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ABSTRACT. In this survey paper, we will introduce the mapping class group and hyperelliptic
mapping class group of an oriented topological surface and the Birman exact sequence asso-
ciated to these groups. The mapping class group has been extensively studied in many areas
of mathematics such as topology, geometry, geometric group theory, algebraic geometry, and
number theory. The hyperelliptic mapping class group is a subgroup of the mapping class
group determined by a fixed hyperelliptic involution of the surface. The involution yields
symmetry on the surface, and the hyperelliptic mapping class group contains the information
of the symmetry. It is known that the Birman exact sequence for the mapping class group
does not split. In this notes, the analogous result for the hyperelliptic mapping class group
will be introduced.

1. INTRODUCTION

In this survey paper, we will introduce a result (Theorem 4.2) on the hyperelliptic mapping
class group and a key tool called the relative completion of a discrete group. The readers can
find the detail of the result and its complete proof in the author’s work [4].

Let Sy., be an oriented topological surface of genus g with n punctures. The mapping class
group I'g , of Sy, is the group of isotopy classes of orientation-preserving diffeomorphisms of
Sy n fixing the punctures pointwise. Let m1(Sg ) be the fundamental group of S, . Then there
is a short exact sequence

(1) 1= m(Sy) =2 Tg1 =Ty —1,

where S, := Sy and T'y := T’y 0. The sequence (1) is called the Birman exact sequence. It is
known that for g > 2, the sequence does not split. For example, see [1, Cor. 5.11]. Furthermore,
there is a short exact sequence for I'y ,,

(2) 1= m(Sgn) = Tgng1 = Tgn =1

It follows from [3, Cor. 2] that the sequence (2) does not split for g > 4 and n > 0.

Let o be a hyperelliptic involution of S;. The hyperelliptic mapping class group A, is the
centralizer of the isotopy class [o] in I'y. Let A, ,, be the fiber product Ay xp, I'y . Then there
is a short exact sequence

(3) 1= m(Sy) = Ag1 — Ay — 1.
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It follows from [4, Thm. 3] that the sequence (3) does not split for g > 3. In this paper, we will
briefly introduce an obstruction for the splitting of the sequence, which is constructed from a
pair of certain mapping class elements in A,.

2. TOPOLOGY OF Sy,

Let S; be a compact oriented topological surface of genus g. Let P be a subset of S,
consisting of n distinct points. Define S, as S; — P. It is an oriented topological surface of
genus g with n punctures. The fundamental group m1(Sg,,p) of Sy, with base point p is the
group of homotopy classes of loops in S, based at p. Changing the base point to another
point ¢ yields a natural isomorphism

Trl(Sg,nvp) = 7Tl(Sg,nv q),

which is unique up to a conjugation action by an element of 71(Sg,,p). Therefore, we will
omit the base point from the notation. Let a1,...,aq,51,...,08y be the standard generators
for m1(Sg) and ~1,. .., v, the homotopy classes of loops surrounding the n punctures once. It
has a minimal presentation given by

7T'l(Sg,n) = <a17~~'7ag»ﬁlv-~7ﬂg7717---»’Ynl[alvﬁl]"' [agvﬂg]’)/l o Yn = 1> .

For n > 0, it is a free group generated by 2g + n — 1 elements. By the Hurewicz theorem,
the natural map m1(Sg,) — Hi(Sgn,Z) induces an isomorphism from the abelianization of
71(Sg,n) to the homology group Hi(Sgn,Z). Denote the images of «; and 3; in H;(Sg,Z) by
a; and b for j =1,...,g. The abelianization H;(Sy,Z) is a free abelian group of rank 2g.

2.1. Symplectic group. The symplectic group Sp(2g;Z) is defined as
{M € GL(2¢; Z)|MTIM = J},

0 I,

where J = [—Ig 0

] and I, is the g-by-g identity matrix.

The group H := H;(Sy,Z) is equipped with the algebraic intersection paring ( , ). The
pairing { , ) is a non-degenerate bilinear alternating form, and H is a symplectic space of rank
2g with (, ). The elements aq,...,a4,b1,...,b, form a symplectic basis for H. Then there is
an isomorphism of the automorphism of H preserving (, ) with Sp(2g;Z):

Aut(H, (, ) = Sp(29; Z).

3. MAPPING CLASS GROUPS

Assume that 2g — 2 4+ n > 0. The mapping class group of Sy ,,, denoted by I'y ., is defined
as the group of isotopy classes of orientation-preserving diffeomorphisms of S, fixing the
punctures pointwise:

Ty = Diff " (Sy.n)/ ~,

where ~ denotes the isotopy relation. The group I'y ,, is independent of the choice of the subset
P by the classification of surfaces. When n = 0, we simply denote I'; o by I'y. By filling a
puncture, we obtain a surjection Forget : I'y n41 — I'g ., called the forgetful map. Hence, by
composing n forgetful maps, we obtain the surjection I'y ,, — I'y.
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3.1. Dehn twists. The group I'y is finitely generated by the mapping class elements called
the Dehn twists. Let d be a simple closed curve in S;. Consider a tubular neighborhood N of d
shown in Figure 1. A Dehn twist Ty about d is a left-twist map about d, fixing the boundary of
N. More precisely, let A be the cylinder oriented outward given by S* x [0, 1] with coordinates
s and t, respectively. Let T : A — A be the twisting map sending (s,t) — (s + 27t,t). We see
that 7" is an orientation-preserving diffeomorphism fixing the boundary of A pointwise. Choose
an orientation-preserving diffeomorphism ¢ : A — N. Define a map Ty : Sy — S, by sending

T _1 .f . . N
:E'_){@/;o oyp~Hzx) ifzisin N,

x otherwise.

