On numerical semigroups generated by 5 elements whose quotients by 2 are non-symmetric ¹

神奈川工科大学 · 基礎 · 教養教育センター 米田 二良 Jiryo Komeda Center for Basic Education and Integrated Learning Kanagawa Institute of Technology

Abstract

For a numerical semigroup H we generalize the concept of a pseudo-Frobenius number, which forms the set $\overline{PF^*(H)}$. Let H be non-symmetric and it is generated by three elements. Then we classify the elements of $\overline{PF^*(H)}$ into three kinds, which are regular, quasi-regular and irregular. We will show that a numerical semigroup $\tilde{H} = 2H + \langle n, n+2l \rangle$, which is generated by 5 elements, is obtained by a ramification point of some double covering of a curve if n is a sufficiently large odd integer and $l \in \overline{PF^*(H)}$ is regular.

1 Terminologies and introduction

Let \mathbb{N}_0 be the additive monoid of non-negative integers. A submonoid H of \mathbb{N}_0 is called a *numerical semigroup* if its complement $\mathbb{N}_0 \backslash H$ is finite. The cardinality of $\mathbb{N}_0 \backslash H$ is called the *genus* of H, denoted by g(H). In this paper H always stands for a numerical semigroup. We set

$$c(H) = \min\{c \in \mathbb{N}_0 \mid c + \mathbb{N}_0 \subseteq H\},\$$

which is called the *conductor* of H. It is well-known that $c(H) \leq 2g(H)$. H is said to be *symmetric* if c(H) = 2g(H). We have $(c(H) - 1) + h \in H$ for any $h \in H$ with h > 0. The number c(H) - 1 is called the *Frobenius number* of H. An element $f \in \mathbb{N}_0 \setminus H$ is called a *pseudo-Frobenius number* of H if $f + h \in H$ for any $h \in H$ with h > 0. We denote by PF(H) the set of pseudo-Frobenius numbers. We denote by $PF^*(H)$ the set of pseudo-Frobenius numbers distinct from the Frobenius number. We define the set $\overline{PF^*(H)}$ containing $PF^*(H)$ as follows:

$$\{l \in \mathbb{N}_0 \backslash H \mid c(H) - 1 - l \in \mathbb{N}_0 \backslash H\},\$$

which is called *the closure of* $PF^*(H)$. We know that the cardinality of $\overline{PF^*(H)}$ is 2g(H) - c(H).

We explain numerical semigroups in connection with algebraic curves. A *curve* means a projective non-singular irreducible algebraic curve over an algebraically closed field k of characteristic 0. For a pointed curve (C, P) we set

$$H(P) = \{ \alpha \in \mathbb{N}_0 \mid \exists f \in k(C) \text{ such that } (f)_{\infty} = \alpha P \},$$

¹This paper is an extended abstract and the details will be published (see [5])

where k(C) is the field of rational functions on C. Then H(P) is a numerical semigroup of genus g(C) where g(C) is the genus of C. H(P) is called the Weierstrass semigroup of P. A numerical semigroup H is said to be Weierstrass if there exists a pointed curve (C,P) with H(P) = H. A numerical semigroup H is said to be of double covering type, which is abbreviated to DC, if there exists a double covering of a curve with a ramification point P with H(P) = H. Hence, if H is DC, then it is Weierstrass. Let d_2 be the map from the set \mathcal{H} of numerical semigroups to \mathcal{H} itself defined by

$$d_2(H) = \{h' \in \mathbb{N}_0 \mid 2h' \in H\},\$$

which is a numerical semigroup. Let $\pi: C \longrightarrow C'$ be a double covering of a curve with a ramification point P. Then we obtain $d_2(H(P)) = H(\pi(P))$.

2 Known Facts and Problem

Known Fact 1 (Classical). Any numerical semigroup generated by two elements is Weierstrass.

Known Fact 2 (Waldi [6]). Any numerical semigroup generated by three elements is Weierstrass.

Known Fact 3 (Buchweitz [1] (1980)). There exists a non-Weierstrass numerical semi-group H generated by nine elements.

Known Fact 4 ([3] (2013)). For any $l \ge 6$ there exists a non-Weierstrass numerical semigroup H generated by l elements.

Problem. Is every numerical semigroup *H* generated by 4 or 5 elements Weierstrass?

We are interested in the case where H is a numerical semigroup generated by 5 elements.

3 Numerical semigroups generated by 5 elements

Notation. For any non-negative integers a_1, a_2, \ldots, a_s we denote by $\langle a_1, a_2, \ldots, a_s \rangle$ the monoid generated by a_1, a_2, \ldots, a_s .

