On the minimal 2-blocking sets in PG(5,2) *

Yusuke Miura and Tatsuya Maruta †
Department of Mathematics
Osaka Metropolitan University

1 Introduction

We denote by $\operatorname{PG}(r,q)$ the projective geometry of dimension r over the field of q elements \mathbb{F}_q . A j-space is a projective subspace of dimension j in $\operatorname{PG}(r,q)$. In this paper, Π_k stands for a k-space in $\operatorname{PG}(r,q)$. We set $\Pi_k = \emptyset$ for k < 0. The 0-spaces, 1-spaces, 2-spaces, 3-spaces and (r-1)-spaces are called points, lines, planes, solids and hyperplanes, respectively. A set of points in $\operatorname{PG}(r,q)$ meeting every (r-k)-space is called a k-blocking set or a blocking set with respect to (r-k)-spaces [3]. A 1-blocking set is simply called a blocking set. A k-space in $\operatorname{PG}(r,q)$ is the smallest k-blocking set [5] and a k-blocking set containing a k-space in $\operatorname{PG}(r,q)$ is called trivial. A k-blocking set \mathcal{B} is minimal if $\mathcal{B} \setminus \{P\}$ is no longer a k-blocking set for any point P of \mathcal{B} .

For an integer $r \geq 3$ and a prime power $q \geq 3$, a smallest non-trivial 1-blocking set \mathcal{B}_0 in a plane δ in $\mathrm{PG}(r,q)$ is also a smallest non-trivial 1-blocking set in $\mathrm{PG}(r,q)$. The speciality for the binary case is that a non-trivial 1-blocking set in $\mathrm{PG}(2,2)$ does not exist.

Denote by $\operatorname{Cone}(\Pi_k, \mathcal{B})$ (or simply $\Pi_k \mathcal{B}$) a cone with vertex a k-space Π_k and base \mathcal{B} in an s-space Δ skew to Π_k . Note that the cone is just \mathcal{B} if Π_k is empty. Govaerts and Storme proved the following.

Theorem 1.1 ([6]). (a) Any smallest non-trivial 1-blocking set in PG(r, 2), $r \ge 3$, is an elliptic quadric in a solid in PG(r, 2).

- (b) Every non-trivial minimal 2-blocking set in PG(3,2) is the complement of an elliptic quadric.
- (c) Any smallest non-trivial k-blocking set in PG(r,2), $r \geq 3$, with $2 \leq k \leq r-1$ is $Cone(\Pi_{k-3}, \mathcal{T})$ where \mathcal{T} is the set of 10 points consisting of the complement of an elliptic quadric in a solid Δ .

^{*}This paper is a preliminary version and the final version will be submitted to elsewhere.

[†]Corresponding author. E-mail address: maruta@omu.ac.jp

An elliptic quadric in PG(3, 2) is a set of five points no four of which are coplanar, that is the only non-trivial minimal 1-blocking set in PG(3, 2) up to projective equivalence. A natural question is to classify all non-trivial minimal k-blocking sets in PG(r, 2) up to projective equivalence for $1 \le k \le r - 1$.

In this paper, the point P in PG(r,2) with coordinate vector (p_0, p_1, \ldots, p_r) is denoted by (p_0, p_1, \ldots, p_r) or simply $p_0p_1 \ldots p_r$, and the number of 1's in $\{p_0, p_1, \ldots, p_r\}$ is called the weight of P. The hyperplane defined by the equation $a_0x_0 + a_1x_1 + \cdots + a_rx_r = 0$ is denoted by $[a_0a_1 \ldots a_r]$. For two distinct points $P(p_0, p_1, \ldots, p_r)$ and $Q(q_0, q_1, \ldots, q_r)$ in PG(r, 2), we denote the point $(p_0 + q_0, p_1 + q_1, \ldots, p_r + q_r)$ by P + Q.

Let $e_i = 0 \cdots 010 \cdots 0$ be the point of PG(r, 2) the only *i*-th entry of which is 1. We denote by **1** the point $11 \cdots 1$ and let $\mathcal{I}_r := \{e_1, e_2, \dots, e_{r+1}, \mathbf{1}\}$ in PG(r, 2) with odd $r \geq 3$. Note that $\mathcal{I}_3 = \{1000, 0100, 0010, 0001, 1111\}$ is an elliptic quadric in PG(3, 2). It is easy to see that \mathcal{I}_r is a non-trivial 1-blocking set in PG(r, 2) since r is odd. Since \mathcal{I}_r meets the hyperplane $[e_j + 1]$ in the point e_j and meets the hyperplane $[11 \cdots 1]$ in the point $\mathbf{1}, \mathcal{I}_r$ is minimal. Thus \mathcal{I}_r is a non-trivial minimal 1-blocking set in PG(r, 2) for odd $r \geq 3$.

