STEPPING-UP SEMIPROPERNESS OF NAMBA FORCINGS

KENTA TSUKUURA

ABSTRACT. We show that if both of $\text{Nm}(\kappa, \lambda)$ and $\text{Nm}(\lambda^+)$ are semiproper then $\text{Nm}(\kappa, \lambda^+)$ is semiproper.

1. Introduction

In [3], we introduced Namba forcings $Nm(\kappa, \lambda)$ over $\mathcal{P}_{\kappa}\lambda$ and studied these. We also showed that for regular cardinals $\aleph_2 \leq \kappa \leq \lambda$, the following holds.

- (1) $\operatorname{Nm}(\kappa, \lambda)$ is semiproper if $\operatorname{Nm}(\kappa, 2^{\lambda^{<\kappa}})$ is semiproper.
- (2) $\operatorname{Nm}(\kappa, \lambda)$ forces that $\operatorname{cf}(\delta) = \omega$ for all $\delta \in [\kappa, \lambda] \cap \operatorname{Reg}$.

These properties and [2, Theorem 2.2 of Chapter XI] shows that $Nm(\kappa, \lambda)$ and $Nm(\lambda^+)$ are semiproper if $Nm(\kappa, \lambda^+)$ is semiproper and $2^{\lambda} = \lambda^+$.

In this paper, we show the converse of this as follows.

Theorem 1.1. Suppose that $\kappa \leq \lambda$ are regular cardinals greater than \aleph_2 . If both of $\operatorname{Nm}(\kappa, \lambda)$ and $\operatorname{Nm}(\lambda^+)$ are semiproper then $\operatorname{Nm}(\kappa, \lambda^+)$ is semiproper.

The structure of this paper is as follows. In Section 2, we recall the basic materials for Namba forcings. Section 3 is devoted to Theorem 1.1.

2. Preliminaries

We use [1] as a reference for set theory in general. In this paper, κ and λ denote regular cardinals greater than \aleph_2 unless otherwise stated. Reg is the class of regular cardinals.

A tree $p \subseteq [X]^{<\omega}$ is a set that is closed under the initial segment, that is, $s \in p$ and $l \subseteq s$ implies $l \in p$. By $l \subseteq s$, we mean that s end-extends l. Note that, when we consider a tree structure or an end-extension relation $l \subseteq s$, we assume that X has an ordered relation and l and s are finite increasing sequences in the sense of a fixed order. In this paper, X is λ or $\mathcal{P}_{\kappa}\lambda$. These have natural orders.

- 2.1. Namba forcings. Namba forcing $\operatorname{Nm}(\lambda)$ is the set of all Namba trees over λ . Namba tree is a tree $p \subseteq [\lambda]^{<\omega}$ with the following conditions:
 - (1) p has a trunk $\operatorname{tr}(p)$, that is, $\operatorname{tr}(p)$ is the maximal $t \in p$ such that $\forall s \in p (s \subseteq t \lor t \subseteq s)$.
 - (2) For all $s \in p$, if $s \supseteq \operatorname{tr}(p)$ then $\operatorname{Suc}(s) = \{\xi < \lambda \mid s \cap \langle \xi \rangle \in p\}$ is unbounded in λ

 $Nm(\lambda)$ is ordered by inclusion.

Namba forcing $\operatorname{Nm}(\kappa, \lambda)$ is the set of all Namba trees over $\mathcal{P}_{\kappa}\lambda$. Then Namba tree is a tree $p \subseteq [\mathcal{P}_{\kappa}\lambda]^{<\omega}$ with the following conditions:

 $^{2020\} Mathematics\ Subject\ Classification.\ 03E35,\ 03E55.$

Key words and phrases. Namba forcing, semiproper forcing.

- (1) p has a trunk $\operatorname{tr}(p)$, that is, $\operatorname{tr}(p)$ is the maximal $t \in p$ such that $\forall s \in p (s \subseteq t \lor t \subseteq s)$.
- (2) For all $s \in p$, if $s \supseteq \operatorname{tr}(p)$ then $\operatorname{Suc}(s) = \{a \in \mathcal{P}_{\kappa}\lambda \mid s^{\widehat{}}\langle a \rangle \in p\}$ is unbounded in $\mathcal{P}_{\kappa}\lambda$.

