BACK TO BASICS: DECOMPOSING FULL TRANSFORMATION
SEMIGROUPS

ATTILA EGRI-NAGY

ABSTRACT. Transformation semigroups are models of discrete dynamical systems.
We can use their hierarchical decompositions as cognitive tools to get insights
about the underlying structure and dynamics. The Krohn-Rhodes theory gives
mathematical guarantee for the existence of these decompositions. However, the
details of obtaining decompositions in practice, and the ways of using them for
understanding are still work in progress. Here, we look at the decompositions
of familiar algebraic objects, the full transformation semigroups, to provide an
elementary approach to this kind of algebraic modeling.

Here we use the Covering Lemma method [6, 2], the easiest algorithm for the
Krohn-Rhodes theory [5], to decompose the nicest possible example of full trans-
formation semigroups. The purpose here is educational (bordering entertainment),
thus very little new findings are presented. We put emphasis on the explana-
tion and accessibility. The typeface is chosen accordingly, following the classical
example-driven textbook Concrete Mathematics [4].

First we give a minimal set of definitions, then describe a general algorithm for
two-level decompositions, and finally we investigate how the algorithm works on
the full transformation semigroups.

1. PRELIMINARIES

Here, we define the objects we are interested in, the ways we can combine them
into more complex structures, and how to establish relationships between them.
For more details, see [1, 2].

1.1. The algebraic objects. In essence, we talk about semigroups, sets closed
under an associative binary operation. However, we are interested in one particular
representation, the one closest to automata theory.

Definition 1.1 (Transformation Semigroup). A transformation semigroup (X,S)
is a finite nonempty set of states (points) X and a set S of total transformations of
X, i.e., functions of type X — X, closed under composition.

We also say that S acts on X, expressed as a functions of type X x S — X. For
this action on the right we write z - s, or simply zs.

The action is faithful if Vo € X,z +s; =z -5y = s; = s, for all s;,s, € S.
When the action is not faithful, we can identify transformations if they act the same
way on X, thus defining an equivalence relation =. Then the quotient semigroup
S/ = is faithful on X.

The tmage of a transformation s is Im(s) = {z - s | ¢ € X}. The stabilizer of
a set of states A C X is the subsemigroup Stabg(A) = {s € S| A-S C A}, i.e,
stabilizing A in the weaker sense of not leaving A. We write S|Z for Stabg(A) made

HP
長方形

HP
テキストボックス
1

ATTILA EGRI-NAGY

faithful. It is the image of a surjective homomorphism from a subsemigroup of S.
Such an image is often called a divisor of S.

1.2. Decompositions. We combine transformation semigroups into bigger ones,
where the components have asymmetric roles: the top level just performs its com-
putation, while the bottom level listens to the top level state in order to decide
what to do. The control information flows one way, thus we have a hierarchical
system.

Definition 1.2 (Wreath Product). The wreath product (X,S)(Y,T') of transfor-
mation semigroups is the cascade transformation semigroup (X x Y ,W) where

W ={(s,d)|s€S,d €T},
whose elements map X X Y to itself as follows

("B)y) : (57d) = ("B *SY - d((II))
forzre X,y€eY. Wecall d: X — T a dependency function.

Definition 1.3. We call a (proper) subsemigroup of the wreath product a cas-
cade product. We denote such a product operation by ¢, indicating that it is a
substructure and also hinting the direction of the control flow.

1.3. Relationships. For expressing relationships between transformation semi-
groups we use the usual idea of structure preserving maps, the so-called homo-
morphisms. However, we use relations instead of functions, and we need a pair of
them for the semigroup action.

Definition 1.4 (Relational Morphism). A relational morphism of transformation
semigroups (X, S) b, (Y, T) is a pair of relations (6 : X — Y, ¢ :S — T) that are
fully defined, i.e., 8(z) # @ and ¢(s) # @, and satisfy the condition of compatible
actions for all z € X and s € St

yebz)tep(s) = y-teb(z-s),

or more succinctly: 8(z) - ¢(s) C 6(z - s).

