i.e., the right-hand side of (2.1), we need the power
function of the MP test ¢*. Now, it is seen from the fundamental lemma of Neyman-Pearson

that a test with rejection region of the form

Z (6o, a) = % Z Zi(60,a) > ¢ (2.2)
i=1

is MP, where
Zi(0,a) =log (f(Xi;0)/ f(Xi;0+a)) (i=1,...,n)

and c is a constant chosen such that the asymptotic level of the testis 1/2+0(1) as n — oco. Note
that Z1 (6o, a), . . ., Z,(8o, a) are i.i.d. Letting p(fo,a) = Egyra [Z1(60,a)] and o*(8y, a) =
Vé)0+a [21(90’ Cl)], we put

W, : i\

"~ 7 (00, a)

{Z(QO’ (l) - IJ(QO, a)} 5



where o (0g,a) = \o2(6y,a). Since the MP test with the rejection region (2.2) is of the

asymptotic level 1/2 + o(1), i.e.,

N
0-(90’ a)

as n — oo, by the central limit theorem we choose (6, a) as c. Since

P60+a,n {Wn < (C _#(QO’G))} = % +0(1)

E90 (¢*) = P@o,n {Z(HO’ Cl) > #(90’ Cl)} s

it follows from (2.1) that

Poon {0, — 60 > a} > Pg,n {Z(60,a) < p(6p,a)} (2.3)

for large n. In order to obtain the asymptotic expansion of the lower tail probability of Z(6y, a)
in (2.3), we use the saddlepoint approximation (see Jensen 1995, Barndorff-Nielsen and Cox

1989 and also Appendix mentioned later). Let

Mz, (09.0),60(t) = Eq, [exp{tZ1(60,a)}], Kz (0y.a),0,(t) =102 Mz, (65.a).6,(t) (2.4)

for all 7 in some open interval involving the origin, that is, they are the moment generating
function (m.g.f.) and the cumulant generating function (c.g.f.) of Z;(6o, a), respectively. Let

7(89, a) be a solution of 7 of the equation

K,Zl((-)o,a),(-)o (t) = /1(90, (l). (25)
Since
MZ1(9(),(1),9()+(1 (t) :E90+a [eXp {tZI (90’ (1)}] = Eb’o [eXp {(t - 1)21(003 (1)}]
=Mz, (60,a).60(t = 1), (2.6)

it follows from (2.4) that

K7, (60,0).00+a(t) = Kz, (89.a),00(t = 1), (2.7)

which implies that

/1(90’ d) = E90+a [Zl (90’ Cl)] = Klzl(go’a)’go.m(o) = I</Z1 (Qo,a),eo(_l)'

From (2.5) we have ¢ = 7(89, a) = —1, since Kgl(go 2 eo(t) > (. It is noted that

f(X1560 +a)

_ KL
T(X1200) =—1""(0p+a,bpy) (say), (2.8)

/1(90, Cl) = _E00+a log




where 7XL is called the Kullback-Leibler information amount. Note that (6o, a) < 0. From
(2.7) we have Ky, (=1) = a2(0o, a).

In a similar way to the above, we can derive a lower bound for the tail probabil-
ity Pg,{0,—-60<-a} for any §, € A. Indeed, we consider the indicator XA, with
A =A{x| G(x) > 6y — a} as a test of the level 1/2 + o(1) in the problem of testing hypothesis

H: 6 = 6y — a against the alternative K: 6 = 6y. Then we have for large n

Py n {én — b < —Cl} >1-Ey, ((Z;*) ,

where ¢* is the MP test of the level 1/2 + o(1), which implies

Pt‘}o,n {én - 90 < _a} = I - PG()JI {2(90’ _a) > ,U(GO, _a)} = Pﬁ(),l’l {2(907 _a) < :U(GO, _a)} .
(2.9)
Since 6y is arbitrary, from (2.3) and (2.9) and the saddlepoint approximation we have the

following results as 6 instead of 6.

Theorem For any wAMU estimator 8, of (€ ®) and any a(> 0) with 6 +a € O, it holds that

for large n

. 1 1
Py {0, —6>a}> Ze'ww’“) {Bo(/l) +0 ( )} (2.10)

n
where A = 1(0, a) = \no (6, a) and

Bo(1) = 22 {1 —®()) . @2.11)

The proof follows from (2.3) and (6.2) in Appendix, since Mz (94 0(=1) = 1 and
K 0060 = EglZ1(8,a)] = I%L(6,0 + a) > 0 by (2.4), (2.6) and (2.8). For the case a > 0
with 0 —a € ©, from (2.9) and (6.2) in Appendix, we also obtain a similar lower bound to (2.10)
for the tail probability Py, {8, — 6 < —a}.