Let $P_1, P_2, \ldots, P_{r+1}$ be r+1 points of $\operatorname{PG}(r,2)$ in general position. We call the (r+2)-set $\{P_1, P_2, \ldots, P_{r+1}, \sum_{i=1}^{r+1} P_i\}$ a *skeleton* in $\operatorname{PG}(r,2)$, which is also called a 'frame' [1]. Obviously, a skeleton in $\operatorname{PG}(r,2)$ is projectively equivalent to \mathcal{I}_r . Bono et al.[4] proved the following.

Theorem 1.2. Let S be a non-trivial minimal 1-blocking set in PG(r, 2), $r \geq 3$. Then, S is projectively equivalent to \mathcal{I}_s in some s-space of PG(r, 2) with odd $s \geq 3$.

Corollary 1.3. There are exactly $\lfloor (r-1)/2 \rfloor$ non-trivial minimal 1-blocking sets up to projective equivalence in PG(r,2), $r \geq 3$.

As a consequence of Theorem 1.2, there is only one non-trivial minimal 1-blocking set up to projective equivalence in PG(4,2), which is a skeleton in a solid. Bono et al. [4] also classified non-trivial minimal 2-blocking sets in PG(4,2) up to projective equivalence.

For t spaces χ_1, \ldots, χ_t , we denote by $\langle \chi_1, \ldots, \chi_t \rangle$ the smallest space containing χ_1, \ldots, χ_t . From Theorem 1.1, we get (a) of the following theorem.

- **Theorem 1.4** ([4]). (a) Let S_{10} be the set of 10 points in a solid Δ in PG(4,2) which is the complement of a skeleton in Δ . Then, S_{10} is the smallest non-trivial 2-blocking set in PG(4,2).
 - (b) Let $S_{11} = \operatorname{Cone}(P, K)$ with a point P and a skeleton K in a solid Δ not containing P. Then, S_{11} is a non-trivial minimal 2-blocking set with size 11 in PG(4,2).
 - (c) Take two planes δ_1, δ_2 meeting in a point P in PG(4,2) and a point $Q_i \in \delta_i \setminus \{P\}$ for i = 1, 2. Let $S_{12} = (\delta_1 \setminus \{Q_1\}) \cup (\delta_2 \setminus \{Q_2\}) \cup \{Q_1 + Q_2\}$. Then, S_{12} is a non-trivial minimal 2-blocking set with size 12 in PG(4,2).

- (d) Take three points Q_1, Q_2, Q_3 not on a line and a line l which is skew to the plane $\langle Q_1, Q_2, Q_3 \rangle$ in PG(4,2). Let $\delta_i = \langle Q_i, l \rangle$ for i = 1, 2, 3 and let $P = Q_1 + Q_2 + Q_3$. Then, $S_{13} = \{P\} \cup \bigcup_{i=1}^3 (\delta_i \setminus \{Q_i\})$ is a non-trivial minimal 2-blocking set with size 13 in PG(4,2).
- (e) Take a skeleton $\{Q_1, Q_2, Q_3, Q_4, P = \sum_{i=1}^4 Q_i\}$ in a solid Δ and a point R_1 out of Δ . Let l_1, \ldots, l_4 be the lines defined by $l_1 = \{P, R_1, R'_1 = P + R_1\}$ and

$$l_j = \{P, R_j = R_{j-1} + Q_{j-1}, R'_j = R'_{j-1} + Q_{j-1}\}, \ j = 2, 3, 4.$$

Then, $S'_{13} = \bigcup_{i=1}^{4} (l_i \cup \{P + Q_i\})$ is a non-trivial minimal 2-blocking set with size 13 in PG(4,2).

(f) A parabolic quadric \mathcal{P}_4 is a non-trivial minimal 2-blocking set with size 15 in PG(4,2).

Theorem 1.5 ([4]). There are exactly six non-trivial minimal 2-blocking sets in PG(4,2) up to projective equivalence, which are described in Theorem 1.4.

As a continuation of [4], we tried to find all non-trivial minimal 2-blocking sets in PG(5,2), and we obtained the following.

Theorem 1.6. There are at least 84 non-trivial minimal 2-blocking sets in PG(5,2) up to projective equivalence, whose sizes n satisfy $13 \le n \le 20$.