Fact ([3]). Let $l \ge 2$ and n be an odd integer with $n \ge 16l + 19$. We set

$$H = \langle 4, 6, 4l + 1, 4l + 3 \rangle.$$

Then $\tilde{H} = 2H + \langle n, n+2\cdot 2 \rangle$, which is generated by 6 elements, is non-Weierstrass. We note that $2 \in PF^*(H) = \{2, 4l-3\}$.

In this paper we consider the case where H is a non-symmetric numerical semigroup generated by 3 elements. First, let $l \in PF^*(H)$. Let n be a sufficiently large odd integer.

Then is the numerical semigroup $2H + \langle n, n + 2l \rangle$, which is generated by 5 elements, Weierstrass?

Fact (Fröberg-Gottlieb-Häggkvist [2]). Let H be a numerical semigroup which is not symmetric. If H is generated by three elements, then the set $PF^*(H)$ consists of only one element.

Fact ([4]). Let H be a numerical semigroup generated by three elements which is not symmetric. We set $PF^*(H) = \{t\}$ and c(H) = 2g(H) - r. Let n be an odd integer larger than 2g(H) + 2r. Then both $\tilde{H} = 2H + \langle n, n + 2t \rangle$ and $\tilde{H}^* = 2H + \langle n, n + 2(c(H) - 1 - t) \rangle$ are DC.

The above statement is Main Theorem in my RIM's talk on Feb. 2023.

Lemma. Let H be a numerical semigroup with $PF^*(H) = \{t\}$. We set c(H) = 2g(H) - r. Let $l \in \overline{PF^*(H)}$ and n be an odd integer $\geq c(H) + m(H) - 1$ where we set $m(H) = \min\{h \in H \mid h > 0\}$. In this case we obtain $g(2H + \langle n \rangle) = 2g(H) + \frac{n-1}{2}$. We set

$$g(2H + \langle n, n+2l \rangle) = 2g(H) + \frac{n-1}{2} - s.$$

Then we have the following:

- (i) $1 \le s \le r$.
- (ii) s = 1 if and only if l = t.
- (iii) s = r if and only if l = c(H) 1 t.

Definition A. Let the notations and the assumptions be as in the above Lemma. We set

$$\overline{PF^*(H)} = \{l_1 = t > l_2 > \dots > l_{r-1} > l_r = c(H) - 1 - t\}.$$

We note that for any $1 \le i \le r$ the equality $c(H) - 1 - l_i = l_{r+1-i}$ holds. We set

$$g(2H + \langle n, n + 2l_i \rangle) = 2g(H) + \frac{n-1}{2} - d(i),$$

where we call d(i) the d-number of l_i .

Lemma. Let the notations and the assumptions be as in the above Definition. Then we obtain

$$d(i) + d(r+1-i) \le r+1$$

for any $1 \le i \le r$.

Definition. Let the notations and the assumptions be as in Definition A.

- (i) l_i is said to be regular if d(i) + d(r+1-i) = r+1.
- (ii) l_i is said to be *quasi-regular* if d(i) + d(r+1-i) = r.
- (iii) l_i is said to be *irregular* if $d(i) + d(r+1-i) \le r-1$.

Example. Let $H = \langle 4, 4s + 1, 4(3s - 3) + 3 \rangle$ with $s \ge 3$. Then g(H) = 6s - 3 and c(H) = 12s - 12 = 2g(H) - 6. We have

$$\overline{PF^*(H)} = \{l_1 = 8s - 2, l_2 = 8s - 6, l_3 = 8s - 10, l_4 = 4s - 3, l_5 = 4s - 7, l_6 = 4s - 11\},$$

Then we have d(1) = 1, d(2) = 2, d(3) = 3, d(4) = 2, d(5) = 4 and d(6) = 6. Hence, l_1 and l_6 are regular, l_2 and l_5 are quasi-regular, and l_3 and l_4 are irregular.

Main Theorem A. Let the notations and the assumptions be as in Definition A. Let n be an odd integer larger than 2g(H) + 2r. Assume that H is Weierstrass. If l_i is regular, then both $2H + \langle n, n + 2l_i \rangle$ and $2H + \langle n, n + 2l_{r+1-i} \rangle$ are DC.

The Main Theorem of RIM's Talk on Feb. 2023 is derived from Main Theorem A.