Corollary For any wAMU estimator ,, of (€ ©) and any a(> 0) with 6 + a € O, it holds

that for large n
Poy{0,-6>a}

enu(0.a) / 2nno?(6, a)

>1+0 (1) (2.12)
n

The proof is straightforward from (2.10) and (2.11), since for large n

Sl



by Mills’ ratio, where (1) = f_/io ¢(t)dr with ¢ (1) = (1/@) /2.

Remark For any wAMU estimator 6, of §(e ®) and any a(> 0) with 6 — a € @ it holds that

for large n
Py, {0,—0 < —a 1
o {00 b o 1ho (—) . (2.14)
en(0-0) [\no2(6, —a) !

Let u = u(0,a), i = u(0,—-a), o = \o2(0,a) and & = \/o2(0,—a). For the large deviation
probability Py, {|8, — 6| > a} for 8, it follows from (2.12) and (2.14) that for any a(> 0) with
0+xaec0®

Py, {16, -0
oo {10~ 6] > a} >1+0(1), (2.15)

1 L.n L oni)l n
—e + —e'H
27711((" o )

for any a(> 0) satisfyingd +a €e ® and § —a ¢ ©
Py, {10, - 6| >
A (el a}21+0(1),

enH / ( 27rn0') n

and for any a(> 0) satisfying60 +a ¢ ®and§ —a € ©

Py, {|0, - 6| > a} N 1+0(l)
e"ﬁ/( 27m5') n

for large n. It is noted that for any wAMU estimator §,, of 6(€ ®) and any a(> 0) with f+a ¢ ©,

Py, {|9,1 - 9| > a} > 0. Here, (2.15) is also represented as

\/21_ (ée”“ + ée”ﬂ) (1 +0 (%)) (2.16)
mn

for large n and the right-hand side of (2.16) is the lower bound for the large deviation probability

Pg’n {|én - Hl > Cl} >

for wAMU estimators.

3 Flattened normal distribution in a middle part

Suppose that Xi, X», ..., X, .. . is a sequence of i.i.d. random variables with a p.d.f. f.(x —8)
with respect to the Lebesgue measure, where x € R! and # € ® = R!. Let & be any fixed
positive number. Further we assume that

cep(e) forl|x| <e,

fe(x) = (3.1)

cep(x) for|x| > &,



where ¢(x) = (1/\/5)6:‘)‘2/2 for x € R! with

1
" 2(ep(e) + 1 -D(e))
A distribution with the p.d.f. of (3.1) is called a flattened normal distribution fN[-g, €].

Ce

Note that the distribution with the p.d.f. f.(-) does not belong to an exponential family of

distributions. Put

Je(x = 0)
z2(6,a) = log —————. (3.2)
0=l -0
Let 0 < a < 2&. From (3.1) we have
—a(x—é’)+%2 for x <0 -—¢g,
—§+%(x—9—a)2 for 0 —e<x<60+a-c¢,
z2(6,a) =40 for 0+a—e<x<0+e, (3.3)
—%(96—9)2+‘92—2 for 0+e<x<O+a+e,
—a(x—9)+§ for 0+a+¢e<ux.

Let Z;(6,a) = log (fo(X; —0)/fe(Xi —0—a)) (i =1,2,...). From (3.3) we obtain for small

a>0

p(6, a)
=Eg4q [Z1(0,a)]

=Cg /9—8 {—a(x -0)+ %2; ¢(x —0—a)dx

(o)

/6+a—s{_8_2 1( ol )2} ( e )dx
+Cg - 2+2x a) t o(x a

O+a+e 1 &2 00 a2
+cs0(&) {—E(x—9)2+?}dx+cg/ {—a(x—9)+7} ¢(x —0—a)dx
O+¢ O+a+e
2

:—%+0(a3). (3.4)

We also have for small a > 0
Epia [212(9, a)] =a’+0 (a3) ,
which yields
02(6,a) = Vosa (Z1(8,a)) = a* + O (a3) . (3.5)
Then it follows from (3.4), (3.5) and Corollary that for any 8, € A and small @ with 0 < a < 2e,
Pg’n {én -0 > Cl}
e—n{(@?/2)+0(a*)} /\/27111(512 +0(a?))