The isotopy class of Ty does not depend on the choice of either N or 1, and furthermore it

N- TN
d
%

FIGURE 1. A Dehn twist

is independent of the choice of the simple curve d within its isotopy class. Thus, by abuse of
notation, Ty also denotes its isotopy class in T',.

A simple closed curve d in S, is said to be separating if the surface obtained by cutting S,
along d is disconnected. Otherwise, it is said to be nonseparating. When g = 1, Iy, is generated
by the Dehn twists about o; and 8; in the torus. For g > 2, the mapping class group I’y
is finitely generated by the isotopy classes of Dehn twists about 2g 4+ 1 nonseparating simple
closed curves in S, (see [1, Thm. 4.14]). Furthermore, it is also finitely presented [1, Thm. 5.3].

3.2. Symplectic representation of Ty ,. Each mapping class element [¢] in I'y induces an
automorphism ¢, : H — H, which is independent of the choice of the representative of the class.
The automorphism ¢, preserves the intersection pairing ( , ). Hence there is a representation

pg: Ty — Sp(2g;Z).

The homomorphism pg is surjective for g > 1 [1, Thm. 6.4]. By composing with the forgetful
map I'y , — I'y, we obtain a representation

Pgm : Lgn — Sp(2¢;Z).

This is called the symplectic representation of I' ,,.

3.3. Torelli groups. The Torelli group is defined as the kernel of the symplectic representation
Pgn: Tgn :=ker pg,, and there is an exact sequence

1= Tyn — Ty ™ Sp(2g;2) — 1.

It is an infinite-index subgroup of I'y ,,. Therefore, there is no reason to believe that it carries
the basic properties of I'y ,,.
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3.4. The Birman exact sequences. There is a natural injection Push : 71 (Sy) < I'y 1 called
the push map. It is defined as follows. Let p be a point in S,. Let d be a loop based at p.
Let N be a tubular neighborhood of d with boundary curves x and y. Then the map Push is
defined by sending the homotopy class [d] — TxTy_l. It is not an obvious fact, but the map is
injective. See the action of Push([d]) on 71(Sy) in Figure 2:

Pusﬁ( [d) ()

FIGURE 2. The point-pushing map Push

Combining with the surjection Forget : I'g; — I'y, we obtain the sequence
4) 1—=m(Sy) = Tg1 =Ty — 1.
This sequence is exact and it is called the Birman exact sequence. The sequence also extends
to I'y,, and there is the exact sequence

1= m(Sgn) = Tgnt1 = Tgn — 1.

Theorem 3.1 ([1, Cor. 5.11]). If g > 2 and n = 0, the Birman ezact sequence does not split.

Furthermore, when g > 4 and n > 0, it follows from the author’s work [3, Theorem 1] that
the Birman exact sequence does not split either. This result is the profinite analogue of the
Birman exact sequence obtained from the algebraic fundamental groups of the moduli of curves.
The obstructions for the splitting of the Birman exact sequences lie in the Torelli groups of the
mapping class groups.

4. HYPERELLIPTIC MAPPING CLASS GROUPS

We study a certain subgroup of the mapping class group that preserves symmetry on Sj.
This symmetry is produced by an orientation-preserving diffeomorphism o of order 2 of S,
fixing exactly 2g + 2 points. We call o a hyperelliptic involution of Sy and may visualize o as
in Figure 3.

FIGURE 3. A hyperelliptic involution of S, rotation by m

Fix a hyperelliptic involution o of S,.



Definition 4.1. We define the hyperelliptic mapping class group A, of S, as
Ag:= the centralizer of the isotopy class of ¢ in I'y.

We define the hyperelliptic mapping class group A, ,, as the fiber product of A, and Iy ,, over
Ly

Ag,n = Ag ng Fg,n:
where the surjection I'y ,, — I'g is the forgetful map and Ay — I'y is the natural inclusion.

4.1. Generators. A simple closed curve 7 is said to be symmetric if [o(v)] = [7]. The hyperel-
liptic mapping class group A, can be generated by the Dehn twists about the 2g+ 1 symmetric
nonseparating simple closed curves in Figure 4:

FIGURE 4. Dehn twists about symmetric nonseparating curves generating A,

4.2. The hyperelliptic Birman exact sequence. By pulling back the Birman exact se-
quence for T'y (4) along the natural inclusion A, < T'y, we obtain the exact sequence

(5) 1= m(Sq) = Ag1 — Ay — 1,

which makes the diagram commute:

1—>7T1(Sg) Ag71 Ag 1
1—>7T1(Sg) Fg,l Pg 1.

