The first homology of IA_n with coefficients in spaces of Jacobi diagrams

Mai Katada Faculty of Mathematics, Kyushu University

1 Introduction

The IA-automorphism group IA_n of the free group F_n of rank n is a normal subgroup of the automorphism group $Aut(F_n)$ of F_n . If n=2, then IA_2 is equal to the inner automorphism group $Inn(F_2)$ of F_2 and if $n \geq 3$, then $Inn(F_n)$ is a proper subgroup of IA_n . The group IA_n is defined in a way similar to the Torelli group of a closed surface or a surface with one boundary component. That is, IA_n is the kernel of the canonical map from $Aut(F_n)$ to the general linear group $GL(n,\mathbb{Z})$ induced by the abelianization map of F_n . Therefore, we have a short exact sequence of groups

$$1 \to \mathrm{IA}_n \to \mathrm{Aut}(F_n) \to \mathrm{GL}(n,\mathbb{Z}) \to 1.$$

It follows from this short exact sequence that the rational (co)homology of IA_n admits an action of $GL(n, \mathbb{Z})$. Since IA_n and the Torelli groups are defined in a similar way, some strategies of studying the (co)homology of the Torelli groups can be used to study the (co)homology of IA_n and vice versa.

Cohen-Pakianathan [3], Farb (unpublished) and Kawazumi [11] independently determined the first homology of IA_n by using the Johnson homomorphism for $Aut(F_n)$, and we have

$$H_1(\mathrm{IA}_n, \mathbb{Z}) \xrightarrow{\cong} \mathrm{Hom}(H_{\mathbb{Z}}, \bigwedge^2 H_{\mathbb{Z}}), \quad H_{\mathbb{Z}} = H_1(F_n, \mathbb{Z}).$$

In higher degrees, the rational (co)homology of IA_n has been studied by many authors [14, 15, 2, 4, 16, 7] and we have a conjectural structure of the whole rational cohomology of IA_n for sufficiently large n [5].

For any (right) $\operatorname{Aut}(F_n)$ -module M, the homology of IA_n with coefficients in M also admits a $\operatorname{GL}(n,\mathbb{Z})$ -module structure. To the best of our knowledge, however, the homology of IA_n with any non-trivial coefficients has not been computed.

The Jacobi diagrams are uni-trivalent graphs encoding the algebraic structures of Lie algebras and their representations. The space of Jacobi diagrams appears as the target space of the Kontsevich invariant, which is a universal finite type invariant for links and unifies all quantum invariants of links [13, 1]. Habiro and Massuyeau [6] extended the Kontsevich invariant to construct a functor from the category of bottom tangles in handlebodies to the category of Jacobi diagrams in handlebodies. By using the restriction

of this functor to the degree 0 part, the author constructed a functor A_d from the opposite category \mathbf{F}^{op} of the category \mathbf{F} of finitely generated free groups to the category of filtered vector spaces [8, 10]. By restricting the functor A_d to the automorphism group $\operatorname{Aut}_{\mathbf{F}^{\text{op}}}(n) \cong \operatorname{Aut}(F_n)^{\text{op}}$, we obtain a (right) action of $\operatorname{Aut}(F_n)$ on the space $A_d(n)$.

In this report, we will exhibit our recent computation of the first homology of IA_n with non-trivial coefficients in the space $A_2(n)$ of Jacobi diagrams of degree 2.

2 Preliminaries

2.1 The space $A_d(n)$ of Jacobi diagrams

A Jacobi diagram is a uni-trivalent graph such that each trivalent vertex is equipped with a cyclic order.

Let $n \geq 0$. A Jacobi diagram on n-component oriented arcs X_n is a Jacobi diagram such that each connected component has at least one univalent vertex and univalent vertices are embedded into the interior of X_n . Two Jacobi diagrams on X_n are regarded as the same if there is a homeomorphism between them whose restriction to the arc components is isotopic to the identity map. The degree of a Jacobi diagram is defined as half the number of its vertices.

Let $A_d(n)$ denote the vector space over $\mathbb Q$ spanned by Jacobi diagrams of degree d on X_n modulo the STU relation:

where the dotted lines represent a part of a Jacobi diagram and the solid lines represent a part of oriented arcs and where the trivalent vertex has the counter-clockwise order.

The vector space $A_d(n)$ admits a descending filtration of finite length

$$A_d(n) = A_{d,0}(n) \supset A_{d,1}(n) \supset A_{d,2}(n) \supset \cdots \supset A_{d,2d-2}(n) \supset A_{d,2d-1}(n) = 0,$$

where $A_{d,k}(n)$ is the subspace of $A_d(n)$ spanned by Jacobi diagrams of degree d with at least k trivalent vertices.