Here, $[\mathcal{P}_{\kappa}\lambda]^{\leq \omega}_{\subseteq}$ is the set of all \subseteq -increasing finite set of subsets of $\mathcal{P}_{\kappa}\lambda$. Nm (κ, λ) is ordered by inclusion.

2.2. **Galvin games.** For an ideal I over Z and $A \in I^+$, the Galvin game $\Im(I, A)$ is a game of length ω with two players as follows:

Let $\xi = \sup_n \xi_n$. II wins if $\bigcap_{n < \omega} F_n^{-1} \xi \in I^+$. $\Phi_{\kappa, \lambda}$ is the statement that claims Player II has a winning strategy for $\Im(J_{\kappa\lambda}^{\mathrm{bd}}, A)$ for all $A \in (J_{\kappa\lambda}^{\mathrm{bd}})^+$. Φ_{λ} is the statement that claims Player II has a winning strategy for $\Im(J_{\lambda}^{\mathrm{bd}}, A)$ for all $A \in (J_{\lambda}^{\mathrm{bd}})^+$. Here, $J_{\kappa\lambda}^{\mathrm{bd}}$ and $J_{\lambda}^{\mathrm{bd}}$ are bounded ideals over $\mathcal{P}_{\kappa\lambda}$ and λ , respectively. The importance is as follows.

Lemma 2.1 (Shelah). The following are equivalent.

- (1) Φ_{λ} .
- (2) $Nm(\lambda)$ is semiproper.

Lemma 2.2 is an analogie of Lemma 2.1.

Lemma 2.2. The following are equivalent.

- (1) $\Phi_{\kappa\lambda}$.
- (2) $Nm(\kappa, \lambda)$ is semiproper.

Proof. See [3].

3. Proof of Main Theorem

By Lemmas 2.1 and 2.2, for Theorem 1.1, it is enough to show

Lemma 3.1. $\Phi_{\kappa\lambda} \wedge \Phi_{\lambda^+} \to \Phi_{\kappa\lambda^+}$.

Proof. For $\lambda \leq \alpha < \lambda^+$, let $\varphi_\alpha : \alpha \to \lambda$ be a bijection. For an unbounded set $A \subseteq \mathcal{P}_\kappa \lambda^+$, $A^{\upharpoonright \alpha} = \{ \varphi_\alpha \text{``}(a \cap \alpha) \mid a \in A \}$ is unbounded in $\mathcal{P}_\kappa \lambda$. Let ws_α be Player II's winning strategy for $\Im(J_{\kappa\lambda}^\mathrm{bd}, A^{\upharpoonright \alpha})$ for each α . Let ws^* be Player II's winning strategy for $\Im(J_\lambda^\mathrm{bd}, \lambda)$.

For each $a \in A^{\uparrow \alpha}$, by the definition, there is a $b \in A$ such that $a = \varphi_{\alpha}$ " $(b \cap \alpha)$. We fix a such b as $b_{a,\alpha}$. For an $F : A \to \omega_1$, define $F^{\alpha} : A^{\uparrow \alpha} \to \omega_1$ by $F^{\uparrow \alpha}(a) = F(b_{a,\alpha})$.

Let us define a strategy of Player II for $\supseteq(J_{\kappa\lambda^+}^{\mathrm{bd}},A)$. Suppose that $F_0,...,F_n$ be Player I's partial play. Note that, for each $\alpha<\lambda^+$, Player II knows $\xi_{i,\alpha}=\mathrm{ws}_{\alpha}(F_0^{\uparrow\alpha},...,F_i^{\uparrow\alpha})$ for each $i\leq n$. Then $H_i(\alpha)=\xi_{i,\alpha}$ defines a mapping $H_i:\lambda^+\to\omega_1$. Let us instruct Player II to choose $\xi_n=\mathrm{ws}^*(H_0,...,H_n)$, so we define $\mathrm{ws}(F_0,...,F_n)=\xi_n$.

Suppose that Player I choosed $F_0, F_1, ...$ and Player II used ws. We claim that Player II wins. Let $\xi_{\infty} = \sup_i \xi_i$, here $\xi_n = \operatorname{ws}(F_0, ..., F_n)$. The goal is showing that $\bigcap_i F_i^{-1} \xi_{\infty}$ is unbounded.