Theorem 4.2 ([4, Cor. 4]). If g > 3, the hyperelliptic Birman exact sequence (5) does not
split.

4.3. Hyperelliptic Torelli group. The obstruction for the splitting of the hyperelliptic Bir-
man exact sequence comes from the intersection of A, and Tj,.

Definition 4.3. The hyperelliptic Torelli group T'A is defined as
TAy = Ay NTy.

Although it is not known whether T'A, is finitely generated or not, we have the following
remarkable result by Brendle, Margalit, and Putman.

Theorem 4.4 (Brendle-Margalit-Putman). If ¢ > 2, then TA, is generated by Dehn twists
about symmetric separating curves.

Remark 4.5. When g = 2, any two simple separating curves intersect at least 4 times (see
Figure 5). On the other hand, when g > 3, there are disjoint symmetric separating curves as
in Figure 6, which produce commuting Dehn twists in T'A,.
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FIGURE 6. Symmetric separating curves in Sj

5. RELATIVE COMPLETION OF A,

Relative completion of a discrete group is a linearization. It is controlled by cohomology and
so computable to some extent.

Definition 5.1. The relative completion of A, with respect to p : Ay, — Spy,(Q) is an
extension of Sp,,(Q) by a prounipotent Q-group V, ,,:

TAg — Ay p
N
p
1 Von Dy SPyy(Q) ——1,

satisfying the following universal property. If G is a proalgebraic Q-group that is also an exten-
sion of Spy,(Q) by a prounipotent Q-group U such that p factors through G — Sp,,(Q) with
Zariski-dense image in G, then there exists a unique morphism ¢ : D, — G of proalgebraic
groups over QQ such that the diagram

Agn . Dyn
L

G Sp29 (Q)

comimutes.

By the Levi’s theorem, the exact sequence
1= Vyn—=Dgn— SpQQ(Q) —1

splits, and hence there is an isomorphism Dy ,, =V, , X Spy,(Q).
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5.1. The Key Exact Sequences of Completions. Let P be the unipotent completion of
m1(Sy) over Q. It is a prounipotent Q-group and there is the following commutative diagram:

1%771(5‘9) Ag71 Ag 1
} b7 &

1 P Dy, D, 1
|| y

1 P Vo1 Vg 1,

where the rows are exact. A splitting of Ay 1 — Ay induces that of Dy — D, by the universal
property, which by restricting to V, yields a section of V; 1 — V.

5.2. The Key Exact Sequence of Graded Lie Algebras. Let p be the Lie algebra of P and
vy,n the Lie algebra of V,,. These are pronilpotent Lie algebras in the category of the mixed
Hodge structures (MHSs), admitting weight filtrations Wep and Wb, ,,, satisfying the property
p=W_ipand vy, = W_ib,,, respectively. Let Gr¥ p and GrlV vy, be the associated graded
Lie algebras of p and v ,, respectively. The bottom exact sequence of the diagram in §5.1
induces the exact sequence of pronilpotent Lie algebras

0—=p—v51—05—0.
Since the functor GrY is exact in the category of MHSs, we have the exact sequence
0— Grf‘/p — Ger vy 1 — Grf‘/ vy, — 0.

Each graded quotient Gr}V Ogn = Wby n/Wy—1 is an Spy,(Q)-module, and a section of
D, 1 — D, induces an Sp-module graded Lie algebra section of Gry’ v,; — Gr)' v,.

6. AN OBSTRUCTION FOR THE HYPERELLIPTIC BIRMAN EXACT SEQUENCE

In this section, we will briefly introduce an idea of the proof of Theorem 4.2. The detailed
proof can be found in [4]. Let x be a section of the surjection Ay — A, By the universal
property of the relative completion, it induces a section & of the surjective morphism Dy 1 — D,,.
Furthermore, the section # yields an Sp-module graded Lie algebra section Grz of Gr?¥’ vg1 —
Gr¥ ny:

L]

VRN
1—>7T1(Sg) Ag@ Ag 1
R
= T~
1 P Dy Dy 1
Grz
VR
0—>Grfvp—>Gerng71—>Gerng—>0.

Therefore, if the bottom sequence does not admit such sections, then the top sequence does
not split.

Let p be a point in Sy fixed by the hyperelliptic involution o. Consider the two symmetric
separating simple closed curves S; and Sz bounding p in Figure 7. Let Ts, and Tg, be the
separating twists about S; and S, respectively. Since S; and Ss are disjoint, the Dehn twists
Ts, and Ts, commute. This commutativity plays a key role in producing an obstruction for the
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FIGURE 7. Two commuting separating Dehn twists

splitting of the hyperelliptic Birman exact sequence. In [2, §6], the obstruction obtained from
such two commuting Dehn twists is computed using a homomorphism called the hyperelliptic
Johnson homomorphism TA, — Hom(H, L3m(S,)/L*), where L*m(S,) is the lower central
series of m1(Sy).
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