On the minimal 2-blocking sets in PG(5,2) *

Yusuke Miura and Tatsuya Maruta |
Department of Mathematics
Osaka Metropolitan University

1 Introduction

We denote by PG(r,q) the projective geometry of dimension r over the field of ¢
elements F,. A j-space is a projective subspace of dimension j in PG(r,¢). In this
paper, IT; stands for a k-space in PG(r,q). We set IT, = () for k < 0. The 0-spaces,
1-spaces, 2-spaces, 3-spaces and (r — 1)-spaces are called points, lines, planes, solids
and hyperplanes, respectively. A set of points in PG(r, ¢) meeting every (r — k)-
space is called a k-blocking set or a blocking set with respect to (r — k)-spaces [3]. A
1-blocking set is simply called a blocking set. A k-space in PG(r, q) is the smallest
k-blocking set [5] and a k-blocking set containing a k-space in PG(r,q) is called
trivial. A k-blocking set B is minimal if B\ {P} is no longer a k-blocking set for
any point P of B.

For an integer r > 3 and a prime power ¢ > 3, a smallest non-trivial 1-blocking
set By in a plane ¢ in PG(r, ¢) is also a smallest non-trivial 1-blocking set in PG(r, ).
The speciality for the binary case is that a non-trivial 1-blocking set in PG(2, 2) does
not exist.

Denote by Cone(Ily, B) (or simply II;5) a cone with vertex a k-space I and
base B in an s-space A skew to II;. Note that the cone is just B if I is empty.

Govaerts and Storme proved the following.

Theorem 1.1 ([6]). (a) Any smallest non-trivial 1-blocking set in PG(r,2), r >
3, is an elliptic quadric in a solid in PG(r,?2).

(b) Ewvery non-trivial minimal 2-blocking set in PG(3,2) is the complement of an
elliptic quadric.

(¢) Any smallest non-trivial k-blocking set in PG(r,2), r > 3, with2 <k <r—1
is Cone(Ily_3,T) where T is the set of 10 points consisting of the complement
of an elliptic quadric in a solid A.

*This paper is a preliminary version and the final version will be submitted to elsewhere.
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An elliptic quadric in PG(3, 2) is a set of five points no four of which are coplanar,
that is the only non-trivial minimal 1-blocking set in PG(3,2) up to projective
equivalence. A natural question is to classify all non-trivial minimal k-blocking sets
in PG(r,2) up to projective equivalence for 1 < k <r — 1.

In this paper, the point P in PG(r, 2) with coordinate vector (pg, p1, - .., p,) is de-
noted by (po, p1, - .-, pr) or simply pops . . . pr, and the number of 1’sin {po, p1, ..., pr}
is called the weight of P. The hyperplane defined by the equation agry + a1z1 +
-+ 4+ a,x, = 0 is denoted by [apa; ...a,]. For two distinct points P(pg,p1,--.,pr)
and Q(qo, q1,---,q-) in PG(r,2), we denote the point (po + qo,p1 + ¢1,---,0r + Q)
by P+ Q.

Let e; = 0---010---0 be the point of PG(r,2) the only i-th entry of which is
1. We denote by 1 the point 11---1 and let Z, := {ej, es,...,€,41,1} in PG(r,2)
with odd r» > 3. Note that Z3 = {1000, 0100,0010,0001, 1111} is an elliptic quadric
in PG(3,2). It is easy to see that Z, is a non-trivial 1-blocking set in PG(r, 2) since
r is odd. Since Z, meets the hyperplane [e; + 1] in the point e; and meets the
hyperplane [11---1] in the point 1, Z, is minimal. Thus Z, is a non-trivial minimal
1-blocking set in PG(r, 2) for odd r > 3.

Let Py, Ps, ..., P.y1 be r+ 1 points of PG(r,2) in general position. We call the
(r+2)-set {Py, Py, ..., Py, S0} P} a skeleton in PG(r,2), which is also called a
‘frame’ [1]. Obviously, a skeleton in PG(r,2) is projectively equivalent to Z,. Bono
et al.[4] proved the following.

Theorem 1.2. Let S be a non-trivial minimal 1-blocking set in PG(r,2), r > 3.
Then, S is projectively equivalent to Ly in some s-space of PG(r,2) with odd s > 3.

Corollary 1.3. There are exactly |(r — 1)/2] non-trivial minimal 1-blocking sets
up to projective equivalence in PG(r,2), r > 3.