For a $c \subseteq \mathcal{P}_{\kappa}\lambda^+$, there is an α such that $c \subseteq \alpha$ and $\alpha \in \bigcap_i H_i^{-1}\xi_{\infty}$. Note that $\bigcap_i H_i^{-1}\xi_{\infty}$ is unbounded subset of λ^+ since ws* is a winning strategy. So we have

$$\bigcap_{i} (F_{i}^{\uparrow \alpha})^{-1} (\sup_{i} \xi_{\alpha,i}) \subseteq \bigcap_{i} (F_{i}^{\uparrow \alpha})^{-1} \xi_{\infty}.$$

Since $\operatorname{ws}_{\alpha}$ is a winning strategy, these are unbounded subset of $\mathcal{P}_{\kappa}\lambda$. Note that $\bigcap_{i}(F_{i}^{\uparrow\alpha})^{-1}\xi_{\infty}\subseteq A^{\uparrow\alpha}$. Then there is an $a\in\bigcap_{i}(F_{i}^{\uparrow\alpha})^{-1}\xi_{\infty}$ such that φ_{α} " $c\subseteq a$. Then $\xi_{\infty}>F_{i}^{\uparrow\alpha}(a)=F_{i}(b_{a,\alpha})$. By the choice of $b_{a,\alpha}$, we have $b_{a,\alpha}\in A$ and $a=\varphi_{\alpha}$ " $(b_{a,\alpha}\cap\alpha)$. Therefore

$$\varphi_{\alpha}$$
 " $c = \varphi_{\alpha}$ " $(c \cap \alpha) \subseteq a = \varphi_{\alpha}$ " $(b_{a,\alpha} \cap \alpha)$.

In particular, $c \subseteq b_{a,\alpha} \in \bigcap_i F_i^{-1} \xi_{\infty}$, as desired.

In [3], we show that the "local" semiproperness of Namba forcings can be characterized in terms of semistationary reflection principles.

Theorem 3.2 (Tsukuura [3]). If $\alpha^{\omega} < \kappa$ for all $\alpha < \kappa$ then the following are equivalent.

- (1) $\operatorname{Nm}(\kappa, \lambda)$ preserves the semistationarity of any subset of $[\lambda]^{\omega}$.
- (2) $SSR([\lambda]^{\omega}, <\kappa)$.

 $SSR([\lambda]^{\omega}, <\kappa)$ is the statement that claims, for every semistationary subset $S \subseteq [\lambda]^{\omega}$, there is an $R \in \mathcal{P}_{\kappa}\lambda$ with the following properties:

- (1) $\omega_1 \subseteq R \cap \kappa \in \kappa$
- (2) $S \cap [R]^{\omega}$ is semistationary.

We call the local semiproperness of $Nm(\kappa, \lambda)$ (1) of Theorem 3.2. Using this, we can obtain an analogie of Theorem 1.1 for the local semiproperness.

Theorem 3.3. Suppose $\alpha^{\omega} < \kappa$ for all $\alpha < \kappa$. If $Nm(\kappa, \lambda)$ and $Nm(\lambda^+)$ are locally semiproper then $Nm(\kappa, \lambda^+)$ is locally semiproper.

Proof. By Theorem 3.2, $SSR([\lambda]^{\omega}, <\kappa)$ and $SSR([\lambda]^+, <\lambda^+)$ holds. It is easy to see that $SSR([\lambda^+]^{\omega}, <\kappa)$ holds. Again, by Theorem 3.2, $Nm(\kappa, \lambda^+)$ is locally semiproper.

References

- [1] Akihiro Kanamori. The higher infinite. Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003. Large cardinals in set theory from their beginnings.
- [2] Saharon Shelah. Proper and improper forcing. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, second edition, 1998.
- [3] Kenta Tsukuura. On semiproperness of Namba forcings and ideals in Prikry extensions. arXiv preprint arXiv:2311.11498, 2023.

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING, FACULTY OF SCIENCE AND ENGINEERING, HOSEI UNIVERSITY, 184-8584, JAPAN

 $Email\ address:$ kenta.tsukura.85@hosei.ac.jp