>1+0 (l) , (3.6)

n



which yields A
Py, {|0, - 6| > a}

Vaen (@20} / Vrn(a? + 0(a3))

>1+0 (l) (3.7)

n

for large n, from (2.15). From (3.6) and (3.7) we have for any 0, € A

. . PG,n{én_9>a}
lim lim =1
a0 n—co e—n{(a2/2)+0(a3)}/\/27m(a2 +0(a3))

and A
Pon1|0n—6|>a
S o {l6x = 6] > a} 51 (3.8)
am0n— \Be-n{(@?/2)+0(@)} / Vrn(a® +0(a3))

It is noted that the denominator of the left-hand side of (3.8) is independent of €.
Next, letting ¥; = X; — 0 (i = 1,2, ...), we have as the m.g.f. of ¥}

My, (1) =E [e™] = / e fo(y)dy

_ce9(e)
¢

B 1 c.& ) 4
_1+(§+ 3 ¢(s))t +O(t)

(€ —e ™) + coe’ 2 {2 - D(e+1) — (e — 1)}

2

14 +0 (t4) (3.9)

&
for small |¢|, where
2C8 3

-1
ﬁg:(1+ 38¢(8)) .

It is noted that 0 < 5. < 1. From (3.9) we also obtain as the c.g.f. of ¥}

[2

Ky, (1) = log My, (1) = 3 ~+ o(t
for small |¢]. If K)’/1 () = a, then
t:f::ﬁga+0(a3), (3.10)
which yields
o2 (0) = Ky (i) = ﬁig +0 (az) , G.11)
and from (3.9) and (3.10)
M} (7) = exp {%n (ﬁgaz +0 (a4))} . (3.12)



It is noted from (2.11) and (2.13) that

Bo(d) = % +0 (%) (3.13)

for large A (see also Jensen (1995, page 24)). Put X = (1/n) 2y Xi and Y = (1/n) 2 Y
Since y/n(X — 6) converges in law to the normal distribution N(0, 1/8,) as n — oo, under Py,
it is seen that X is WAMU for 6. Letting A = n|f|o(7), from (3.10) — (3.13) and (6.1) in

Appendix we have for small a(> 0)

Po,{X—-0>a}=Py,{Y >a}

M”" (} —nfa
_ My (De (1+0(2)

- V2rnio () n
e—n((ﬁga2/2)+0(a4)) 1 0 1 314
- \2rBena (1+0 (a?)) ( * (;)) G149
asn — oo,
Letting Kl’,1 (t) = —a, we have
t=7:=—Bea+0 (a3), (3.15)
which yields
208\ _ M N _ i 2
) = K () = - +0(a ) (3.16)
and from (3.9) and (3.15)
R 1
M} (i) = exp {En (,Bgaz +0 (a4))} . (.17

Letting A = vnlf|o(f), from (3.13), (3.15) — (3.17) and (6.2) in Appendix we have for small
a(>0)

~n((Bsa?/2)+0(a*
Pon{X-0<-a} =Py, {¥ <-a} = e (20t )))) (1+0(%)) (3.18)

\2rBena (1+ O (a?

as n — oo, Then it follows from (3.14) and (3.18) that for small a(> 0)

V2e((Bea’ /240 (a*)) Lioll
\/Wa(l+0(a2))( * (_))

Po,{IX-6|>a}= (3.19)

n

as n — oo, By (3.8) and (3.19) we have

o P, {IX - 0] > a) ( (1))
lim lim ol
a—0n—0co ﬁe—n{(02/2)+0(a3)}/\/7m (a?+0 (a¥)) "

:Lllii%nhf«}o \/,13_3(1 +0(a)) (1 +0 (%)) exp {n (1_Tﬁ‘ga2 +0 (aS))} = oo,




since B, < 1. Hence it is seen from (3.8) and (3.19) that X is not wLDE. If X, X5,..., X,, ...
is a sequence of i.i.d. random variables according to the normal distribution N(6, 1), then X is
LDE (see Akahira, 2006, 2010).

Next we consider the sample median. Let 0 < a < & and X(j), ..., X(,) denote the order
statistics of i.i.d. random variables X1, ..., X, according to fN[-¢g, ], i.e., X(1) < -+ < X(p).