As a consequence of Theorem 1.2, there is only one non-trivial minimal 1-blocking
set up to projective equivalence in PG(4, 2), which is a skeleton in a solid. Bono et
al.[4] also classified non-trivial minimal 2-blocking sets in PG(4, 2) up to projective
equivalence.

For ¢ spaces xi, ..., x:, we denote by (x1,...,x:) the smallest space containing
X1, - -5 Xt From Theorem 1.1, we get (a) of the following theorem.

Theorem 1.4 ([4]). (a) Let Sio be the set of 10 points in a solid A in PG(4,2)
which is the complement of a skeleton in A. Then, Sy is the smallest non-
trivial 2-blocking set in PG(4,2).

(b) Let S;1 = Cone(P, K) with a point P and a skeleton K in a solid A not
containing P. Then, S11 is a non-trivial minimal 2-blocking set with size 11
in PG(4,2).

(¢) Take two planes 61,0y meeting in a point P in PG(4,2) and a point Q; €
0 \{P} fori=1,2. Let S1o = (61 \ {Q1}) U (02 \ {Q2}) U{Q1 + Q2}. Then,

Sia s a non-trivial minimal 2-blocking set with size 12 in PG(4,2).



(d) Take three points QQ1,Q2, Qs not on a line and a line | which is skew to the
plane (Q1,Q2, Q3) in PG(4,2). Let §; = (Q;, 1) fori = 1,23 and let P =
Q1+ Qo+ Qs. Then, Siz = {PYUUL,(6: \ {Q:}) is a non-trivial minimal
2-blocking set with size 13 in PG(4,2).

(e) Take a skeleton {Q1,Q2,Qs, Qs, P = Z?:l Q:} in a solid A and a point Ry
out of A. Letly, ... 1y be the lines defined by l; = {P, Ry, R} = P+ R1} and

lj={P,Rj=R; 1 +Q; 1,R; =R, | +Q; 1}, j =2,3,4.

Then, Sy = Ui (L U{P + Q;}) is a non-trivial minimal 2-blocking set with
size 13 in PG(4,2).

(f) A parabolic quadric Py is a non-trivial minimal 2-blocking set with size 15 in
PG(4,2).

Theorem 1.5 ([4]). There are exactly six non-trivial minimal 2-blocking sets in
PG(4,2) up to projective equivalence, which are described in Theorem 1.4.

As a continuation of [4], we tried to find all non-trivial minimal 2-blocking sets
in PG(5,2), and we obtained the following.

Theorem 1.6. There are at least 84 non-trivial minimal 2-blocking sets in PG(5,2)
up to projective equivalence, whose sizes n satisfy 13 < n < 20.

2 How to search 2-blocking sets in PG(5, 2)

Let B be a non-trivial minimal 2-blocking set in 3 := PG(5, 2) with size n. For any
point P of B, there exists a solid 7 such that 7N B = {P} since B is minimal. such
a solid 7 is called a tangent of B at P. Let Mp be a 6 X n matrix whose columns
consist of the n points of B. We denote by rank B the rank of the matrix Mp. We
may assume that rank B = 6 because of the following.

Lemma 2.1. Let S be a non-trivial minimal k-blocking set in a t-space of PG(r,q)
with k <t <r. Then, S is also a non-trivial k-blocking set in PG(r,q).

Imamura [8] found that there is no non-trivial minimal 2-blocking set in ¥ =
PG(5,2) for n < 12 by an exhaustive computer search. It can be proved that n < 21,
see Miura [9]. Hence, we may assume

13<n <21 (2.1)

A hyperplane meeting B in exactly ¢ points is called a t-hyperplane. A t-solid, a
t-plane and so on are defined similarly. For a space Il in X, let

t;(II) = max{|S N B| | S is an i-space in II}.

We simply denote by ¢; for ¢;(X). Let A be a t3-solid in 3. Then, we have t3 < 12
since B is non-trivial. For any point P of BN A, a tangent of B at P meets A in a
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1-line or a 1-plane. Hence, each point of BNA is on a 1-line, giving 3 < 10. Suppose
t = 10. If the complement of B in A contains a line, then one can take a point of B
which in not on a 1-line in A, a contradiction. Otherwise, B is the complement of a
skeleton in A, and rank B = 4, a contradiction again. Thus, t3 < 9. The following
can be proved from the known results of binary linear codes [7].

Lemma 2.2. (a) t3 > 6.

(b) ty > 10 if n = 14 or 15.