2.2 The action of $Aut(F_n)$ on $A_d(n)$

The author introduced an action of $\operatorname{Aut}(F_n)$ on $A_d(n)$ in [8] and studied the $\operatorname{Aut}(F_n)$ module structure of $A_d(n)$ in [8, 10]. The action is defined by using the composition of
morphisms of the category \mathbf{A} of Jacobi diagrams in handlebodies, which was introduced
in [6]. The objects of \mathbf{A} are non-negative integers and the hom-space from m to n is
the vector space spanned by (m,n)-Jacobi diagrams, which are Jacobi diagrams on X_n mapped into a handlebody of genus m in such a way that the endpoints of the arcs are
uniformly distributed on the bottom line and the i-th component goes from the 2i-th point
to the (2i-1)-st point, where we count the endpoints from left to right. An automorphism $f \in \operatorname{Aut}(F_n)$ is identified with an (n,n)-Jacobi diagram and the action of f on a Jacobi

diagram $u \in A_d(n)$ is defined as the composition of u and the corresponding diagram f in the category **A**. For example, the automorphism

$$f: F_3 \to F_3, \quad x_1 \mapsto x_1 x_2, \ x_2 \mapsto x_2, \ x_3 \mapsto x_3$$

is identified with

and the action of f on the Jacobi diagram $u = \bigcap$ is given by

$$u \cdot f = \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^$$

2.3 The $Aut(F_n)$ -module structure of $A_2(n)$

Here we recall the result in [8] on the $Aut(F_n)$ -module structure of $A_2(n)$.

Let $A'_2(n)$ and $A''_2(n)$ be the Aut (F_n) -submodules of $A_2(n)$ generated by the elements P' and P'', respectively, where

$$P' = \begin{bmatrix} A_1 & A_2 \\ Sym_4 \end{bmatrix} \in A_2(4), \quad \text{sym}_4 = \sum_{\sigma \in \mathfrak{S}_4} \sigma,$$

$$P'' = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \in A_2(4), \quad \text{alt}_2 = \sum_{\tau \in \mathfrak{S}_2} \operatorname{sgn}(\tau)\tau.$$

For a pair (λ, μ) of partitions of non-negative integers, let $V_{\lambda,\mu}$ denote the irreducible algebraic $GL(n, \mathbb{Z})$ -representation corresponding to (λ, μ) .

Theorem 2.1 ([8, Proposition 7.5 and Theorem 7.9]). For $n \geq 3$, we have

$$A_2(n) = A_2'(n) \oplus A_2''(n),$$

where $A'_2(n) \cong V_{0,4}$ is a simple $\operatorname{Aut}(F_n)$ -module, and where $A''_2(n)$ is an indecomposable $\operatorname{Aut}(F_n)$ -module with the unique composition series

$$A_2''(n) \supseteq A_{2,1}(n) \supseteq A_{2,2}(n) \supseteq 0,$$

whose composition factors are

$$A_2''(n)/A_{2,1}(n) \cong V_{0,2^2}, \quad A_{2,1}(n)/A_{2,2}(n) \cong V_{0,1^3}, \quad A_{2,2}(n) \cong V_{0,2}.$$

3 Main theorem

Here we will observe the computation of $H_1(IA_n, A_2(n))$.

By Theorem 2.1, we have

$$H_1(IA_n, A_2(n)) \cong H_1(IA_n, A_2'(n)) \oplus H_1(IA_n, A_2''(n)).$$

Since the action of $\operatorname{Aut}(F_n)$ on $A'_2(n)$ factors through $\operatorname{GL}(n,\mathbb{Z})$, which means that IA_n acts trivially on $A'_2(n)$, we have

$$H_1(\mathrm{IA}_n, A_2'(n)) \cong H_1(\mathrm{IA}_n, \mathbb{Q}) \otimes A_2'(n).$$

We can compute the irreducible decomposition of the tensor product of two algebraic $GL(n, \mathbb{Z})$ -representations by using the formula in [12], which is given by combining the Littlewood–Richardson rule. Then we have

$$H_{1}(\mathrm{IA}_{n}, \mathbb{Q}) \otimes A'_{2}(n) \cong (V_{0,1} \otimes V_{1^{2},0}) \otimes V_{0,4}$$

$$\cong \begin{cases} V_{1^{2},41} \oplus V_{1^{2},5} \oplus V_{1,4}^{\oplus 2} \oplus V_{1,31} \oplus V_{0,3} & n \geq 4 \\ V_{1^{2},5} \oplus V_{1,4}^{\oplus 2} \oplus V_{1,31} \oplus V_{0,3} & n = 3. \end{cases}$$

We also determined the irreducible decomposition of the first homology of IA_n with coefficients in $A_2''(n)$.