Assume that n = 2k — 1 for k = 1,2, .. .. Then the sample median is given by X(y). Letting
1
p:=P{X| >a}= 3" acgsp(e), (3.20)

and S, = #{i | X; > a}, i.e., the number of i satisfying X; > a, we see that S, has a binomial
distribution with parameters n and p. Using the approximation (2.4.11) of Jensen (1995, page

43), we obtain

1 k
Pon {X(k) -0 > a} = Pon {X(k) > Cl} =Py, {;Sa > ;}

__ v ! Bo(1)+0 (2 (3.21)
‘1 i ( i )Sgn(ﬁ—p) e/ gn=k(1/2) |70 n ‘
P4
asn — oo, whereq=1—-p,p=k/n,§g=1-p and by (3.13)
2 1 1
Bo() =" {1 -d(1)} = —+0 (—) (1 > o) (3.22)
V2r 2
with
_ Pa| =
A =+n|log A—‘ 2z (3.23)
gp
(see also Akahira 2006). Since p > p and
1 1
=[5 +0 (5 ))
it follows from (3.23) that
A1=+n (2acg¢(8) + O(az)) . (3.24)

From (3.21) — (3.24) we have

i gl ell) o
Pou X =6 > a} = G570 m(p) J o) 6

Since

A

lo Bkgn_k—_ (ﬁ_—p)z 3\ _ _ 222 3
g(ﬁ) (q) = n{ Ty +0(a )}— n{2a68¢ (8)+0(a)},

ﬁ;qp = dacyp(g) + O (az) ,

10



it follows from (3.25) that

V2rn {2acg¢1(s) +0 (a?)} [eXp {_n (2a2c§¢2(8) to (a3)) H

o)

Letting X! = -X; (i = 1,2, ...), we have

Py {Xuy—-6>a} =

Pon { X — 0 < —a} = Py, {~X) > a} = Py, {X(’k) > a},

hence in a similar way to the above it is seen that Py, {X(k) -60< —a} is also given by the

right-hand side of (3.26). This yields

2 Poy {|Xv — 6] > a} _1+0 (l) (3.27)
e (@10} [ Vo ace(e)(1+0(a)) "
Since 2c, < 1/¢(&) for & > 0, it follows from (3.7) and (3.27) that
P, -
lim lim oo P~ 0] > o} (1+0 (—))
O el @0} | e (@20 () "
o 1 a? 22 3 !
=t fim 575 [ {1 (5 (1 -4ci@) 0 (@) | a0 (140 (7))
. (3.28)

On the other hand, since the limiting distribution of v (X() — @) is known to be normal with
mean 0 and variance 1/ (4c§¢2(s)), X(x) 1s seen to be WAMU for 6. Hence it is seen from (3.28)
that X(y) is not wLDE.

In order to compare X and X(ky in terms of the large deviation probability, we obtain

Py {|X-6| > a}

lim lim
a=0n=% Py, {|Xa) = 6] > a}
-ty o 2 - 0] 0 o) | ot
0 (3.29)

for both of small and large &, that is, X has asymptotically smaller large deviation probability
than X for such an ¢.
Next, we consider the case when & = 2a. Since ¢z, = 140 (@), itfollows that 85, = 1+0 (a?),
which yields
Py, {|X - 6| > a}

lim lim > S =1 (3.30)
a—0 n—oo \/ze—n{(a /2)+0(a~)}/ {W (a +0 (a3))}

11



from (3.19). Then it is seen from (3.8) that X is wLDE, which is consistent with the result in
the normal case N(6, 1) (see Akahira, 2006). But, it is seen from (3.29) and (3.30) that Xy is
not wLDE, since

2
_ 2 42 —-1_Z 2
1-43,4°(2a) = 1= =40 (a ) >0

for sufficiently small a.
4 Flattened Laplace distribution in a middle part

Suppose that Xi, X», ..., X, .. . is a sequence of i.i.d. random variables with a p.d.f. f;(x —8)
with respect to the Lebesgue measure, where x € R! and # € ® = R!. Let & be any fixed

positive number. Further we assume that

c.e”®  for|x| <e,
fe(x) = 4.1)

cee K for |x| > &,

where
.