(c) 7T<t3 <9 ifn>16.

We give the geometric description of the possible solid A with ¢3 = |A N B].

Lemma 2.3. If A is a 9-solid, then A satisfies one of the following conditions:

(a) A\ B =/t Uly, where {1 and {5 are skew lines;

(b) AN B =(6Ud)N DB, where 6; and 3 are 6-planes through a 3-line.
Lemma 2.4. If A is a 8-solid, then A satisfies one of the following conditions:

(a) A\ B =0, Uly U{P}, where {; and ly are skew lines and P = P, + P» for
some P; € {1 and Py € {;

(b) ANB = (6;Udy)N B, where 61,02 are a 6-plane and a 5-plane through a 3-line.
Lemma 2.5. If A is a 7-solid, then A satisfies one of the following conditions:

(a) AN B = (d N B)U{P}, where d¢ is a 6-plane not containing a point P;

(b) A\ B =6y U{P}, where &y is a 0-plane not containing a point P;

(c) ANB = (05N B)U{Py, P}, where 05 is a 5-plane meeting the line (Py, Py) in
a 0-point;

(d) AN B consists of three non-coplanar lines through a fixed point;

(e) AN B =t Uly U{P}, where {1 and {5 are skew lines and P = P, + P, for
some Py € {1 and Py € (5.

Lemma 2.6. If A is a 6-solid, then A satisfies one of the following conditions:
(a) AN B = (35N B)U{P}, where d5 is a 5-plane not containing a point P;

(b) A\ B = dy U{Py, Py}, where &y is a 0-plane not containing the two points
Pla PZ;.

(¢) AN B = KU{P}, where K is a skeleton and P is a point of A\ K;

(d) AN B =/{,Uly, where {; and {5 are skew lines.



Let Hy, Hy, H3 be the hyperplanes through A. Without loss of generality, we
may assume that H; = [000010], Hy = [000001], H3 = [000011] and that

ng = ng = na,

where n; = |(H; \ A) N B for i = 1,2,3. So, n = t3 + ny + na + ns.
For example, assume n = 13 with t3 = 6. Then, the possible (nq,ny,ng)’s are

(3,3,1),(3,2,2),(4,3,0), (4,2,1),(5,2,0),(5,1,1), (6,1, 0).

Since there are six possible 6-solids by Lemma 2.6, we checked 28 cases by a com-
puter, giving no result. Next, assume n = 13 with t3 = 7. Then, the possible
(ny,n9,n3)’s are

(2,2,2),(3,3,0),(3,2,1),(4,1,1), (4,2,0),

giving three non-trivial minimal 2-blocking sets. In this way, we found 84 non-trivial
minimal 2-blocking sets in PG(5,2) up to projective equivalence by an exhaustive
computer search as Table 1.

Table 1: Possible n = |B|, (t4,3,t2) and the number of possible B

n (t4,t3,t2) # n (t4,t3,t2) # n (t4,t3,t2) #
3] (976) | 3 | [16] (10,7,5) | 1 18] (12,85) | 6
14| (10,8,6) | 2 (11,85) | 1 (12,8,6) | 2
15| (10,7,5) | 1 (12,8,5) | 1 (12,96) | 1
(1L,7,5) | 1 (12,9,6) | 30 (14,95) | 2
(10,8,6) | 1 17| (1285) | 3 (14,96) | 1
(11,8,6) | 6 (138,5) | 2 19| (13,95 | 3
(11,9,6) | 12 (13,95) | 4 20 | (12,85) | 1

3 A generalization

From Table 1, there are three non-trivial minimal 2-blocking sets of size 13 in
PG(5,2) up to projective equivalence. We give how to construct them in a geo-
metric way.

We construct a minimal k-block B in ¥ = PG(r,2) from two k-blocks B; and
Bs. For a point P; of By and a set T' C By, we denote by (By; Py) + (Bs;T) the set

(Bi\{P}H)U(B\T)U{PL+R| ReT}.

Lemma 3.1. Let By, By be k-spaces in ¥ = PG(r,2) with BN By = 0, r =
2k + 1. Let P, be a point of By and T be a subset of By with T # Bs. Then,
B = (By; P1) 4 (B; T) is a non-trivial minimal k-block in X.

Example 3.1. Let By, By be skew planes > = PG(5,2). Take a point P, € B; and
aset T in By. Taking T as a point, a line and six points of By, we get three different
non-trivial minimal 2-blocking sets of size 13 in PG(5, 2).
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