2 How to search 2-blocking sets in PG(5,2)

Let B be a non-trivial minimal 2-blocking set in $\Sigma := \operatorname{PG}(5,2)$ with size n. For any point P of B, there exists a solid π such that $\pi \cap B = \{P\}$ since B is minimal. such a solid π is called a *tangent* of B at P. Let M_B be a $6 \times n$ matrix whose columns consist of the n points of B. We denote by rank B the rank of the matrix M_B . We may assume that rank B = 6 because of the following.

Lemma 2.1. Let S be a non-trivial minimal k-blocking set in a t-space of PG(r,q) with k < t < r. Then, S is also a non-trivial k-blocking set in PG(r,q).

Imamura [8] found that there is no non-trivial minimal 2-blocking set in $\Sigma = \text{PG}(5,2)$ for $n \leq 12$ by an exhaustive computer search. It can be proved that $n \leq 21$, see Miura [9]. Hence, we may assume

$$13 \le n \le 21. \tag{2.1}$$

A hyperplane meeting B in exactly t points is called a t-hyperplane. A t-solid, a t-plane and so on are defined similarly. For a space Π in Σ , let

$$t_i(\Pi) = \max\{|S \cap B| \mid S \text{ is an } i\text{-space in } \Pi\}.$$

We simply denote by t_i for $t_i(\Sigma)$. Let Δ be a t_3 -solid in Σ . Then, we have $t_3 \leq 12$ since B is non-trivial. For any point P of $B \cap \Delta$, a tangent of B at P meets Δ in a

1-line or a 1-plane. Hence, each point of $B \cap \Delta$ is on a 1-line, giving $t_3 \leq 10$. Suppose t = 10. If the complement of B in Δ contains a line, then one can take a point of B which in not on a 1-line in Δ , a contradiction. Otherwise, B is the complement of a skeleton in Δ , and rank B = 4, a contradiction again. Thus, $t_3 \leq 9$. The following can be proved from the known results of binary linear codes [7].

Lemma 2.2. (a) $t_3 \ge 6$.

- (b) $t_4 \ge 10$ if n = 14 or 15.
- (c) $7 \le t_3 \le 9$ if $n \ge 16$.

We give the geometric description of the possible solid Δ with $t_3 = |\Delta \cap B|$.

Lemma 2.3. If Δ is a 9-solid, then Δ satisfies one of the following conditions:

- (a) $\Delta \setminus B = \ell_1 \cup \ell_2$, where ℓ_1 and ℓ_2 are skew lines;
- (b) $\Delta \cap B = (\delta_1 \cup \delta_2) \cap B$, where δ_1 and δ_2 are 6-planes through a 3-line.

Lemma 2.4. If Δ is a 8-solid, then Δ satisfies one of the following conditions:

- (a) $\Delta \setminus B = \ell_1 \cup \ell_2 \cup \{P\}$, where ℓ_1 and ℓ_2 are skew lines and $P = P_1 + P_2$ for some $P_1 \in \ell_1$ and $P_2 \in \ell_2$;
- (b) $\Delta \cap B = (\delta_1 \cup \delta_2) \cap B$, where δ_1, δ_2 are a 6-plane and a 5-plane through a 3-line.

Lemma 2.5. If Δ is a 7-solid, then Δ satisfies one of the following conditions:

- (a) $\Delta \cap B = (\delta_6 \cap B) \cup \{P\}$, where δ_6 is a 6-plane not containing a point P;
- (b) $\Delta \setminus B = \delta_0 \cup \{P\}$, where δ_0 is a 0-plane not containing a point P;
- (c) $\Delta \cap B = (\delta_5 \cap B) \cup \{P_1, P_2\}$, where δ_5 is a 5-plane meeting the line $\langle P_1, P_2 \rangle$ in a 0-point;
- (d) $\Delta \cap B$ consists of three non-coplanar lines through a fixed point;
- (e) $\Delta \cap B = \ell_1 \cup \ell_2 \cup \{P\}$, where ℓ_1 and ℓ_2 are skew lines and $P = P_1 + P_2$ for some $P_1 \in \ell_1$ and $P_2 \in \ell_2$.

Lemma 2.6. If Δ is a 6-solid, then Δ satisfies one of the following conditions:

- (a) $\Delta \cap B = (\delta_5 \cap B) \cup \{P\}$, where δ_5 is a 5-plane not containing a point P;
- (b) $\Delta \setminus B = \delta_0 \cup \{P_1, P_2\}$, where δ_0 is a 0-plane not containing the two points P_1, P_2 ;
- (c) $\Delta \cap B = K \cup \{P\}$, where K is a skeleton and P is a point of $\Delta \setminus K$;
- (d) $\Delta \cap B = \ell_1 \cup \ell_2$, where ℓ_1 and ℓ_2 are skew lines.