_ c
T et 1)

A distribution with the p.d.f. of (4.1) is called a flattened Laplace distribution fL[—¢, &].
Let z(6, a) be defined by (3.2) and 0 < a < 2¢. From (4.1) we have

a forx <0 -e,

—x+60+a—-—-¢ forf—ec<x<6+a-c¢,

z2(6,a) =40 for0+a—-—-ec<x<0+e¢,
—-x+0+e¢ forO0+e<x<bO+a+e,
—a for6+a+e¢e < x.

Let Z;(0,a) =log (fe(Xi —a)/fe(Xi =0 —a)) (i =1,2,...). In a similar way to the flattened

normal case, we obtain for small a(> 0)

1 , a 4
p(0,0) = Eora [21(6,0)] = 50— {—a +Z+0 (a )} 4.2)
and \
1
Egia [Z2(0,0)] = — {a2 - % +0 (a4)},
which yields
2 1 2 a’ 4
0(6,a) = Vara(Z1(6,0) = — {a* = = +0 (a ) . 4.3)



Then it follows from (4.2), (4.3) and Corollary that for any 0, € A

o Poy{0,-60>a}
lim lim
0o et [{a2/2e+1)}+0(a?) ]

[T () o))

and A
P 6,—0|>a
lim lim oo {1 26> o} >l (44
a0 e e [{a2/(e+1) 140 (a)] / {\/ﬂ_n ((a/\/e n 1) +0 (aZ))}
Next, letting ¥; = X; — 0 (i = 1,2, ...), we has as the m.g.f. of 1}
My, (1) =E [¢"'] = / e fo(y)dy = 1+

1 &l
2e+1)+e2+ 212 (t4) 4.5
» 2(8+1){(8+)+8+3} +0 (4.5)
for small |¢|, which yields

1 &
I(Y1 (t) = log MY1 (t) = m {2(8 + 1) + 82 + ?} tz +0 (14)
for small |¢]. If Kl’,1 (t) = a, then

n 1
fpe (e+1)a

3\ _ 3
WerD+e2+ @3 (“ ) =yea+0(a')  (say) (4.6)
which yields
200N _ (D i 2

o0) = Kf, () = - +0 («?) 4.7)
and from (4.5) and (4.6)

A 1

My (7) = exp {En (yga2 +0 (a4))} . (4.8)

Here, it follows from the central limit theorem that X is wAMU. In a similar way to the flattened

normal case, from (4.6) — (4.8) and (6.1) in Appendix we have for small a(> 0)

Py, {X -6 > a} = Py, {I_’ > a}

— W (1 +0 (l))

 V2mnio () "

er{oea o)) 1rol! 4.9
_W(aww)( + (2)) (4.9)

as n — oo. In a similar way to the derivation of (3.18), we also obtain for small a(> 0)

_ _ e—n{(yga2/2)+0(a4)} 1
Py {X—-0<-a} =Py, {Y <-a} = P ar0@) (1+ ( ))

(4.10)
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as n — oo, Then it follows from (4.9) and (4.10) that for small a(> 0)

V2e-{(rea®/2+0(a") } 1
1+0 |-
VTYeh (Cl +0 (613)) ( ( ))

Py, {|X-0|>a} = 4.11)

asn — oo. By (4.4) and (4.11) we have

lim lim Poa{|X - 0] > o}

a—0 n—c \/ie—n[{az/(2(8+1))}+0(a3)]/ {\/ﬁ((a/‘/m) +0 (az))}
:g%}}i_}ngo\/ﬁ(l+0(a)) (1+0 (%))exp [g {(gil —yg) >+ 0 (a3)}]

o, (4.12)

since y; < 1/(e + 1). Hence it is seen from (4.4) and (4.12) that X is not wLDE.
In a similar way to the previous section we consider the sample median. Let 0 < a < € and
X(1), - ., X(n) denote the order statistics of a random sample (X,...,X,), ie., X1y < - <

X(n). Assume thatn = 2k — 1 for k = 1,2, . ... Then the sample median is given by X(y). Since

PX|>a)e o9
= ay=—--
p ! 2 2e+1)

replacing c.¢(g) with 1/(2(e + 1)) in (3.20) we have from (3.27)
Py {[Xy - 6] > a} Cso (1)
V2 [exp {—n (2( T+ 0 (a3) )H / {Van (25 +0(a?))} n
and comparing it with the lower bound by (4.4) we obtain
o Pou {|Xw - 6] > a}
R
N [ewp {on (i + 0 (@) ] [ (v (5
2 3
=lim lim Ve +1(1+ O (a)) [exp{2( 1) (a +0(a ))}

a—0n—oo

(4.13)

o
[+ f3)

—co. (4.14)

On the other hand, since the limiting distribution of v/n(Xx) — 6) is known to be normal with
mean 0 and variance e /(4y2), X(x) is seen to be wAMU for 6. Hence it follows from (4.14)
that Xy is not wLDE.