Theorem 3.1 ([9, Theorem 1.1]). We have

$$H_1(\mathrm{IA}_n, A_2''(n)) \cong \begin{cases} V_{1^2, 2^2 1} \oplus V_{1^2, 32} \oplus V_{1, 21^2} \oplus V_{1, 2^2}^{\oplus 2} \oplus V_{1, 31} \oplus V_{0, 21}^{\oplus 2} & n \ge 5 \\ V_{1^2, 3^2} \oplus V_{1, 21^2} \oplus V_{1, 2^2}^{\oplus 2} \oplus V_{1, 31} \oplus V_{0, 21}^{\oplus 2} & n = 4 \\ V_{1, 2^2} \oplus V_{1, 31} \oplus V_{0, 21}^{\oplus 2} & n = 3. \end{cases}$$

Outline of the proof. Use the long exact sequences of homology associated to the short exact sequences

$$0 \to A_{2,2}(n) \to A_{2,1}(n) \to A_{2,1}(n)/A_{2,2}(n) \to 0$$

and

$$0 \to A_{2,1}(n) \to A_2''(n) \to A_2''(n)/A_{2,1}(n) \to 0$$

and compute the image of the boundary homomorphisms. The case of n=3 needs more computation than the other cases.

We also computed the twisted first homology of IO_n , which is the analogue of IA_n to the outer automorphism group of F_n .

We have

$$H_1(IO_n, A_2(n)) \cong H_1(IO_n, A_2'(n)) \oplus H_1(IO_n, A_2''(n)),$$

where

$$H_1(\mathrm{IO}_n, A_2'(n)) \cong \begin{cases} V_{1^2,41} \oplus V_{1^2,5} \oplus V_{1,4} \oplus V_{1,31} & n \ge 4 \\ V_{1^2,5} \oplus V_{1,4} \oplus V_{1,31} & n = 3. \end{cases}$$

Theorem 3.2 ([9, Theorem 10.4]). We have

$$H_1(\mathrm{IO}_n, A_2''(n)) \cong \begin{cases} V_{1^2, 2^2 1} \oplus V_{1^2, 3^2} \oplus V_{1, 21^2} \oplus V_{1, 2^2} \oplus V_{1, 31} \oplus V_{0, 21} & n \ge 5 \\ V_{1^2, 3^2} \oplus V_{1, 21^2} \oplus V_{1, 2^2} \oplus V_{1, 31} \oplus V_{0, 21} & n = 4 \\ V_{1, 31} \oplus V_{0, 21} & n = 3. \end{cases}$$

Acknowledgements

The author was supported in part by JSPS KAKENHI Grant Number JP24K16916.

References

- [1] Dror Bar-Natan. Vassiliev homotopy string link invariants. J. Knot Theory Ramifications, 4(1):13–32, 1995.
- [2] Mladen Bestvina, Kai-Uwe Bux, and Dan Margalit. Dimension of the Torelli group for $Out(F_n)$. Invent. Math., 170(1):1–32, 2007.
- [3] Fred Cohen and Jonathan Pakianathan. On automorphism groups of free groups, and their nilpotent quotients. in preparation.
- [4] Matthew Day and Andrew Putman. On the second homology group of the Torelli subgroup of $Aut(F_n)$. Geom. Topol., 21(5):2851–2896, 2017.
- [5] Kazuo Habiro and Mai Katada. On the stable cohomology of the (IA-)automorphism groups of free groups. arXiv:2211.13458v4, 2022.
- [6] Kazuo Habiro and Gwénaël Massuyeau. The Kontsevich integral for bottom tangles in handlebodies. *Quantum Topol.*, 12(4):593–703, 2021.
- [7] Mai Katada. Stable rational homology of the IA-automorphism groups of free groups. $arXiv:2207.00920v2,\ 2022.$
- [8] Mai Katada. Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I. Ann. Inst. Fourier (Grenoble), 73(4):1489–1532, 2023.
- [9] Mai Katada. The first homology of IA_n with coefficients in spaces of jacobi diagrams. arXiv:2312.10428, 2023.
- [10] Mai Katada. ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS ON SPACES OF JACOBI DIAGRAMS. II. J. Inst. Math. Jussieu, 23(1):1–69, 2024.
- [11] Nariya Kawazumi. Cohomological aspects of Magnus expansions. $arXiv:math/0505497,\ 2005.$
- [12] Kazuhiko Koike. On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters. *Adv. Math.*, 74(1):57–86, 1989.

- [13] Maxim Kontsevich. Vassiliev's knot invariants. In *I. M. Gel'fand Seminar*, volume 16 of *Adv. Soviet Math.*, pages 137–150. Amer. Math. Soc., Providence, RI, 1993.
- [14] Sava Krstić and James McCool. The non-finite presentability of $IA(F_3)$ and $GL_2(\mathbf{Z}[t, t^{-1}])$. Invent. Math., 129(3):595–606, 1997.
- [15] Alexandra Pettet. The Johnson homomorphism and the second cohomology of IA_n . Algebr. Geom. Topol., 5:725–740, 2005.
- [16] Takao Satoh. On the low-dimensional cohomology groups of the IA-automorphism group of the free group of rank three. *Proc. Edinb. Math. Soc.* (2), 64(2):338–363, 2021.

Faculty of Mathematics Kyushu University Fukuoka 819-0395 JAPAN

E-mail address: katada@math.kyushu-u.ac.jp

九州大学 数理学研究院 助教 片田 舞