Let H_1, H_2, H_3 be the hyperplanes through Δ . Without loss of generality, we may assume that $H_1 = [000010], H_2 = [000001], H_3 = [000011]$ and that

$$n_1 \ge n_2 \ge n_3$$
,

where $n_i = |(H_i \setminus \Delta) \cap B|$ for i = 1, 2, 3. So, $n = t_3 + n_1 + n_2 + n_3$. For example, assume n = 13 with $t_3 = 6$. Then, the possible (n_1, n_2, n_3) 's are

$$(3,3,1), (3,2,2), (4,3,0), (4,2,1), (5,2,0), (5,1,1), (6,1,0).$$

Since there are six possible 6-solids by Lemma 2.6, we checked 28 cases by a computer, giving no result. Next, assume n = 13 with $t_3 = 7$. Then, the possible (n_1, n_2, n_3) 's are

$$(2,2,2), (3,3,0), (3,2,1), (4,1,1), (4,2,0),$$

giving three non-trivial minimal 2-blocking sets. In this way, we found 84 non-trivial minimal 2-blocking sets in PG(5,2) up to projective equivalence by an exhaustive computer search as Table 1.

Table 1: Possible $n = |B|, (t_4, t_3, t_2)$ and the number of possible B

n	(t_4, t_3, t_2)	#
13	(9,7,6)	3
14	(10,8,6)	2
15	(10,7,5)	1
	(11,7,5)	1
	(10,8,6)	1
	(11,8,6)	6
	(11,9,6)	12

n	(t_4, t_3, t_2)	#
16	(10,7,5)	1
	(11,8,5)	1
	(12,8,5)	1
	(12,9,6)	30
17	(12,8,5)	3
	(13,8,5)	2
	(13,9,5)	4

n	(t_4, t_3, t_2)	#
18	(12,8,5)	6
	(12,8,6)	2
	(12,9,6)	1
	(14,9,5)	2
	(14,9,6)	1
19	(13,9,5)	3
20	(12,8,5)	1

3 A generalization

From Table 1, there are three non-trivial minimal 2-blocking sets of size 13 in PG(5,2) up to projective equivalence. We give how to construct them in a geometric way.

We construct a minimal k-block B in $\Sigma = PG(r, 2)$ from two k-blocks B_1 and B_2 . For a point P_1 of B_1 and a set $T \subset B_2$, we denote by $(B_1; P_1) + (B_2; T)$ the set

$$(B_1 \setminus \{P_1\}) \cup (B_2 \setminus T) \cup \{P_1 + R \mid R \in T\}.$$

Lemma 3.1. Let B_1 , B_2 be k-spaces in $\Sigma = PG(r,2)$ with $B_1 \cap B_2 = \emptyset$, r = 2k + 1. Let P_1 be a point of B_1 and T be a subset of B_2 with $T \neq B_2$. Then, $B = (B_1; P_1) + (B_2; T)$ is a non-trivial minimal k-block in Σ .

Example 3.1. Let B_1 , B_2 be skew planes $\Sigma = PG(5, 2)$. Take a point $P_1 \in B_1$ and a set T in B_2 . Taking T as a point, a line and six points of B_2 , we get three different non-trivial minimal 2-blocking sets of size 13 in PG(5, 2).

References

- [1] A. Beutelspacher, U. Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press, Cambridge, 1998.
- [2] J. Bierbrauer, Introduction to Coding Theory, Chapman & Hall/CRC, 2005.
- [3] A. Blokhuis, P. Sziklai, T. Szönyi, Blocking sets in projective spaces, in Current research topics in Galois geometry, Nova Sci. Publ., New York, 2010, Chap. 3, 63–86.
- [4] N. Bono, T. Maruta, K. Shiromoto, K. Yamada, On the non-trivial minimal blocking sets in binary projective spaces, Finite Fields Appl. 72 (2021) 101814.
- [5] R.C. Bose, R.C. Burton, A characterization of space spaces in a finite projective geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory 1 (1966) 96–104.
- [6] P. Govaerts, L. Storme, The classification of the smallest nontrivial blocking sets in PG(n, 2), J. Combin. Theory Ser. A 113 (2006) 1543–1548.
- [7] M. Grassl, Tables of linear codes and quantum codes (electronic table, online). http://www.codetables.de/.
- [8] K. Imamura, private communication, 2023.
- [9] Y. Miura, On the non-trivial blocking sets in binary projective spaces, MSc Thesis, Osaka Metropolitan University, 2024.