Corollary. Let the notations and the assumptions be as in Theorem A. Then both $2H + \langle n, n+2t \rangle$ and $2H + \langle n, n+2(c(H)-1-t) \rangle$ are DC where $PF^*(H) = \{t\}$.

Proof. t and c(H)-1-t are regular.

qed

Proposition. Let H be a non-symmetric numerical semigroup generated by three elements. Assume that c(H) = 2g(H) - r with $1 \le r \le 3$. Then any $l \in \overline{PF^*(H)}$ is regular.

Proposition. Let H be a non-symmetric numerical semigroup with m(H) = 3 where we denote by m(H) the minimum positive integer in H. Assume that c(H) = 2g(H) - (2s + 1) with $s \ge 1$. Then any $l \in \overline{PF^*(H)}$ is regular.

Main Theorem B. Let the notations and the assumptions be as in Definition A. Let n be an odd integer larger than 2g(H) + 2r - 2. Assume that H is Weierstrass. If l_i is quasi-regular, then at least one of $2H + \langle n, n + 2l_i \rangle$ and $2H + \langle n, n + 2l_{r+1-i} \rangle$ is DC.

Example. Let $H = \langle 4, 8s+3, 24s+1 \rangle$. Then g(H) = 12s+1 and c(H) = 24s-2 = 2g(H)-4. We have $\overline{PF^*(H)} = \{l_1 = 16s+2, l_2 = 16s-2, l_3 = 8s-1, l_4 = 8s-5\}$ and d(1) = 1, d(2) = 2, d(3) = 2 and d(4) = 4. Hence, l_2 and l_3 are quasi-regular.

Main Theorem C. Let m be an even integer and u be an integer with $4 \le m < u$ and (m, u) = 1. Let s be a positive integer. We set

$$H = \left\langle m, u, (m-1)u - \frac{m(u - (2s+1))}{2} \right\rangle.$$

Assume that $\frac{m(u-(2s+1))}{2} > u$. Moreover, assume that $S(H) \ni iu$ for any $1 \le i \le m-2$ where $S(H) = \{s_i \mid i = 1, 2, \dots, m-1\}$ with $s_i = \min\{h \in H \mid h \equiv i \mod m\}$. Then any $l \in \overline{PF^*(H)}$ is regular. In this case, c(H) = 2g(H) - (2s+1). Moreover, we have $PF^*(H) = \{g(H) - s - 1 + sm\}$.

Corollary . Let $s \ge 2$. Let H be a non-symmetric numerical semigroup with c(H) = 2g(H) - (2s + 1) which is generated by three elements.

- (i) If m(H) = 4, then any $l \in PF^*(H)$ is regular.
- (ii) If m(H) = 6 and $s \equiv 0$ or $2 \mod 3$, then any $l \in \overline{PF^*(H)}$ is regular.

Remark. Let $H = \langle 6, 19, 29 \rangle$. Then we have the following:

- (i) m(H) = 6 and $c(H) = 2g(H) (2 \cdot 4 + 1)$. We note that $s = 4 \equiv 1 \mod 3$.
- (ii) Any $l \in \overline{PF^*(H)}$ except t and c(H) 1 t with $PF^*(H) = \{t\}$ is irregular.

Remark. Let H be a non-symmetric numerical semigroup generated by three elements. Assume that c(H) = 2g(H) - 4. Then any element of $\overline{PF^*(H)}$ is regular or quasi-regular.

Problem. Are there a numerical semigroup H with m(H)=4 and c(H)=2g(H)-6 generated by three elements and $l\in \overline{PF^*(H)}$ such that $2H+\langle n,n+2l\rangle$ is not Weierstrass for sufficiently large odd number n?

References

- [1] R. O. Buchweitz, *On Zariski's criterion for equisingularity and non-smoothable mono-mial curves*, Preprint 113, University of Hannover, 1980.
- [2] R. Fröberg, C. Gottlieb and R. Häggkvist, *On numerical semigroups*, Semigroup Forum **35** (1987), 63–83.
- [3] J. Komeda, *Double coverings of curves and non-Weierstrass semigroups*, Comm. Alg. **41** (2013), 312–324.
- [4] J. Komeda, On numerical semigroups whose quotients by two are generated by two or three elements, RIMS Kôkyûroku **2265** (2023).
- [5] J. Komeda, *The closure of the pseudo-Frobenius numbers of a numerical semigroup and double coverings of curves*, in preparation.
- [6] R. Waldi, *Deformation von Gorenstein-Singularitäten der Kodimension 3*, Math. Ann. **242** (1979), 201–208.