2. THE COVERING LEMMA DECOMPOSITION METHOD

To investigate the structure of a transformation semigroup (X,.S), we construct
a surjective relational morphism:

(x,8) 224, (v, 7).

The target semigroup (Y, T') serves as an approzimation of (X,S). There are two
extreme cases of approximations. When (Y, T') is the trivial transformation monoid,
all structural information is lost through R. When (Y, T') = (X, S), information is
completely transferred through the morphism. For a successful study of (X,S) we
want something in-between. We want to control what is preserved and omitted in
the process of coarse-graining.

Given an approximation, we can build an emulation:

(X,8) 29, (v 7)o (2,1).

The central idea of the method is that the bottom level component (Z,U) recovers
all the information in (X, S) missing from (Y, T).

HP
長方形

HP
テキストボックス
2

BACK TO BASICS: DECOMPOSING FULL TRANSFORMATION SEMIGROUPS

Using a physical metaphor, we can say that elements of Y are macro states. The
macro dynamics is defined by the action of 7. For each y € Y, we have a subset
of Z representing the corresponding micro states. T' only moves the macro states,
and the transformations in U only make sense with respect to a top level macro
state. We connect the micro states in Z (corresponding to a y) to the original states
in X by a partially defined invertible labelling function w, : X — Z. The labelling
needs to be defined only for §~!(y). It is arbitrary but fixed for a macro state.

Now we have all the ingredients to define the relational morphism for the emu-
lation.

¢(z) ={(y,z-wy) | y € 6(z)},
u(s) = {(t,w; 'swy) | t € ¢(s),y € Im0}.

3. DECOMPOSING FULL TRANSFORMATION SEMIGROUPS

The full transformation semigroup of degree n, T,, is the set of all transfor-
mations of an n-element set, canonically denoted by positive integers {1, ...,n}. It
is a monoid, and it is the semigroup analogue of the symmetric group, S, the
group of all permutations of degree n. Also, S, < T,. Both are examples of what
we call classical transformation semigroups [3].

For transformations of small degree we can use a condensed notation. For in-

stance, (1234) can be written as 1322.
3.1. R for T7,. When we build a surjective relational morphism for a transforma-
tion semigroup, the most straightforward method is to identify some states, get the
smallest congruence (equivalence relation on the states compatible with the action),
and see what action it induces. However, for the minimal-degree transformation
representation of 7, there is no nontrivial equivalence relation on {1,...,n} com-
patible with the action of 7,,. If we try to identify any two points and find the
coarsest compatible partition, we end up with a single class containing all points.
Thus we need to use the peculiar feature of relational morphism: the image sets
can overlap. In the physical metaphor this means that a micro state can be part of
several macro states.

3.1.1. Mapping the states: 0 for T,. We map each state X = {1,2,...,n} to a set
of states by 8(z) = X \ {z}. Each state goes to the set of all states but itself. For
instance, if n = 4,

(1) = {2,3,4}, 6(2) = {1,3,4}, 6(3) = {1,2,4}, 6(4) = {1,2,3}.

When computing the preimages, we see that § = 671, since a state appears in all
image sets, except in the image of itself.

3.1.2. Mapping the transformations: ¢ for T,. For a transformation s € S,
we distinguish between two possibilities: s is a permutation, or it is not, i.e., it
collapses some states. We map a permutation to itself, or to be more precise, to
the singleton set containing the permutation. If s is not a permutation, then its
image has missing states. We form constant maps to those states. Again, this is
backwards, matching 6. Formally,

) {s} ifX-.s=X,
q()(‘S)_{‘{lejglms} fX.s¢cX.

The statistical mechanics
interpretation keeps
appearing in these
decompositions.

When working with T,
we do not need to worry
about the existence of a
particular transformation.
They are all there.

It will become clear later
why this weird
‘backwards’ relation
works.