In order to compare X and X(x) in terms of the large deviation probability, we obtain from
(4.11) and (4.13)

oo fore < gy,

Py {|X - 6| > a}
Iim lim
a=0n=% Py, (X 0] > a}

1 fore =g, (4.15)

0 fore > g,
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where the unique solution gy(= 0.4757) of the equation

§S3+282+8—1=0

for £ > 0. It is seen from (4.15) that for & < &9, X() has asymptotically smaller large deviation
probability than X, and for &€ > &y, X has asymptotically smaller large deviation probability
than X, and for £ = &9, X() has asymptotically same large deviation probability as X.

Next we consider the case when £ = 2a. From (4.4) we have for any 9, € A

P @n -0 >a
lim lim on {60~ 6] > a} > 1. 4.16)
a—0 n—eo \/ie‘"((az/z)+0(a3))/ {Vrn(a+0(a?)}
Choosing X(y) as 0, in (4.16), from (4.13) we see that the equality in (4.16) holds, i.e., X(x) is
wLDE, which is consistent with the result in the Laplace case with a p.d.f. f (x; 6) = (1/2)e R~

(—00 < X < 00500 < B < o) (see Akahira 2006). Letting € = 2a < &g, from (4.15) we see that

. P {|x-6|>a}
Iim lim =
a=0n=e Py {|X () — 0] > a}

which implies that X is not wLDE.

5 Concluding remarks

For flattened distributions in [—&, €] which do not belong to an exponential family, the bound
for the large deviation probability of wAMU estimators is obtained, and its comparisons with
the sample mean and sample median are also done. Indeed, in the flattened normal case
fN(6 — &,  + ), the sample mean X is seen to be asymptotically better than the sample median
X(x) for both of small and large &, in the sense of the large deviation probability. In the case
when & = 2a, X is shown to be wLDE, which is the same result as in the normal case N(4, 1),
but X1 is not seen to be wLDE. In the flattened Laplace case fL[6 — €, 0 + €], X(x) is seen to
be asymptotically better than X for smaller &, but X(4) is done to be asymptotically worse than
X for bigger &, in the sense of the large deviation probability. In the case when & = 24, X(x)
is shown to be wLDE, which is the same result as in the Laplace case, but X is not seen to be

wLDE.
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6 Appendix

We consider the classical saddlepoint approximation. Suppose that Xi, X3,...,X,,...1sa
sequence of i.i.d. random variables with a p.d.f. fy(x) w.r.t. a o-finite measure u. Let X be a

sample space of X;. Then the m.g.f. and c.g.f. of X, are given by

My, (0= £ [¢%] = [ e fin

and Ky, (1) = log My, (1), respectively, where t € J := {t | My, (t) < oo}. Letting

fi(x) =" fo(x)/Mx, (1), teJ,

we see that for each r € J, f;(x) is a p.d.f. (w.r.t. u). A set of distributions with p.d.f.’s f;(x)
generates an exponential family of distributions. The mean and variance of X; w.r.t. p.d.f. f;

are given by

d
p(t) :=E(X) = ale(t),
2 d?
o(1) :=Vi(Xy) = 3K (1),
respectively. Here, we consider only those values of x which there exists + = 7(x) such that
u(t) = x, and the upper tail probability P {X > x} of X = (1/n) ¥}"_, X;, where x > 1(0). Then
it is noted that ¢ > 0. When x < u(0), we can consider the lower tail probability P {X < x} by
replacing X; by —X; foreachi = 1,2, ... and note that r < 0.

The approximation formula to the upper tail probability for x > (0) is given by

_ My (D} e A 1
P{X >x}= N {Bo(/l) +0 (;)} : (6.1)

where o (1) = Vo 2(1), A = Vnfo (7) with 7 = 7(x), and

Bo(d) = V{1 - (1)}

(see Jensen 1995, Section 2.2). The approximation formula to the lower tail probability for

x < u(0) is also given by

_ 3 {]\4}(1 (f)}n g ix R 1
P{X <x}= NTHED {Bo(/l) +0 (;)} (6.2)

where A = vn|f|o (7).
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