HP
長方形

HP
テキストボックス
3

Moving a point is the
same as moving a
corresponding hole.

We can, of course, use
more states in Z and
avoid reusing them in
different contexts.

ATTILA EGRI-NAGY

For instance, in 75, ¢(23451) = {23451}, ¢(22333) = {ci,c4,¢5}, and @(c;) =
{ca, €3, €405}

3.1.3. Why does R(0,¢) work as a relational morphism? The ‘backwards’ rela-
tions €, ¢ have a simple intuitive explanation. Composing transformations can only
reduce the size of the image. To make the morphism work, we need a bigger ¢(s)
set for smaller Im(s).

Let’s see how the cycle p = 23451 acts on = 2. It is just a permutation action:
2.p = 3. This result in Y is §(3) = {1,2,4,5}, X with a ‘hole’ at 3. Now, let’s
do the action in (Y,T): 6(2) = {1,3,4,5} and ¢(p) = {p}. We have the same
permutation in T by ¢, thus {1,3,4,5}-p = {2,4,5,1} = {1,2,4,5}. The hole
moves exactly the same way as 2 would do. Therefore, 8(z) - ¢(p) = (zp), the
action is compatible for permutations.

As a non-permutation example, 22333 moves 4 to 3, and 0(3) = {1,2,4,5}. On
the other hand, 6(4) = {1,2,3,5} and ¢(s) = {c;,c4,¢5}. Those constant maps
produce {1,4,5}, no matter what set we apply them to. Therefore, 6(4) - ¢(s) C
0(4 - s); the relational morphism works in this case. It works in general too: 8(zs)
will have a single hole for some z' € Im(s), but it will have all other states. By
definition, ¢(s) will produce the set X \ Im(s), thus this set will not contain z’,
the only state that could disprove the subset relation.

Similar argument can show that ¢ is a relational morphism for semigroups as
well, i.e., p(s1) - @(s3) C ¢(s;-y). For a non-permutation s,, ¢(s1) - ¢(s3) = @(s3),
since constant transformations are right zeroes.

3.2. Emulation. At this stage, we have R(0, ¢) defining a surjective morphism. To
build an emulation by a cascade product, we need to construct (Z,U), the bottom
level components. To be more precise, we will have a transformation semigroup
(Z,U,) for each top level state y. Here is the main intuition. If we fix a macro
state y € Y, so nothing happens on the top level, there can still be action on the
preimages 6~*(y), back in the original transformation semigroup (X,S). We want
to copy that action to this bottom level component. The preimage states 671(y)
will be the micro states Z (after some technical relabelling). The micro dynamics
semigroup U, will be then S|95_1(y).

Since 0 misses only a single point, we will have n — 1 states on the second level.
It is true in general that |Z| = max, |#~*(y)|. For a top level state y, we have a
hole in the state set, so we need a labelling function to take care of that. We define

wy : 07 (y) — Z by
z ifz <y,
wy(T) = .
z—1 ifz>y.
Anything above the hole moves down. Note that w, is partial since it is not defined
for y itself. It is also invertible. This gives a n(n — 1) cascade transformation rep-

resentation of a degree n transformation semigroup. What are those coordinatized
states?

3.2.1. Coordinatized States. We lift states z to pairs of states (y,z). There are
|0(z)| coordinate pairs for each state.

For 75, we have 1 — {(2,1),(3,1)}, 2 — {(1,1),(3,2)}, 3 — {(1,2),(2,2)},
which does not seem to make too much sense. However, drawing a tree reveals the
pattern.

HP
長方形

HP
テキストボックス
4

BACK TO BASICS: DECOMPOSING FULL TRANSFORMATION SEMIGROUPS
/ 1 /é\ 3 \\
Z 12 12 12
x @B OB @b
The coordinates directly encode 6, or rather !, which is the same in this case. In
general, the Z-coordinates under a top level state y encode the states in 871(y).

Y

3.2.2. Cascade Transformations. For each s € S we will have as many cascade
transformations as many lifts s has under ¢, i.e., |¢(s)|. The independent, top level
action is defined by ¢ € ¢(s). For each such ¢ € ¢(s), we need to go through all top
level states y € Y and define the value of the dependency function. In other words,
we need to give a transformation in U for a state y. This is defined by wy 1swyt.
To spell it out, wy ! takes states in Z to the original states in X. The image of
the mapping is 6~1(y), missing a single state. Since we are in X, s acts on these
points, so we do that. Then we come back to Z by a different mapping, by wy,
since we did action zs and its compatible counterpart yt, so the top level state is
(potentially) changed.

What action is transferred from S? On the top level we have all permutations
and all the constant maps. The inclusion of the constant maps is denoted by a bar
over the component. On the bottom level, everything on n — 1 points, which is
T n_1. Thus we have the emulation:

Tn - S_nl: 7—n—l-

The construction can be iterated, therefore we have the standard result

Tn - S_nz; S’ﬂ—l 23 A 23 32‘

3.3. Investigating the cascade product solution. What is S_nzD T -1 exactly?
It is a cascade transformation representation of 7, on n(n — 1) coordinate pairs.

How big is this cascade product? How many lifts does ¢ produce? The number
nl

(n—k)!"
the second kind {Z} gives the number of partitions of the n-element state set with
exactly k classes. The equivalence is defined by having the same image. Then we
need to choose k states, the image values. Thus, we have (Z), but the order of the
classes matter, so we multiply by k!. To calculate the number of lifts, we need to
sum over all possible image sizes with the multiplicity by the number of lifts and
add the number of permutations:

[o(T2) = ! +:2(n— k){:}(nf—'k),

We can see how the difference is growing for the first few values of n. The difference
is growing steadily.

n |2 3 4 5 6 7

[T.[=n"[4 27 256 3125 46656 823543

lo(TH)| 4 30 348 52407 94470 1964592

of transformation in 7, with image size k is {Z} The Stirling number of

Permutation group
augmented with constant
transformations is a
permutation-reset
component.

HP
長方形

HP
テキストボックス
5

ATTILA EGRI-NAGY

After all, the nice example of full transformation semigroups does not produce the
most ‘economical’ decompositions, due to the need of overlapping image sets in the
relations of the morphism.

REFERENCES

[1] Attila Egri-Nagy. “Finite Computational Structures and Implementations: Semi-
groups and Morphic Relations”. In: International Journal of Networking and
Computing 7.2 (2017), pp. 318-335. DOI: 10.15803/1ijnc.7.2_318.

[2] Attila Egri-Nagy and Chrystopher L. Nehaniv. From Relation to Emulation
and Interpretation: Implementing the Covering Lemma for Finite Trans-
formation Semaigroups. 2024. DOI: 10 .48550/arXiv . 2404 .11923. arXiv:
2404.11923 [math.GR].

[3] Olexandr Ganyushkin and Volodymyr Mazorchuk. Classical Transformation
Semigroups. Algebra and Applications. Springer, 2009.

[4] Romnald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathe-
matics: A Foundation for Computer Science. Second Edition. Reading, MA:
Addison-Wesley, 1994.

[6] Kenneth Krohn and John Rhodes. “Algebraic Theory of Machines. I. Prime De-
composition Theorem for Finite Semigroups and Machines”. In: Transactions
of the American Mathematical Soctety 116 (Apr. 1965), pp. 450-464.

[6] Chrystopher L. Nehaniv. “From relation to emulation: The Covering Lemma
for transformation semigroups”. In: Journal of Pure and Applied Algebra
107.1 (1996), pp. 75-87. DOI: 10.1016/0022-4049(95)00030-5.

AKITA INTERNATIONAL UNIVERSITY, JAPAN
Email address: egri-nagy@aiu.ac.jp

HP
長方形

HP
テキストボックス
6

